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Abstract

Existing theories on deep nonparametric regression have shown that when the input data
lie on a low-dimensional manifold, deep neural networks can adapt to the intrinsic data struc-
tures. In real world applications, such an assumption of data lying exactly on a low dimensional
manifold is stringent. This paper introduces a relaxed assumption that the input data are concen-
trated around a subset of Rd denoted by S , and the intrinsic dimension of S can be characterized
by a new complexity notation – effective Minkowski dimension. We prove that, the sample com-
plexity of deep nonparametric regression only depends on the effective Minkowski dimension
of S denoted by p. We further illustrate our theoretical findings by considering nonparametric
regression with an anisotropic Gaussian random design N (0,Σ), where Σ is full rank. When the
eigenvalues of Σ have an exponential or polynomial decay, the effective Minkowski dimension
of such an Gaussian random design is p = O(

√
logn) or p = O(nγ ), respectively, where n is the

sample size and γ ∈ (0,1) is a small constant depending on the polynomial decay rate. Our the-
ory shows that, when the manifold assumption does not hold, deep neural networks can still
adapt to the effective Minkowski dimension of the data, and circumvent the curse of the ambient
dimensionality for moderate sample sizes.

1 Introduction

Deep learning has achieved impressive successes in various real-world applications, such as com-
puter vision (Krizhevsky et al., 2012; Goodfellow et al., 2014; Long et al., 2015), natural language
processing (Graves et al., 2013; Bahdanau et al., 2014; Young et al., 2018), and robotics (Gu et al.,
2017). One notable example of this is in the field of image classification, where the winner of the
2017 ImageNet challenge achieved a top-5 error rate of just 2.25% (Hu et al., 2018) using a train-
ing dataset of 1 million labeled high resolution images in 1000 categories. Deep neural networks
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have been shown to outperform humans in speech recognition, with a 5.15% word error rate us-
ing the LibriSpeech training corpus (Panayotov et al., 2015), which consists of approximately 1000
hours of 16kHz read English speech from 8000 audio books.

The remarkable successes of deep learning have challenged conventional machine learning
theory, particularly when it comes to high-dimensional data. Existing literature has established
a minimax lower bound of sample complexity n ≳ ϵ−(2s+d)/s for learning s-Hölder functions in
R
d with accuracy ϵ (Györfi et al., 2006). This minimax lower bound, however, is far beyond

the practical limits. For instance, the images in the ImageNet challenge are of the resolution
224×224 = 50176, while the sample size of 1.2 million is significantly smaller than the theoretical
bound.

Several recent results have attempted to explain the successes of deep neural networks by tak-
ing the low-dimensional structures of data into consideration(Chen et al., 2019, 2022; Nakada and
Imaizumi, 2020; Liu et al., 2021; Schmidt-Hieber, 2019). Specifically, Chen et al. (2022) shows that
when the input data are supported on a p-dimensional Riemannian manifold embedded in R

d ,
deep neural networks can capture the low-dimensional intrinsic structures of the manifold. The
sample complexity in Chen et al. (2022) depends on the intrinsic dimension p, which circumvents
the curse of ambient dimension d; Nakada and Imaizumi (2020) assumes that the input data are
supported on a subset of Rd with Minkowski dimension p, and establishes a sample complexity
similar to Chen et al. (2022). Liu et al. (2021) considers a classification problem, and show that
convolutional residual networks enjoy similar theoretical properties to Chen et al. (2022).

Considering the complexity of real world applications, however, the assumptions of data lying
exactly on a low-dimensional manifold or a set with low Minkowski dimension are stringent. To
bridge such a gap between theory and practice, we consider a relaxed assumption that the input
data X are approximately supported on a subset of Rd with certain low-dimensional structures
denoted by S . Roughly speaking, there exists a sufficiently small τ such that we have P(X < S) = τ ,
where S can be characterized by a new complexity notation – effective Minkowski dimension.
We then prove that under proper conditions, the sample complexity of nonparametric regression
using deep neural networks only depends on the effective Minkowski dimension of S denoted by
p. Our assumption arises from practical motivations: The distributions of real-world data sets
often exhibit a varying density. In practice, the low-density region can be neglected, if our goal is
to minimize the L2 prediction error in expectation.

Furthermore, we illustrate our theoretical findings by considering nonparametric regression
with an anisotropic multivariate Gaussian randomly sampled from N (0,Σ) design in R

d . Specif-
ically, we prove that when the eigenvalues of Σ have an exponential decay, we can properly con-
struct S with the effective Minkowski dimension p = min(O(

√
logn),d). Moreover, when the eigen-

values of Σ have a polynomial decay, we can properly construct S with the effective Minkowski di-
mension p = min(O(nγ ,d)), where γ ∈ (0,1) is a small constant. Our proposed effective Minkovski
dimension is a non-trivial generalization of the manifold intrinsic dimension (Chen et al., 2022)
or the Minkowski dimension (Nakada and Imaizumi, 2020), as both the intrinsic dimension or
Minkowski dimension of the aforementioned S ’s are d, which can be significantly larger than p

for moderate sample size n.
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An ingredient in our analysis is an approximation theory of deep ReLU networks for β-Hölder
functions (Yarotsky, 2017; Nakada and Imaizumi, 2020; Chen et al., 2019). Specifically, we show
that, in order to uniformly approximate β-Hölder functions on a properly selected S up to an ϵ

error, the network consists of at most O(ϵ−p/β) neurons and weight parameters, where p is the
effective Minkowski dimension of the input data distribution. The network size in our theory
only weakly depends on the ambient dimension d, which circumvents the curse of dimensionality
for function approximation using deep ReLU networks. Our approximation theory is established
for the L2 norm instead of the L∞ norm in Nakada and Imaizumi (2020); Chen et al. (2019). The
benefit is that we only need to approximate the function accurately on the high-density region,
and allow for rough approximations on the low-density region. Such flexibility is characterized
by our effective Minkowski dimension.

The rest of this paper is organized as follows: Section 2 reviews the background; Section 3
presents our functional approximation and statistical theories; Section 4 provides an application
to Gaussian random design; Section 5 presents the proof sketch of our main results; Section 6
discusses related works and draws a brief conclusion.

Notations Given a vector v = (v1, ...,vd)⊤ ∈Rd , we define ∥v∥pp =
∑

j |vj |p for p ∈ [1,∞) and ∥v∥∞ =
maxj |vj |. Given a matrix W = [Wij ] ∈ Rn×m, we define ∥W ∥∞ = maxi,j |Wij |. We define the number
of nonzero entries of v and W as ∥v∥0 and ∥W ∥0, respectively. For a function f (x), where x ∈ X ⊆
R
d , we define ∥f ∥∞ = maxx∈X |f (x)|. We define ∥f ∥2L2(P ) =

∫
X f

2(x)p(x)dx, where P is a continuous
distribution defined on X with the pdf p(x).

2 Background

In nonparametric regression, the aim is to estimate a ground-truth regression function f ∗ from
i.i.d. noisy observations {(xi , yi)}ni=1. The data are generated via

yi = f ∗(xi) + ξi ,

where the noise ξi ’s are i.i.d. sub-Gaussian noises with E[ξi] = 0 and variance proxy σ2, which are
independent of the xi ’s. To estimate f ∗, we minimize the empirical quadratic loss over a concept
class F , i.e.,

f̂ ∈ argmin
f ∈F

1
2n

n∑
i=1

(f (xi)− yi)2 . (1)

We assess the quality of estimator f̂ through bounding L2 distance between f̂ and f ∗, that is,∥∥∥∥f̂ − f ∗∥∥∥∥2

L2(Pdata)
≤ γ(n).

Here γ(n) is a function of n describing the convergence speed and Pdata is an unknown sampling
distribution ofthe xi ’s supported on Ddata.
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Existing literature on nonparametric statistics has established an optimal rate of γ(n) ≲ n−
2α

2α+d ,
when f ∗ is α-smooth with bounded functional norm, and F is properly chosen (Wahba, 1990;
Altman, 1992; Fan and Gijbels, 1996; Tsybakov, 2008; Györfi et al., 2006).

The aforementioned rate of convergence holds for any data distribution Pdata. For high-dimensional
data, the convergence rate suffers from the curse of dimensionality. However, in many practical
applications, Pdata exhibits important patterns. For example, data are highly clustered in certain
regions, while scarce in the rest of the domain. In literature, a line of work studies when Pdata

is supported on a low-dimensional manifold (Bickel and Li, 2007; Cheng and Wu, 2013; Liao
et al., 2021; Kpotufe, 2011; Kpotufe and Garg, 2013; Yang et al., 2015). The statistical rate of
convergence γ(n) in these works depends on the intrinsic dimension of the manifold, instead of
the ambient dimension. Recently, neural networks are also shown to be able to capture the low-
dimensional structures of data (Schmidt-Hieber, 2019; Nakada and Imaizumi, 2020; Chen et al.,
2022).

As mentioned, aforementioned works assume that data exactly lie on a low-dimensional set,
which is stringent. Recently, Cloninger and Klock (2020) relaxes the assumption such that data are
concentrated on a tube of the manifold, but the radius of this tube is limited to the reach (Federer,
1959) of the manifold. In this paper, we establish a fine-grained data dependent nonparametric
regression theory, where data are approximately concentrated on a low-dimensional subset of the
support.

To facilitate a formal description, we denoteDdata as the data support. Given r,τ > 0, we define

N (r;τ) :=inf
S
{Nr(S) :S⊂Ddata withPdata(S)≥ 1− τ},

where Nr(S) is the r-covering number of S with respect to L∞ distance.

Assumption 1. For any sufficiently small r,τ > 0, there exists a positive constant p = p(r,τ) such
that

logN (r;τ)
− logr

≤ p(r,τ).

Furthermore, there exists S ⊂ Ddata such that

Nr(S) ≤ c0N (r;τ) ≤ c0r
−p

for some constant c0 > 1, Pdata(Sc) ≤ τ and |xi | ≤ RS for any x = (x1, . . . ,xd) ∈ S and some constant
RS > 0.

We next introduce Hölder functions and the Hölder space.

Definition 1 (Hölder Space). Let β > 0 be a degree of smoothness. For f : X →R, the Hölder norm
is defined as

∥f ∥H(β,X ) := max
α:∥α∥1<⌊β⌋

sup
x∈X
|∂αf (x)|+ max

α:∥α∥1=⌊β⌋
sup

x,x′∈X ,x,x′

|∂αf (x)−∂αf (x′)|

∥x − x′∥β−⌊β⌋∞
.

Then the Hölder space on X is defined as

H(β,X ) =
{
f ∈ C⌊β⌋(X )

∣∣∣∥f ∥H(β,X ) ≤ 1
}
.
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Without loss of generality, we impose the following assumption on the target function f ∗:

Assumption 2. The ground truth function f ∗ :Ddata→ R belongs to the Hölder space H(β,Ddata)
with β ∈ (0,d).

Although the Hölder norm of f ∗ is assumed to be bounded by 1, our results can be easily
extended to the case when ∥f ∗∥H(β,Ddata) is upper bounded by any positive constant. In addition,
β < d is a natural assumption. Given that ambient dimension d is always large, it is unusual for
regression functions to possess a degree of smoothness larger than d.

Our goal is to use multi-layer ReLU neural networks to estimate the function f ∗. Given an
input x, an L-layer ReLU neural network computes the output as

f (x) = WL ·ReLU(WL−1 · · ·ReLU(W1x+ b1) · · ·+ bL−1) + bL, (2)

where W1, . . . ,WL and b1, . . . , bL are weight matrices and intercepts respectively. The ReLU(·) acti-
vation function denotes the entrywise rectified linear unit, i.e. ReLU(a) = max{a,0}. The empirical
risk minimization in (1) is taken over the function class F given by a network architecture.

Definition 2 (Function Class Given by a Network Architecture). Given a tuple (L,B,K), a func-
tional class of ReLU neural networks is defined as follows:

F (L,B,K) :=
{
f |f (x) in the form of (2) with L layers,∥f ∥∞ ≤ 1,∥Wi∥∞ ≤ B, ∥bi∥∞ ≤ B

for i = 1, . . . ,L,
L∑
i=1

∥Wi∥0 + ∥bi∥0 ≤ K
}
.

3 Approximation and Generalization Theory

In this section, we present generic approximation and generalization theory and defer detailed
proofs to Section 5.1 and 5.2 respectively. Firstly, we introduce the approximation theory of uti-
lizing deep neural networks to approximate Hölder functions. The approximation error is de-
termined by effective Minkowski dimension of data distribution and probability of low-density
area. Furthermore, we present the generalization error when approximating regression function
f ∗. The convergence rate also depends on effective Minkowski dimension.

Theorem 1 (Approximation of deep neural networks). Suppose Assumption 1 hold. For β > 0 and
any sufficiently small ϵ,τ > 0, consider a tuple (L,B,K)

L = C1, B = O(Rβs
S ϵ−s), and K = C2(RSd)pϵ−p/β ,

where RS > 0 and p = p(d−1ϵ1/β/2, τ) are given by Assumption 1, and

C1 = O(d), C2 = O
(
d2+⌊β⌋

)
, and s = s(β).

Then for any f ∗ ∈ H(β,Ddata), we have

inf
f ∈F (L,B,K)

∥f − f ∗∥2L2(Pdata) ≤ ϵ2 + 4τ.
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The novelty of Theorem 1 is summarized below:
Dependence on Effective Minkowski Dimension. The approximation rate in Theorem 1 is

O(K−β/p), which only depends on effective Minkowski dimension p < d and function smoothness
β, but not on ambient dimension d. Compared to Yarotsky (2017), our results improves the ex-
ponential dependence of neural network size on d to that on p. Moreover, unlike Nakada and
Imaizumi (2020) and Chen et al. (2022), our results do not require that data distribution is exactly
supported on a low-dimensional structure. Instead, our results can work for data distribution
with high-dimensional support as long as its effective Minkowski dimension is relatively small.

Relaxation to the L2-error. The approximation error in Theorem 1 is established with respect
to the L2(Pdata) norm, while most of existing works focus on the L∞ error (Yarotsky, 2017; Nakada
and Imaizumi, 2020; Chen et al., 2019). Intuitively, it is not necessary for the network class to ap-
proximate the function value at each point in the domainDdata precisely when data distribution is
highly concentrated at certain subset. Instead, it suffices to approximate f ∗ where the probability
density is significant, while the error for the low-density region can be easily controlled since the
regression function f ∗ and the neural network class f ∈ F (L,B,K) are bounded.

The benefit of using the L2 error is that, we only need to control the approximation error of
f ∗ within some chosen region S ⊆ Ddata. Here S has an effective Minkowski dimension p, which
ensures that it can be covered by O(r−p) hypercubes with side length r. Then we design deep
neural networks to approximate f ∗ within each hypercube and thus the network size depends
on the number of hypercubes used to cover S. This explains why network size in Theorem 1
depends on p. Meanwhile, the probability out of S is negligible since the data density is low. We
further demonstrate that this probability τ is far less than the approximation error in Section 4.
By this means, we succeed to reduce the network size and at the same time achieve a small L2

approximation error.
We next establish the generalization result for the estimation of f ∗ using deep neural networks.

Theorem 2 (Generalization error of deep neural networks). Suppose Assumption 1 holds. Fix
any sufficiently small r,τ > 0 satisfying r < RS and τ < r4β/4. Set a tuple (L,B,K) with C1,C2 and s

appearing in Theorem 1 as

L = C1, B = O(Rβs
S r−βs), and K = C2R

p
Sr
−p

with p = p(r,τ). Let f̂ be the global minimizer of empirical loss given in (1) with the function class
F = F (L,B,K). Then we have

E∥f̂ − f ∗∥2L2(Pdata) = O

(
τ + σr2β +

σ2

n

(
RS

r

)p
log

(
(RS /r)p

r4β − 4τ

))
,

where O(·) hides polynomial dependence on d.

Theorem 2 is a statistical estimation result. It implies that the generalization error also de-
pends on effective Minkowski dimension p. To establish this result, we decompose the squared
error into a squared bias term and a variance term. The bias is tackled with the approximation
error in Theorem 1 and the variance depends on the network size. With the network size growing,
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the variance term increases while the bias term decreases, since the approximation capability of
neural networks is enhanced as the size of the network enlarges. Therefore, we need to trade off
between the squared bias and the variance to minimize the squared generalization error.

Notably, our analysis in Section 3 holds for any sufficiently small τ and r, and every pair of
τ and r determines a p. As shown in Assumption 1, if τ and r decreases, the covering number
will become larger while the approximation can be more accurate. In order to establish an ex-
plicit bound, we need to trade off τ and r for the given sample size n. Therefore the “optimal” p

eventually becomes functions of n. We call such an “optimal” p effective Minkowski dimension.
In the next section, we give two specific classes of Gaussian random designs to illustrate how

effective Minkowski dimension p(r,τ) scales with r and τ . We further show that, under a proper
selection of the region S and the covering accuracy r, the convergence rate for the estimation of
f ∗ using deep neural networks is Õ(n−2β/(2β+p)), where the effective Minkowski dimension p is
properly chosen.

4 Application to Gaussian Random Design

In literature, it is common to consider random Gaussian design in nonparametric regression (An-
derson, 1962; Muller and Stewart, 2006; Chatfield, 2018). In this section, we take anisotropic
multivariate Gaussian design as example to justify Assumption 1 and demonstrate the effective
Minkowski dimension. Here we only provide our main theorems and lemmas. The detailed proofs
are given in Section 5.3.

Consider a Gaussian distribution Pdata ∼N (0,Σ) in R
d . The covariance matrix Σ has the eigen-

decomposition form: Σ = QΓQ⊤, where Q is an orthogonal matrix and Γ = diag(γ1, . . . ,γd). For
notational convenience in our analysis, we further denote eigenvalue γi = λ2

i for i = 1, . . . ,d. With-
out loss of generality, assume that λ2

1 ≥ λ2
2 ≥ . . . ≥ λ2

d . Furthermore, we assume that {λ2
i }

d
i=1 has an

exponential or polynomial decay rate:

Assumption 3 (Exponential decay rate). The eigenvalue series {γi}di=1 = {λ2
i }

d
i=1 satisfies λi ≤

µexp{−θi} for some constants µ,θ > 0.

Assumption 4 (Polynomial decay rate). The eigenvalue series {γi}di=1 = {λ2
i }

d
i=1 satisfies λi ≤ ρi−ω

for some constants ρ > 0 and ω > 1.

When the eigenvalues decay fast, the support of the data distribution Pdata has degeneracy in
some directions. In this case, the majority of probability lies in some region S ⊂ R

d , which has
an effective Minkowski dimension p < d. Specifically, consider a “thick” low-dimensional hyper-
ellipsoid in R

d ,

S(R,r;p) :=
{
Qz

∣∣∣∣∣z=(z1, . . . , zd) ∈Rd ,

p∑
i=1

z2
i

λ2
i

≤ R2, |zj | ≤
r
2

for j = p+ 1, . . . ,d
}
, (3)

where R,r > 0 and p ∈ N+ are independent parameters. For the simplicity of notation, we first
define a standard hyper-ellipsoid and then linearly transform it to align with the distribution
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N (0,Σ). The set S(R,r;p) can be regarded as a hyper-ellipsoid scaled by R > 0 in the first p dimen-
sions, and with thickness r > 0 in the rest d − p dimensions. Then we construct a minimal cover
as a union of nonoverlapping hypercubes with side length r for S(R,r;p). The following lemma
characterizes the relationship between the probability measure outside S(R,r;p) and its covering
number.

Lemma 1. Given the eigenvalue series {λ2
i }

d
i=1, for any R,r > 0, choose p > 0 such that λ−1

p = 2R/r.
If p < R2, we will have

P(X < S(R,r;p)) = O
(
exp(−R2/3)

)
,

Nr(S(R,r;p)) ≤
(

2R
r

)p
·

p∏
i=1

λi =
p∏

i=1

(
λi

λp

)
.

Remark 1. Since data distribution Pdata is supported on R
d , both the intrinsic dimension and the

Minkowski dimension of Pdata are d. However, Lemma 1 indicates that the effective Minkowski
dimension of Pdata is at most p.

According to Lemma 1, if we choose scale R >
√
p properly, the probability outside S can

be sufficiently small while the covering number of S is dominated by r−p, which gives that the
effective Minkowski dimension of Pdata is at most p. Moreover, under fast eigenvalue decays, the
product of the first p eigenvalues appearing in Nr(S(R,r;p)) is a small number dependent of p. In
these cases, we specify the selection of R, r and p accordingly and show the effective Minkowski
dimension is reduced to p/2 in Appendix D.

Furthermore, we remark that the effective Minkowski dimension p is not a fixed number given
data distribution Pdata, but an increasing function of sample size n. As sample size n increases,
the estimation accuracy of f ∗ is required to be higher, so that we are supposed to design more and
smaller hypercubes to enable preciser estimation by neural networks. Besides, some of the d − p
dimensions are not negligible anymore and thereby become effective compared to the accuracy.
Therefore, we need to incorporate more dimensions to be effective to achieve higher accuracy.

With this observation, we construct S(R,r;p) such that its effective Minkowski dimension p(n)
increases while thickness r(n) decreases as sample size n grows to enable preciser estimation. Then
we develop the following sample complexity:

Theorem 3 (Generalization error under fast eigenvalue decay). Under Assumption 2, let f̂ be
the global minimizer of empirical loss given in (1) with function class F = F (L,B,K). Suppose
Assumption 3 hold. Set a tuple (L,B,K) with the constants C1,C2 and s appearing in Theorem 1 as

L = C1, B = O

(
n

βs

2β+
√

logn/θ (logn)βs
)
, and K = C2n

√
logn/θ

2β+
√

logn/θ .

Then we have

E

∥∥∥∥f̂ − f ∗∥∥∥∥2

L2(Pdata)
= O

(
σ2n

− 2β(1−η)

2β+
√

logn/θ (logn)3/2
)
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for sufficiently large n satisfying log(logn)/
√
θ logn ≤ η, where η > 0 is an arbitrarily small con-

stant. Moreover, suppose Assumption 4 hold instead. Set a tuple (L,B,K) as

L = C1, B = O
(
n

(1+1/ω)βs
2β+nκ

)
, and K = C2

(
n

(1+1/ω)nκ/(2β+nκ )

4β+2nκ
)
,

where κ = (1 + 1/ω)/ω. Then we have

E

∥∥∥∥f̂ − f ∗∥∥∥∥2

L2(Pdata)
= O

(
σ2n

− 2β

2β+n(1+1/ω)/ω logn
)
.

Theorem 3 suggests the effective Minkowski dimension of Gaussian distribution is
√

logn/θ
under exponential eigenvalue decay with speed θ and effective Minkowski dimension is n(1+1/ω)/ω

under polynomial eigenvalue decay with speed ω. For moderate sample size n, i.e. effective
Minkowski dimension is less that ambient dimension d, Theorem 3 achieves a faster convergence
rate. When we have a vast amount of data, the effective Minkowski dimension is the same as
the ambient dimension d, and then we can apply standard analysis of deep neural networks for
d-dimensional inputs to obtain the convergence rate Õ(n−2β/(2β+d)). To the best of our knowledge,
Theorem 3 appears to be the first result for nonparametric regression and deep learning theory,
where the effective dimension varies with the sample size.

5 Proof Sketch

This section contains proof sketches of Theorem 1, 2 and Lemma 1.

5.1 Proof Sketch of Theorem 1

We provide a proof sketch of Theorem 1 in this part and defer technical details of the proof to
Appendix A. The ReLU neural network in Theorem 1 is constructed in the following 5 steps:

1. Choose region S ⊂ Ddata only on which we use ReLU neural networks to approximate f ∗.

2. Construct a covering of S with hypercubes and then divide these hypercubes into several
groups, so that neural networks constructed with respect to each group have nonoverlapping
supports.

3. Implement ReLU neural networks to assign given input and estimated function value to
corresponding hypercube.

4. Approximate f ∗ by a Taylor polynomial and then implement a ReLU neural network to
approximate Taylor polynomial on each hypercube.

5. Sum up all the sub-neural-networks and take maximum to approximate f ∗.

Step 1. Space separation. Firstly, we divide Ddata into some region S ⊂ Ddata with high prob-
ability measure and Sc = Ddata with large volume. By Assumption 1, for any sufficiently small
r,τ > 0 and some constant c0 > 1, there exists S ⊂ Ddata such that Nr(S) ≤ c0N (r;τ) ≤ c0r

−p for
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some positive constant p = p(r,τ) and Pdata(Sc) ≤ τ . Intuitively, we only need to approximate f ∗

on S while Sc is negligible due to its small probability measure. Therefore, in the following steps,
we only design a covering for S and approximate f ∗ in each hypercube of the covering.

Step 2. Grouping hypercubes. Let C be a minimum set of hypercubes with side length r

covering S. Then we partition C into C1, . . . ,CJ such that each subset Cj is composed of hypercubes
separated by r from each other. Lemma 7 shows that the number of Cj ’s is at most a constant
dependent of d.

As a consequence, we group hypercubes into several subsets of C so that constructed neural
networks with respect to each hypercube in Cj have nonoverlapping support.

Step 3. Hypercube Determination. This step is to assign the given input x and estimated
function value y to the hypercube where they belong. To do so, we design a neural network to
approximate function (x,y) 7→ y1I (x) where I ∈ C is some hypercube. To make functions positive,
we firstly consider approximating f0 = f ∗ + 2. Notice that f0 ∈ H(β,Ddata,3) and 1 ≤ f0(x) ≤ 3 for
any x ∈ Ddata.

For any fixed I ∈ C, we define the center of I as (ι1, . . . , ιd). Then we construct a neural network
g ind,r
I :Ddata ×R≥→R≥ with the form:

g ind,r
I (x,y) = 4ReLU

( d∑
i=1

1̂
r
I,i(xi) +

y

4
− d

)
, (4)

where 1̂
r
I,i : R→ [0,1] is the approximated indicator function given by

1̂
r
I,i(z) =



z−(ιi−r)
r/2 if ιi − r < z ≤ ιi − r

2 ,

1 if ιi − r
2 < z ≤ ιi + r

2 ,
(ιi+r)−z

r/2 if ιi + r
2 < z ≤ ιi + r,

0 otherwise.

We claim that neural network g ind,r
I approximates function (x,y) 7→ y1I (x). Moreover, Appendix

A.2 provides the explicit realization of g ind,r
I by selecting specific weight matrices and intercepts.

Step 4. Taylor Approximation. In each cube I ∈ C, we locally approximate f ∗ by a Taylor poly-
nomial of degree ⌊β⌋ and then we define a neural network to approximate this Taylor polynomial.
Firstly, we cite the following lemma to evaluate the difference between any β-Hölder function and
its Taylor polynomial:

Lemma 2 (Lemma A.8 in Petersen and Voigtlaender (2018)). Fix any f ∈ H(β,Ddata) with ∥f ∥H(β,Ddata) ≤
1 and x̄ ∈ S. Let f̄ (x) be the Taylor polynomial of degree ⌊β⌋ of f around x̄, namely,

f̄ (x) =
∑
|α|≤⌊β⌋

∂αf (x̄)
α!

(x − x̄)α .

Then, |f (x)− f̄ (x)| ≤ dβ ∥x − x̄∥β holds for any x ∈ Ddata.

Next, we design an m-dimensional multiple output neural network g
poly
ϵ = (gpoly

ϵ,1 , . . . , g
poly
ϵ,m ) to

estimate multiple Taylor polynomials in each output. The existence of such neural network is
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ensured in the following lemma, which is a straightforward extension of Lemma 18 in Nakada
and Imaizumi (2020).

Lemma 3 (Taylor approximation on S). Fix any m ∈ N+. Let {ck,α} ⊂ [−1,1] for 1 ≤ k ≤ m. Let
{xk}mk=1 ⊂ S. Then there exist cpoly

1 = c
poly
1 (β,d,p), cpoly

2 = c
poly
2 (β,d,p) and s

poly
1 = s

poly
1 (β,d,p) such

that for any sufficiently small ϵ > 0, there is a neural network g
poly
ϵ which satisfies the followings:

1. supx∈S
∣∣∣gpoly
ϵ,k (x)−

∑
|α|<β ck,α(x − xk)α

∣∣∣ ≤ ϵ for any k = 1, . . . ,m,

2. L(gpoly
ϵ ) ≤ 1 + (2 + log2β)(11 + (1 + β)/p),

3. B(gpoly
ϵ ) ≤ c

poly
1 R

βs
poly
1

S ϵ−s
poly
1 ,

4. K(gpoly
ϵ ) ≤ c

poly
2 (Rp

Sϵ
−p/β +m).

For any cube Ik ∈ C, we take fIk (x) as a Taylor polynomial function as with setting x̄ ← xIk
and f ← f0 in Lemma 2. Then we define a neural network to approximate fIk , which is an ϵ/2-

accuracy Taylor polynomial of f0. Let g
poly
ϵ/2 be a neural network constructed in Lemma 3 with

ϵ← ϵ/2, m←Nr(S), (xk)mk=1← (xIk )
Nr (S)
k=1 , and (ck,α)mk=1← (∂αf (xIk )/α!)Nr (S)

k=1 appearing in Lemma 3.
Then, we obtain

sup
k=1,...,Nr (S)

sup
x∈S

∣∣∣fIk (x)− gpoly
ϵ/2,k(x)

∣∣∣ ≤ ϵ
2
. (5)

In addition, we construct a neural network to aggregate the outputs of gpoly
ϵ/2 . Define a neural

network gfilter
k : Rd+Nr (S)→R

d+1 which picks up the first d inputs and (d + k)-th input as

gfilter
k (z) =

Id e⊤k
0d e⊤k

z, for k = 1, . . . ,Nr(S).

Then we design a neural network gsimul
ϵ/2 : Rd → R

Nr (S) that simultaneously estimates Taylor poly-
nomial at each cube. Specifically, gsimul

ϵ/2 is formulated as below

gsimul
ϵ/2 =

(
g ind,r
I1
◦ gfilter

1 , . . . , g ind,r
INr (S)
◦ gfilter

Nr (S)

)
◦ (gIdd,L, g

poly
ϵ/2 ), (6)

where gIdd,L : Rd → R
d is the neural network version of the identity function whose number of

layers is equal to L(gpoly
ϵ/2 ).

Step 5. Construction of Neural Networks. In this step, we construct a neural network g
f0
ϵ to

approximate f0 = f ∗ + 2. Let gmax,5d
be the neural network version of the maximize function over

5d numbers. Besides, define

gsum(z1, . . . , zNr (S)) =
(∑
Ik∈C1

zk , . . . ,
∑

Ik∈CNr (S)

zk

)
,

which aims to sum up the output of gsimul
ϵ/2 in each subset of covering Cj .

11



Now we are ready to define g
f0
ϵ . Let gf0

ϵ := gmax,5d ◦gsum◦gsimul
ϵ/2 . Equivalently, gf0

ϵ can be written

as gf0
ϵ = maxj∈[5d ]

∑
Ik∈Cj g

simul
ϵ/2,k . Then we come to bound the approximation error of gf0

ϵ . When x ∈ S,
there exists some I ∈ C such that x ∈ I . Based on the method to construct neural networks, we have

g
f0
ϵ (x) = max

Ik∈Neig(I)
gsimul
ϵ/2,k (x) ≤ max

Ik∈Neig(I)
g

poly
ϵ/2,k(x),

where Neig(I) = {I ′ ∈ C|(I ⊕ 3r/2)∩ I ′ , ∅} denotes the 3r/2-neighborhood of hypercube I . In other
words, when computing g

f0
ϵ (x), we only need to take maximum over the estimated function value

within hypercubes near x.
Given sufficiently small ϵ > 0, the error is bounded as

|gf0
ϵ (x)− f0(x)| ≤ max

Ik∈Neig(I)

∣∣∣gpoly
ϵ/2,k(x)− f0(x)

∣∣∣
≤ max

Ik∈Neig(I)

∣∣∣gpoly
ϵ/2,k(x)− fIk (x)

∣∣∣+ max
Ik∈Neig(I)

∣∣∣fIk (x)− f0(x)
∣∣∣

≤ε
2

+ dβ
(

3r
2

)β
≤ ϵ,

where the last inequality follows from (5) and Lemma 2. Detailed derivation of approximation
error is deferred to Appendix A.3. In terms of parameter tuning, we choose r = d−1ϵ1/β/2.

To extend results of f0 to f ∗, we implement a neural network gmod(z) = (−z+1)◦ReLU(−z+2)◦
ReLU(z−1) and consider gf

∗

ϵ = gmod◦gf0
ϵ to obtain the desired approximation error ϵ for any x ∈ S.

Then we evaluate the approximation error with respect to L2-norm:∥∥∥∥gf ∗ϵ − f ∗∥∥∥∥
L2(Pdata)

=
(∫

S
+
∫
Sc

)(
g
f ∗
ϵ (x)− f ∗(x)

)2
dPdata(x) ≤ ϵ2 + 4τ.

This follows from the aforementioned approximation error within S, boundedness of f ∗ and neu-
ral networks, as well as the property that out-of-S probability is upper bounded, i.e. Pdata(Sc) ≤ τ .

Finally, we sum up sizes of all the sub-neural-networks and thus obtain the network size of
g
f ∗
ϵ . See Appendix A.4 for detailed calculation.

5.2 Proof Sketch of Theorem 2

Proof of Theorem 2 follows a standard statistical decomposition, i.e. decomposing the mean
squared error of estimator f̂ into a squared bias term and a variance term. We bound the bias
and variance separately, where the bias is tackled by the approximation results given in Theo-
rem 1 and the variance is bounded using the metric entropy arguments. Details of the proof for
Theorem2 are provided in Appendix B. At first, we decompose the L2 risk as follows:

E

∥∥∥∥f̂ − f ∗∥∥∥∥2

L2(Pdata)
= 2E

[
1
n

n∑
i=1

(f̂ (xi)− f ∗(xi))2
]

︸                           ︷︷                           ︸
T1

+E

∥∥∥∥f̂ − f ∗∥∥∥∥2

L2(Pdata)
− 2E

[
1
n

n∑
i=1

(f̂ (xi)− f ∗(xi))2
]

︸                                                     ︷︷                                                     ︸
T2

,

where T1 reflects the squared bias of using neural networks to estimate f ∗ and T2 is the variance
term.
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Step 1. Bounding bias term T1. Since T1 is the empirical L2 risk of f̂ evaluated on the sam-
ples {xi}ni=1, we relate T1 to the empirical risk by rewriting f ∗(xi) = yi − ξi , so that we can apply
the approximation error to bound the minimal empirical risk achieved by f̂ . After some basic
calculation, we have

T1 ≤ 2 inf
f ∈F (L,B,K)

∥f (x)− f ∗(x)∥2L2(Pdata) + 4E

1
n

n∑
i=1

ξi f̂ (xi)

 .
Note that the first term is the squared approximation error of neural networks, which can be
controlled by Theorem 1. We bound the second term by quantifying the complexity of the network
class F (L,B,K). A precise upper bound of T1 is given in the following lemma.

Lemma 4. Fix the neural network class F (L,B,K). For any δ ∈ (0,1), there exists some constant
c > 0, such that

T1 ≤ c inf
f ∈F (L,B,K)

∥f (x)− f ∗(x)∥2L2(Pdata) + cσ2 logN2(δ,F (L,B,K)) + 2
n

+ c

(√
logN2(δ,F (L,B,K)) + 2

n
+ 1

)
σδ,

where N2(δ,F (L,B,K)) denotes the δ-covering number of F (L,B,K) with respect to the L2 norm,
i.e., there exists a discretization of F (L,B,K) into N2(δ,F (L,B,K)) distinct elements, such that for
any f ∈ F , there is f̄ in the discretization satisfying

∥∥∥f̄ − f ∥∥∥
2
≤ ϵ.

Step 2. Bounding variance term T2. We observe that T2 is the difference between the popula-
tion risk of f̂ and its empirical risk. However, bounding this difference is distinct from traditional
concentration results because of the scaling factor 2 before the empirical risk. To do this, we di-
vide the empirical risk into two parts and use a higher-order moment (fourth moment) to bound
one part. Using a Bernstein-type inequality, we are able to show that T2 converges at a rate of 1/n,
and the upper bound for this is shown in the following lemma.

Lemma 5. For any δ ∈ (0,1), there exists some constant c′ > 0, such that

T2 ≤
c′

3n
logN2(δ/4H,F (L,B,K)) + c′δ.

Step 3. Covering number of neural networks. The upper bounds of T1 and T2 in Lemma
4 and 5 both rely on the covering number of the network class F (R,κ,L,p,K). In this step, we
present an upper bound for the covering numberN2(δ,F (L,B,K)) for a given a resolution δ > 0.

Lemma 6 (Covering number bound for F (Lemma 21 in Nakada and Imaizumi (2020))). Given
δ > 0, the δ-covering number of the neural network class F (L,B,K) satisfies

logN2(δ,F (L,B,K)) ≤ K log
(
2L
√
dLKL/2BLRS√
δ2 − 4τ

)
.
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Step 4. Bias-Variance Trade-off. Now we are ready to finish the proof of Theorem 2. Combin-
ing the upper bounds of T1 in Lemma 4 and T2 in Lemma 5 together and substituting the covering
number in Lemma 6, we obtain

E

∥∥∥∥f̂ − f ∗∥∥∥∥2

L2(Pdata)
= O

(
τ + d2βr2β+ σδ+

σ2K
n

log
(√

dLKL/2BLRS√
δ2 − 4τ

))
,

where we set approximation error to be d2βr2β . Plug in our choice of (L,B,K), and choose δ = r2β .
Then we can conclude

E

∥∥∥∥f̂ − f ∗∥∥∥∥2

L2(Pdata)
= O

(
τ + σr2β +

σ2

n

(
RS

r

)p
log

(
(RS /r)p

r4β − 4τ

))
.

5.3 Proof Sketch of Lemma 1

In this section, we present our basic idea to construct S(R,r;p) and the proof sketch of Lemma 1.
For simplicity of proof, we assume Q = I so that Σ = Λ = diag(λ2

1, . . . ,λ
2
d). The detailed proof is

given in Appendix C, which can be easily extended to the case when Q is not an identity matrix.
The proof of Theorem 3 is given in Appendix D.

Given the Gaussian sample distribution, we hope to choose some region in S ⊂ R
d with high

probability measure and effective Minkowski dimension p < d. Then we can only apply neural
networks to approximate f ∗ within each cube of the small covering of S and thereby significantly
reduce the network size. In literature, it is common to truncate the ambient space within a hyper-
ellipsoid for Gaussian distribution (Ellis and Maitra, 2007; Pakman and Paninski, 2014). Similarly,
we consider the ’thick’ low-dimensional hyper-ellipsoid S(R,r;p) defined in (3). Then we construct
a minimal cover of S(R,r;p) as a union of nonoverlapping hypercubes with side length r, which is
equal to the thickness of S(R,r;p). In particular, this cover contains multiple layers of hypercubes
to cover the first p dimensions of S(R,r;p) while only needs one layer for the rest dimensions.
Intuitively, we only learn about hypercubes that cover the first p dimensions without paying extra
effort to study dimensions with low probability density.

A natural question arising from the construction of S(R,r;p) is how to select a proper di-
mension p. To address this problem, we first notice that each side length of the p-dimension
hyper-ellipsoid is supposed to be greater than the side length of hypercubes r, i.e. 2λiR ≥ r for
i = 1, . . . ,p, so that we would not waste hypercubes to cover dimensions with too small side length.
For simplicity of calculation, we choose p > 0 that satisfies λ−1

p = 2R/r for any given R,r > 0.
Now we come to prove Lemma 1. Firstly, we compute the probability outside S(R,r;p). By

union bound, this probability can be upper bounded by two parts, the probability out of hyper-
ellipsoid for the first p dimensions and the probability out of hypercube with side length r for the
rest d−p dimensions. The first part is equal to the tail bound of p-dimensional standard Gaussian
by the construction of S(R,r;p). The second part can be solved similarly by linearly transforming
each dimension to be standard Gaussian.

Then we calculate the covering number of S(R,r;p). Notice that the first p dimensions of
S(R,r;p) is contained in a p-dimensional hyper-rectangle with side length 2λiR for i = 1, . . . ,p,
while only one hypercube is required to cover the j-th dimension for j = p+1, . . . ,d. Therefore, the
r-covering number can be upper bounded by

∏p
i=1(2λiR)/rp.
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Figure 1: Dimensionality estimates of images obtained using the MLE method with k nearest
neighbors under different sample size.

6 Discussion and Conclusion

In this paper, we have presented a generic approximation and generalization theory and applied
it to Gaussian Random Design. Furthermore, our theory is applicable to scenarios where data
are sampled from a mixture of distributions, denoted as Pdata =

∑
iwiPi . Each distribution Pi is

assigned a weight wi and has a low-dimensional support. In such cases, we focus on a subset of
distributions with significant weights, while neglecting distributions with small weights. Then
the effective Minkowski dimension depends on the data support of the selected distributions. As
the sample size grows, including more distributions becomes necessary to achieve higher estima-
tion accuracy. Another example where our theory can be applied is the case of an approximate
manifold, where the data are concentrated on a low-dimensional manifold. In this scenario, the
effective Minkowski dimension corresponds to the intrinsic dimension of the manifold.

To illustrate the concept of effective dimension in real-world examples, we refer to a study
by Pope et al. (2021), which investigates the intrinsic dimension of several popular benchmark
datasets for deep learning. The intrinsic dimension presented in Pope et al. (2021) can be seen
as an approximate estimate of the Minkowski dimension, as demonstrated in Levina and Bickel
(2004); Grassberger and Procaccia (1983). In our work, we adopt the methodology employed by
Pope et al. (2021) and utilize generative adversarial networks trained on the ImageNet dataset to
generate samples containing varying numbers of daisy images. To estimate the intrinsic dimen-
sion of these generated samples, we employ the Maximum Likelihood Estimation (MLE) method,
which is achieved by computing the Euclidean distances between each data point and its k near-
est neighbors. The obtained results are presented in Figure 1, which clearly demonstrates that the
intrinsic dimension estimated from a finite sample of images increases as the sample size grows.
This finding aligns with our theory that the effective Minkowski dimension is an increasing func-
tion of the sample size.
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In conclusion, this paper studies nonparametric regression of functions supported in R
d un-

der data distribution with effective Minkowski dimension p < d, using deep neural networks.
Our results show that the L2 error for the estimation of f ∗ ∈ H(β,Ddata) converges in the order of
n−2β/(2β+p). To obtain an ϵ-error for the estimation of f ∗, the sample complexity scales in the order
of ϵ−(2β+p)/β , which demonstrates that deep neural networks can capture the effective Minkowski
dimension p of data distribution. Such results can be viewed as theoretical justifications for the
empirical success of deep learning in various real-world applications where data are approxi-
mately concentrated on a low-dimensional set.

References

Altman, N. S. (1992). An introduction to kernel and nearest-neighbor nonparametric regression.
The American Statistician.

Anderson, T. W. (1962). An introduction to multivariate statistical analysis.

Bahdanau, D., Cho, K. and Bengio, Y. (2014). Neural machine translation by jointly learning to
align and translate. arXiv preprint arXiv:1409.0473.

Bickel, P. J. and Li, B. (2007). Local polynomial regression on unknown manifolds. Lecture Notes-
Monograph Series, 54 177–186.

Chatfield, C. (2018). Introduction to multivariate analysis. Routledge.

Chen, M., Jiang, H., Liao, W. and Zhao, T. (2019). Efficient approximation of deep relu networks
for functions on low dimensional manifolds. Advances in neural information processing systems,
32.

Chen, M., Jiang, H., Liao, W. and Zhao, T. (2022). Nonparametric regression on low-dimensional
manifolds using deep relu networks: Function approximation and statistical recovery. Informa-
tion and Inference: A Journal of the IMA, 11 1203–1253.

Cheng, M.-Y. and Wu, H.-t. (2013). Local linear regression on manifolds and its geometric inter-
pretation. J. Amer. Statist. Assoc., 108 1421–1434.

Cloninger, A. and Klock, T. (2020). Relu nets adapt to intrinsic dimensionality beyond the target
domain. arXiv preprint arXiv:2008.02545.

Ellis, N. and Maitra, R. (2007). Multivariate gaussian simulation outside arbitrary ellipsoids.
Journal of Computational and Graphical Statistics, 16 692–708.

Fan, J. and Gijbels, I. (1996). Local Polynomial Modelling and Its Applications. Monographs on
statistics and applied probability series, Chapman & Hall.

Federer, H. (1959). Curvature measures. Transactions of the American Mathematical Society, 93
418–491.

16



Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A.
and Bengio, Y. (2014). Generative adversarial nets. In Advances in neural information processing
systems.

Grassberger, P. and Procaccia, I. (1983). Measuring the strangeness of strange attractors. Physica
D: nonlinear phenomena, 9 189–208.

Graves, A., Mohamed, A.-r. and Hinton, G. (2013). Speech recognition with deep recurrent
neural networks. In 2013 IEEE international conference on acoustics, speech and signal processing.
IEEE.

Gu, S., Holly, E., Lillicrap, T. and Levine, S. (2017). Deep reinforcement learning for robotic
manipulation with asynchronous off-policy updates. In 2017 IEEE international conference on
robotics and automation (ICRA). IEEE.

Györfi, L., Kohler, M., Krzyzak, A. and Walk, H. (2006). A distribution-free theory of nonpara-
metric regression. Springer Science & Business Media.

Hu, J., Shen, L. and Sun, G. (2018). Squeeze-and-excitation networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition.

Kpotufe, S. (2011). k-NN regression adapts to local intrinsic dimension. In Advances in Neural
Information Processing Systems 24 (J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira and K. Q.
Weinberger, eds.). 729–737.

Kpotufe, S. and Garg, V. K. (2013). Adaptivity to local smoothness and dimension in kernel
regression. In Advances in Neural Information Processing Systems 26 (C. J. C. Burges, L. Bottou,
M. Welling, Z. Ghahramani and K. Q. Weinberger, eds.). 3075–3083.

Krizhevsky, A., Sutskever, I. and Hinton, G. E. (2012). Imagenet classification with deep convo-
lutional neural networks. In Advances in neural information processing systems.

Levina, E. and Bickel, P. (2004). Maximum likelihood estimation of intrinsic dimension. Advances
in neural information processing systems, 17.

Liao, W., Maggioni, M. and Vigogna, S. (2021). Multiscale regression on unknown manifolds.
arXiv preprint arXiv:2101.05119.

Liu, H., Chen, M., Zhao, T. and Liao, W. (2021). Besov function approximation and binary classi-
fication on low-dimensional manifolds using convolutional residual networks. In International
Conference on Machine Learning. PMLR.

Long, J., Shelhamer, E. and Darrell, T. (2015). Fully convolutional networks for semantic seg-
mentation. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Muller, K. E. and Stewart, P. W. (2006). Linear model theory: univariate, multivariate, and mixed
models. John Wiley & Sons.

17



Nakada, R. and Imaizumi, M. (2020). Adaptive approximation and generalization of deep neural
network with intrinsic dimensionality. J. Mach. Learn. Res., 21 1–38.

Pakman, A. and Paninski, L. (2014). Exact hamiltonian monte carlo for truncated multivariate
gaussians. Journal of Computational and Graphical Statistics, 23 518–542.

Panayotov, V., Chen, G., Povey, D. and Khudanpur, S. (2015). Librispeech: an asr corpus based
on public domain audio books. In 2015 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE.

Petersen, P. and Voigtlaender, F. (2018). Optimal approximation of piecewise smooth functions
using deep relu neural networks. Neural Networks, 108 296–330.

Pope, P., Zhu, C., Abdelkader, A., Goldblum, M. and Goldstein, T. (2021). The intrinsic dimen-
sion of images and its impact on learning. arXiv preprint arXiv:2104.08894.

Schmidt-Hieber, J. (2019). Deep relu network approximation of functions on a manifold. arXiv
preprint arXiv:1908.00695.

Tsybakov, A. B. (2008). Introduction to Nonparametric Estimation. 1st ed. Springer Publishing
Company, Incorporated.

Wahba, G. (1990). Spline models for observational data, vol. 59. Siam.

Yang, Y., Tokdar, S. T. et al. (2015). Minimax-optimal nonparametric regression in high dimen-
sions. Ann. Statist., 43 652–674.

Yarotsky, D. (2017). Error bounds for approximations with deep relu networks. Neural Networks,
94 103–114.

Young, T., Hazarika, D., Poria, S. and Cambria, E. (2018). Recent trends in deep learning based
natural language processing. ieee Computational intelligenCe magazine, 13 55–75.

A Proof of Theorem 1

In this section, we provide the omitted proof in Section 5.1.

A.1 Lemma 7

Lemma 7 (Lemma 20 in Nakada and Imaizumi (2020)). Let C = {Ik}
Nr (S)
k=1 be a minimum r-covering

of S where Ik’s are hypercubes with side length r. Then, there exists a disjoint partition {Cj}5
d

j=1 ⊂ C

such that C =
⋃5d

j=1Cj and d(Ii , Il) ≥ r hold for any Ii , Il ∈ Cj if card(Cj ) ≥ 2, where d(A,B) :=
inf{

∥∥∥x − y∥∥∥ |x ∈ A, y ∈ B} is defined as the distance of any two sets A and B.
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A.2 Realization of hypercube determination function gind,r
I

Hypercube determination function g ind,r
I can be realized by weight matrices and intercepts (4,0)⊙

(W 2,−d)⊙ [(W 1
1 ,b

1
1), . . . , (W 1

d ,b
1
d)] where W 1

i ,b
1
i and W 2 are defined by

W 1
i :=

e⊤i e⊤i e⊤i e⊤i
0 0 0 0

⊤ , b1
i :=

(
−ιi + r − ιi +

r
2
− ιi −

r
2
− ιi − r

)
,

and

W 2 =
(

2
r
,−2

r
,−2

r
,
2
r
,
2
r
,−2

r
,−2

r
,
2
r
, . . . ,

2
r
,−2

r
,−2

r
,
2
r︸                                                  ︷︷                                                  ︸

4d

,
1
4

)
.

The above realization gives exactly the form in (4). Moreover, we summarize the properties of
g ind,r
I as following:

Proposition 1. For any x ∈ Ddata and y ∈R, we have

g ind,r
I (x,y)


= y, x ∈ I and y ∈ [0,4],

≤ y, x ∈ I ⊕ r
2 and y ∈ [0,4],

= 0, otherwise.

Furthermore, we obtain the following properties

1. L(g ind,r
I ) = 3,

2. B(g ind,r
I ) ≤max{4,d,1 + r,2/r},

3. K(g ind,r
I ) = 24d + 6.

A.3 Bounding the approximation error

Firstly, we compute the approximation error of using g
f0
ϵ to estimate f0 = f ∗ + 2. Recall that we

defined g
f0
ϵ := gmax,5d ◦ gsum ◦ gsimul

ϵ/2 . When x ∈ S, there exists some I ∈ C such that x ∈ I . Then for
this x, we have

g
f0
ϵ (x) = max

j∈[5d ]

∑
Ik∈Cj

gsimul
ϵ/2,k (x) = max

Ik∈Neig(I)
gsimul
ϵ/2,k (x) ≤ max

Ik∈Neig(I)
g

poly
ϵ/2,k(x),

where Neig(I) = {I ′ ∈ C|(I ⊕ 3r/2)∩ I ′ , ∅} denotes the 3r/2-neighborhood of hypercube I . In other
words, when computing g

f0
ϵ (x), we only need to take maximum over the estimated function value

within hypercubes near x. The second equality follows from the Proposition 1 that gsimul
ϵ/2,l (x) = 0

for Il < Neig(I) and d(Il , Ik) > r holds for Il , Ik ∈ Ci for all i. The last inequality is due to the
construction of gsimul

ϵ/2 in (6).
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Given ϵ ∈ (0,1), we ensure 0 ≤ gsimul
ϵ/2,k (x) ≤ 4 for all Ik ∈ C by Proposition 1, since gsimul

ϵ/2,k ap-
proximates fIk which is an ϵ/2-accuracy Taylor polynomial of f0 ∈ [1,3]. When x ∈ It, the error is
bounded as

|gf0
ϵ (x)− f0(x)| =max

{
max

Ik∈Neig(It)
gsimul
ϵ/2,k (x)− f0(x), f0(x)− max

Ik∈Neig(It)
gsimul
ϵ/2,k (x)

}
≤max

{
max

Ik∈Neig(It)
g

poly
ϵ/2,k(x)− f0(x), f0(x)− gpoly

ϵ/2,t(x)
}

≤ max
Ik∈Neig(It)

∣∣∣∣gpoly
ϵ/2,k(x)− f0(x)

∣∣∣∣
≤ max

Ik∈Neig(It)

∣∣∣∣gpoly
ϵ/2,k(x)− fIk (x)

∣∣∣∣+ max
Ik∈Neig(It)

∣∣∣fIk (x)− f0(x)
∣∣∣

≤ε
2

+ dβ
(

3r
2

)β
≤ ϵ,

where the last inequality follows from (5) and Lemma 2. In terms of parameter tuning, we choose
r = d−1ϵ1/β/2.

Next, we extend approximation results of f0 to f ∗. To do so, we firstly implement a neural
network gmod(z) = (−z + 1) ◦ReLU(−z + 2) ◦ReLU(z − 1), which has the equivalent form gmod(z) =
min(max(1,x),3)− 2 for any z ∈R. In addition, gmod has the following properties:

L(gmod) = 3, B(gmod) ≤ 2, and K(gmod) = 12.

Then consider gf
∗

ϵ = gmod ◦ gf0
ϵ to obtain the desired approximation error ϵ for any x ∈ S

sup
x∈Ddata

|gf
∗

ϵ (x)− f ∗(x)| = sup
x∈Ddata

∣∣∣min
(
max

(
1, gf0

ϵ (x)
)
,3

)
− (f ∗(x) + 2)

∣∣∣
= sup

x∈Ddata

∣∣∣min
(
max

(
1, gf0

ϵ (x)
)
,3

)
− f0(x)

∣∣∣
≤ sup

x∈Ddata

∣∣∣gf0
ϵ (x)− f0(x)

∣∣∣
≤ϵ.

A.4 Computing network sizes

Recall that the ReLU neural network g
f ∗
ϵ is defined as

g
f ∗
ϵ =gmod ◦ gmax,5d

◦ gsum ◦ gsimul
ϵ/2

=gmod ◦ gmax,5d
◦ gsum ◦

(
g ind,r
I1
◦ gfilter

1 , . . . , g ind,r
INr (S)
◦ gfilter

Nr (S)

)
◦ (gIdd,L, g

poly
ϵ/2 ).
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Note that Nr(S) ≤ c0r
−p. Combined with sub-neural network structures given in Appendix B.1.1

of Nakada and Imaizumi (2020), gf
∗

ϵ has the following properties:

L(gf
∗

ϵ (x)) = L(gmod) +L(gmax,5d
) +L(g ind,r

I1
) +L(gfilter

1 ) +L(gpoly
ϵ/2 )

≤ 11 + 2d log2 5 + (11 + (1 + β)/d)(2 + log2β),

B(gf
∗

ϵ (x)) ≤max
{
B(gmod),B(gmax,5d

),B(g ind,r
I1

),B(gfilter
1 ),B(gIdd,L),B(gpoly

ϵ/2 )
}
,

≤max{d,1 + r,2/r, cpoly
1 R

βs
poly
1

S ϵ−s
poly
1 },

≤max{4dϵ−1/β , c
poly
1 R

βs
poly
1

S ϵ−s
poly
1 },

K(gf
∗

ϵ (x)) ≤ 2K(gmod) + 2K(gmax,5d
) + 2Nr(S) ·K(g ind,r

I1
◦ gfilter

1 ) + 2K(gIdd,L) + 2K(gpoly
ϵ/2 )

≤ 2cpoly
2 R

p
Sϵ
−p/β + 2(50d + 17 + c

poly
2 )Nr(S)

+ 2(12 + 42× 5d + 2d + 2d(11 + (1 + β)/p)(2 + log2β))),

≤ 2cpoly
2 R

p
Sϵ
−p/β + 2(50d + 17 + c

poly
2 )c0(2d)pϵ−p/β

+ 2(12 + 42× 5d + 2d + 2d(11 + (1 + β)/p)(2 + log2β))),

where c
poly
2 = O(d2+⌊β⌋). By adjusting several constants, we obtain the statement.

B Proof of Theorem 2

The proof of Theorem 2 mainly follows Chen et al. (2022). Our Lemma 4 and 5 is a slight revision
of Lemma 5 and 6 in Chen et al. (2022), where we substitute ℓ∞ covering number with ℓ2 covering
number to deal with unbounded domain. In this section, we compute the ℓ2 covering number of
neural network class and then present the proof of Theorem 2.

B.1 Proof of Lemma 6

Proof of Lemma 6. To construct a covering for F (H,L,B,K), we discretize each parameter by a unit
grid with grid size h. Recall that we write f ∈ F (H,L,B,K) as f (x) = WL ·ReLU(WL−1 · · ·ReLU(W1x+
b1) · · ·+bL−1)+bL in (2). Choose any f , f ′ ∈ F (H,L,B,K) with parameters at most h apart from each
other. Denote the weight matrices and intercepts in f , f ′ as WL, . . . ,W1,bL, . . . ,L1 and W ′L, . . . ,W

′
1,b
′
L, . . . ,L

′
1

respectively, where Wl ∈Rdl×dl−1 and bl ∈Rdl for l = 1, . . . ,L. Without loss of generality, we assume
dl ≤ K since all the parameters have at most K nonzero entries. If the input dimension is larger
than K , we let the redundant dimensions of input equal to zeros.

Notice that for any random variable y ∈Rdl−1 which is subject to a distribution PY , we have

∫
R

dl−1

∣∣∣∣∣∣∣∣∣∣(Wly + bl)− (W ′l y + b′l)
∣∣∣∣∣∣∣∣∣∣2

2
dPY (y) =

∫
R

dl−1

∣∣∣∣∣∣∣∣∣∣ dl−1∑
i=1

(Wl,i −W ′l,i)yi + (bl − b′l)
∣∣∣∣∣∣∣∣∣∣2

2
dPY (y).
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By the inequality ∥t + s∥2 ≤ 2∥t∥2 + 2∥s∥2 which holds for any s, t ∈Rdl , we obtain∫
R

dl−1

∣∣∣∣∣∣∣∣∣∣(Wly + bl)− (W ′l y + b′l)
∣∣∣∣∣∣∣∣∣∣2

2
dPY (y) ≤2

∫
R

dl−1

∣∣∣∣∣∣∣∣∣∣ dl−1∑
i=1

(Wl,i −W ′l,i)yi
∣∣∣∣∣∣∣∣∣∣2 dPY (y) + 2

∥∥∥bl − b′l∥∥∥2
2

≤2 sup
i=1...,dl−1

∥∥∥Wl,i −W ′l,i
∥∥∥2

2
·
∫
R

dl−1

dl−1∑
i=1

y2
i dPY (y) + 2

∥∥∥bl − b′l∥∥∥2
2
.

Since parameters Wl ,bl differ at most h from W ′l ,b
′
l with respect to each entry, we get∫

R
dl−1

∣∣∣∣∣∣∣∣∣∣(Wly + bl)− (W ′l y + b′l)
∣∣∣∣∣∣∣∣∣∣2

2
dPY (y) ≤ 2dl−1h

2
∥∥∥y∥∥∥2

L2(PY )
+ 2dlh

2

≤ 2Kh2
∥∥∥y∥∥∥2

L2(PY )
+ 2Kh2. (7)

Similarly, we have∫
R

dl−1

∣∣∣∣∣∣∣∣∣∣Wly + bl

∣∣∣∣∣∣∣∣∣∣2
2

dPY (y) =
∫
R

dl−1

∣∣∣∣∣∣∣∣∣∣ dl−1∑
i=1

Wl,iyi + bl

∣∣∣∣∣∣∣∣∣∣2
2

dPY (y)

≤2
∫
R

dl−1

∣∣∣∣∣∣∣∣∣∣ dl−1∑
i=1

Wl,iyi

∣∣∣∣∣∣∣∣∣∣2 dPY (y) + 2∥bl∥22

≤2 sup
i=1...,dl−1

∥∥∥Wl,i

∥∥∥2
2
·
∫
R

dl−1

dl−1∑
i=1

y2
i dPY (y) + 2∥bl∥22

≤2dl−1B
2
∥∥∥y∥∥∥2

L2(PY )
+ 2dlB

2

≤2KB2
∥∥∥y∥∥∥2

L2(PY )
+ 2KB2. (8)

Since the ReLU actiavtion function is 1-Lipschitz continuous for each coordinate, we can apply
(7) and (8) repeatedly to bound ∥f − f ′∥2L2(Pdata,S):∥∥∥f − f ′∥∥∥2

L2(Pdata,S)
=
∫
S

∣∣∣WL ·ReLU(WL−1 · · ·ReLU(W1x+ b1) · · ·+ bL−1) + bL

−W ′L ·ReLU(W ′L−1 · · ·ReLU(W ′1x+ b′1) · · ·+ b′L−1)− b′L
∣∣∣2 dPdata(x)

≤2
∫
S

∣∣∣WL ·ReLU(WL−1 · · ·ReLU(W1x+ b1) · · ·+ bL−1) + bL

−W ′L ·ReLU(WL−1 · · ·ReLU(W1x+ b1) · · ·+ bL−1)− b′L
∣∣∣2 dPdata(x)

+ 2
∥∥∥W ′L∥∥∥2

2

∫
S

∥∥∥(WL−1 · · ·ReLU(W1x+ b1) · · ·+ bL−1)

− (W ′L−1 · · ·ReLU(W ′1x+ b′1) · · ·+ b′L−1)
∥∥∥2

2
dPdata(x)

≤4Kh2 + 4Kh2
∫
S
∥WL−1 · · ·ReLU(W1x+ b1) · · ·+ bL−1∥2 dPdata(x)

+ 2KB2
∫
S

∥∥∥(WL−1 · · ·ReLU(W1x+ b1) · · ·+ bL−1)

− (W ′L−1 · · ·ReLU(W ′1x+ b′1) · · ·+ b′L−1)
∥∥∥2

2
dPdata(x).
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Besides, we derive the following bound on ∥WL−1 · · ·ReLU(W1x+ b1) · · ·+ bL−1∥L2(Pdata,S):∫
S
∥WL−1 · · ·ReLU(W1x+ b1) · · ·+ bL−1∥2 dPdata(x)

≤ 2KB2
∫
S
∥WL−2 · · ·ReLU(W1x+ b1) · · ·+ bL−2∥2 dPdata(x) + 2KB2

≤ (2KB2)L−1dR2
S + (2KB2)L−1

≤ 2L(KB2)L−1dR2
S ,

where the last inequality is derived by induction and ∥x∥2 =
∑d

i=1 x
2
i ≤ dR2

S for any x ∈ S. Substi-
tuting back into the bound for ∥f − f ′∥2L2(Pdata,S) , we obtain∥∥∥f − f ′∥∥∥2

L2(Pdata,S)
≤4Kh2 + 2L+2KLB2(L−1)h2dR2

S

+ 4KB2
∫
S

∥∥∥(WL−1 · · ·ReLU(W1x+ b1) · · ·+ bL−1)

− (W ′L−1 · · ·ReLU(W ′1x+ b′1) · · ·+ b′L−1)
∥∥∥2

2
dPdata(x)

≤4(L− 1)(KB2)L−1h2 + 2L+2(L− 1)KLB2(L−1)h2dR2
S

+ (2KB2)L−1
∫
S

∥∥∥W1x+ b1 −W ′1x − b
′
1

∥∥∥2
2

dPdata(x)

≤4L−1LKLB2Lh2dR2
S ,

where the second inequality is obtained by induction. Therefore, combining the above inequality
with ∥f ∥∞ ≤ 1 for any f ∈ F (L,B,K) and Pdata(Sc) ≤ τ , we get∥∥∥f − f ′∥∥∥2

L2(Pdata)
=
∫
S
|f (x)− f ′(x)|2 dPdata(x) +

∫
Sc
|f (x)− f ′(x)|2 dPdata(x)

≤4L−1LKLB2L−2h2dR2
S + 4τ.

Now we choose h satisfying h =
√

(δ2 − 4τ)/(4L−1LKLB2L−2dR2
S ). Then discretizing each parameter

uniformly into 2B/h grid points yields a δ-covering on F (L,B,K). Moreover, the covering number
N2(δ,F (L,B,K)) satisfies

logN2(δ,F (L,B,K)) ≤ K log
(

2B
h

)
= K log

(
2L
√
dLKL/2BLRS√
δ2 − 4τ

)
.

B.2 Proof of Theorem 2

Proof of Theorem 2. The square error of the estimator f̂ can be decomposed into a squared bias
term and a variance term, which can be bounded using the covering number of the function class.
According to Lemmas 4 and 5, for any constant δ ∈ (0,1), we have

E∥f̂ − f ∗∥2L2(Pdata) ≤c inf
f ∈F (L,B,K)

∥f (x)− f ∗(x)∥2L2(Pdata) + cσ2 logN2(δ,F (L,B,K)) + 2
n

+ c

(√
logN2(δ,F (L,B,K)) + 2

n
+ 1

)
σδ+

c′

3n
logN2(δ/4H,F (L,B,K)) + c′δ.

(9)
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Choose ϵ = (2dr)β in Theorem 1. Accordingly, we set tuple (L,B,K) as

L = C1, B = O(Rβs
S r−sβ), and K = C2R

p
Sr
−p.

Then we have
inf

f ∈F (L,B,K)
∥f (x)− f ∗(x)∥2L2(Pdata) ≤ (2dr)2β + 4τ.

Invoking the upper bound of the covering number in Lemma 6, we derive

E

∥∥∥∥f̂ − f ∗∥∥∥∥2

L2(Pdata)
≤(2dr)2β + 4τ +

cσ2

n

(
K log

(
2L
√
dLKL/2BLRS√
δ2 − 4τ

)
+ 2c

)

+ c

√
K log(2L

√
dLKL/2BLRS /

√
δ2 − 4τ) + 1

n
σδ

+
c′

3n
K log

(
2L
√
dLKL/2BLRS√
δ2 − 4τ

)
+ (cσ + c′)δ

=O
(
τ + d2βr2β +

σ2K
n

log
(√

dLKL/2BLRS√
δ2 − 4τ

)
+
(
K log(

√
dLKL/2BLRS /

√
δ2 − 4τ)

n

)1/2

σδ+ σδ+
1
n

)
.

By Cauchy-Schwartz inequality, for 0 < δ < 1, we have

E

∥∥∥∥f̂ − f ∗∥∥∥∥2

L2(Pdata)
=O

(
τ + d2βr2β +

σ2K
n

log
(√

dLKL/2BLRS√
δ2 − 4τ

)
+ σδ+

1
n

)
.

Plugging in our choice of (L,B,K), we get

E

∥∥∥∥f̂ − f ∗∥∥∥∥2

L2(Pdata)
=O

(
τ + d2βr2β +

σ2d
n

(
RS

r

)p
log

(
(RS /r)p

δ2 − 4τ

)
+ σδ+

1
n

)
Now we choose δ = r2β . Then we deduce the desired estimation error bound

E∥f̂ − f ∗∥2L2(Pdata) = O

(
τ + σr2β +

σ2

n

(
RS

r

)p
log

(
(RS /r)p

r4β − 4τ

)
+

1
n

)
= O

(
τ + σr2β +

σ2

n

(
RS

r

)p
log

(
(RS /r)p

r4β − 4τ

))
.

The last equality is due to RS /r > 1.

C Proof of Lemma 1

Proof of Lemma 1. For simplicity of proof, set Q = I . By the construction of S(R,r;p) in (3), we
notice that

P(X < S(R,r;p)) ≤P
( p∑
i=1

x2
i

λ2
i

> R2
)

+P

(
|xj | >

r
2

for some j ∈ [p+ 1,d]
)
.
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Since X1:p = (x1, . . . ,xp) ∼N (0,Λp) where Λp = diag(λ2
1, . . . ,λ

2
p), the variable Z = Λ

−1/2
p X1:p ∼N (0, Ip)

is a standard Gaussian. Then for any fixed R > 0, the probability P(
∑p

i=1 x
2
i /λ

2
i > R2) is equal to

P(∥Z∥2 > R2). Moreover, by Lemma 9, if we choose R2 > p, we will have

P

(
∥Z∥2 > R2

)
≤
(

2R2 + p

p

) p
2

exp
(
− R4

2R2 + p

)
=exp

(
−
p

2
·

R4/p2

R2/p+ 1/2
+
p

2
· log

(
2R2

p
+ 1

))
=O

[exp
(
− 2R2

3p
+ log

(
3R2

p

))] p
2
.

Besides, by Lemma 8, for j = p+ 1, . . . ,d, we derive

P

(
|xj | >

r
2

)
= P

(∣∣∣∣∣ xjλj

∣∣∣∣∣ > r
2λi

)
= O

(
exp

{
− r2

8λ2
j

})
.

Then we can apply the union bound of probability to get

P

(
|xj | >

r
2

for some j ∈ [p+ 1,d]
)
≤

d∑
j=p+1

P

(
|xj | >

r
2

)
= O

( d∑
j=p+1

exp
(
− r2

8λ2
j

))
.

Recall that we choose λ−1
p = 2R/r. Then we have

P

(
|xj | >

r
2

for some j ∈ [p+ 1,d]
)

=O
( d∑
j=p+1

exp
(
−

λ2
p

2λ2
j

R2
))

≤O
( d∑
j=p+1

exp
(
− R2

2

))

=O
(

exp
(
− R2

2
+ log(d − p)

))
,

where the inequality comes from λ2
j ≤ λ2

p for j = p+ 1, . . . ,d. Therefore, we have

P(X < S(R,r;p)) = O

[exp
(
− 2R2

3p
+ log

(
3R2

p

))] p
2
+O

(
exp

(
− R2

2
+ log(d − p)

))
.

Next, we compute the covering number of S(R,r;p) using hypercubes with side length r > 0,
which is denoted as Nr(S(R,r;p)). Notice that the first-p-dimensional hyper-ellipsoid of S(R,r;p)
is contained in a p-dimensional hyper-rectangle with side length 2λiR for i = 1, . . . ,p, while only
one hypercube is required to cover the j-th dimension for j = p + 1, . . . ,d. With this observation,
we derive the upper bound for Nr(S(R,r;p)):

Nr(S(R,r;p)) ≤
p∏

i=1

(
2λiR
r

)
=

p∏
i=1

(
λi

λp

)
,

where the last equality results from our choice of p.
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D Proof of Theorem 3

D.1 Generalization error under exponential eigenvalue decay

Combining the criteria λ−1
p = 2R/r and the exponential eigenvalue decay in Assumption 3, we

have
1
µ

exp(θp) =
2R
r
.

Moreover, by Lemma 1, we can compute the covering number of S(R,r,p):

Nr(S(R,r;p)) ≤
p∏

i=1

(
λi

λp

)
=

p∏
i=1

exp(θ(p − i)) ≤ exp
(
θp2

2

)
=

(
2µR
r

)p/2
,

which indicates that effective Minkowski dimension of Pdata is at most p/2. Let r = n−(1−η)/(2β+
√

logn/θ)

and R = logn where η ∈ (0,1) is an arbitrarily small constant. Then we obtain

θp = log
(

2µR
r

)
=

1
θ

log(2µ) + log(logn) +
(1− η) logn

2β +
√

logn/θ
≤

2(1− η) logn

2β +
√

logn/θ
.

Thereby, we can compute the probability ourside S(R,r;p):

P(X < S(R,r;p)) =O

[exp
(
− 2R2

3p
+ log

(
3R2

p

))] p
2

+ exp
(
−R

2

2
+ log(d − p)

) = O(n− logn/3).

Apply Theorem 2 with our choice of R, r and p. Accordingly, the tuple (L,B,K) is set as

L = C1, B = O

(
n

βs

2β+
√

logn/θ (logn)βs
)
, and K = O

(
n

√
logn/θ

2β+
√

logn/θ

)
.

Then we can get

E

∥∥∥∥f̂ − f ∗∥∥∥∥2

L2(Pdata)
= O

(
P(X < S(R,r;p)) + σr2β +

σ2

n
·
(
RS

r

)p/2
log

(
(RS /r)p/2

r4β − 4τ

))
= O

(
σn
− 2β(1−η)

2β+
√

logn/θ +
σ2

n
·n

(1−η)2 logn/θ

(2β+
√

logn/θ)2 · (logn)
(1−η) logn/θ

2β+
√

logn/θ ·
logn/θ

2β +
√

logn/θ
· logn

)
= O

(
σn
− 2β(1−η)

2β+
√

logn/θ + σ2n
−1+ (1−η)2 logn/θ

(2β+
√

logn/θ)2
+ (1−η) log(logn)/θ

2β+
√

logn/θ · (logn)3/2
)
.

The last equality utilizes the fact that (logn)logn = nlog(logn). Furthermore, notice that for suffi-
ciently large n satisfying log(logn)/

√
θ logn ≤ η, we have

(1− η)2 logn/θ

(2β +
√

logn/θ)2
+

(1− η) log(logn)/θ

2β +
√

logn/θ
≤

(1− η)2 logn/θ

(2β +
√

logn/θ)2
+

(1− η)η
√

logn/θ

2β +
√

logn/θ

≤
(1− η)2

√
logn/θ

2β +
√

logn/θ
+

(1− η)η
√

logn/θ

2β +
√

logn/θ

≤
(1− η)

√
logn/θ

2β +
√

logn/θ
.
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Therefore, we use the above observation to derive the following upper bound for generalization
error:

E

∥∥∥∥f̂ − f ∗∥∥∥∥2

L2(Pdata)
= O

(
σ2n

− 2β(1−η)

2β+
√

logn/θ (logn)3/2
)
.

D.2 Generalization error under polynomial eigenvalue decay

Similarly to last section, we firstly combine the criteria λ−1
p = 2R/r and the polynomial eigenvalue

decay in Assumption 4,

p =
(

2ρR
r

)1/ω

.

Moreover, by Lemma 1, we can compute the covering number of S(R,r,p):

Nr(S(R,r;p)) ≤
p∏

i=1

(
λi

λp

)
=

p∏
i=1

(
p

i

)ω
=

(
pp

p!

)ω
≤

(
pp

pp/2

)ω
= pωp/2 =

(
2ρR
r

)p/2
,

which indicates that effective Minkowski dimension of Pdata is at most p/2. Let r = n−1/(2β+nκ) and
R = n1/(2ωβ+ωnκ) with κ = (1 + 1/ω)/ω. Then we obtain

p =
(

2ρR
r

)1/ω

= n
(1+1/ω)/ω

2β+nκ = n
κ

2β+nκ .

Thereby, we can compute the probability outside S(R,r;p):

P(X < S(R,r;p)) =O

[exp
(
− 2R2

3p
+ log

(
3R2

p

))] p
2

+ exp
(
−R

2

2
+ log(d − p)

) = O
(
exp

(
−n

2
(2ωβ+ωnκ ) /3

))
.

Apply Theorem 2 with our choice of R, r and p. Accordingly, the tuple (L,B,K) is set as

L = C1, B = O
(
n

(1+1/ω)βs
2β+nκ

)
, and K = O

(
n

(1+1/ω)nκ/(2β+nκ )

4β+2nκ
)
.

Then we have

E

∥∥∥∥f̂ − f ∗∥∥∥∥2

L2(Pdata)
= O

(
P(X < S(R,r;p)) + σr2β +

σ2

n
·
(
RS

r

)p/2
log

(
(RS /r)p/2

r4β − 4τ

))
= O

(
σn
− 2β

2β+nκ +
σ2

n
·n

1+1/ω
2β+nκ ·

1
2n

κ
2β+nκ

·n
κ

2β+nκ logn
)

= O
(
σn
− 2β

2β+nκ + σ2n
−1+ 1+1/ω

2β+nκ ·
1
2n

κ
2β+nκ + κ

2β+nκ logn
)
.

(10)

Notice that

1 + 1/ω
2β +nκ

· 1
2
n

κ
2β+nκ +

κ
2β +nκ

=
1 + 1/ω
2β +nκ

(
1
2
n

κ
2β+nκ +

1
ω

)
≤ 2

2β +nκ

(
1
2
n

κ
2β+nκ + 1

)
≤ nκ

2β +nκ
,
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where the first inequality is due to ω > 1. Therefore, plug the above inequality in (10), we derive
the following upper bound for generalization error:

E

∥∥∥∥f̂ − f ∗∥∥∥∥2

L2(Pdata)
= O

(
σ2n

− 2β
2β+nκ logn

)
.

E Auxiliary Lemmas

In this section, we investigate the probability tail bound of standard Gaussian variable, which is
useful for the proof of Lemma 1. At first, we compute the tail bound for multivariate Gaussian
variable.

Lemma 8. Suppose Z = (z1, . . . , zp) ∼ N (0, Ip) is a standard Gaussian variable in R
p. Then for any

t > 0, we have

P

(
∥Z∥ > t

)
≤

(
2t2 + p

p

) p
2

exp
(
− t4

2t2 + p

)
.

Proof. By the Markov’s inequality, for any µ ∈ (0,1/2), we have

P

(
∥Z∥ > t

)
=P

(
exp(µ∥Z∥2) > exp(µt2)

)
≤
Eexp(µ∥Z∥2)

exp(µt2)

=

∏p
i=1Eexp(µz2

i )

exp(µt2)
,

where the last equality comes from the independence of zi ’s. To bound Eexp(µz2
i ), we first exam-

ine the moment generating function of zi : for any t ∈R,

Eexp(tzi) =
∫
R

exp(tw)φ(w)dw = exp(t2/2),

where φ(w) = (2π)−p/2 exp(−w2/2) denotes the probability density function of stardard Gaussian.
Then multiply exp(−t2/(2µ)) on both sides,∫

R

exp
(
tw − t2

2µ

)
φ(w)dw = exp

(
t2(µ− 1)

2µ

)
.

By integrating both sides with respect to t, we have

√
2πµ

∫
R

exp
(
µw2

2

)
φ(w)dw =

√
2πµ
1−µ

,

which indicates

Eexp(µz2
i ) = Eexp

(
2µz2

i

2

)
=

√
1

1− 2µ
.

Therefore, for any µ ∈ (0,1/2), we have

P

(
∥Z∥ > t

)
≤ (1− 2µ)−

p
2 exp(−µt2).

Let µ = t2/(2t2 + p) and thereby we can conclude the proof of the lemma.
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For standard Gaussian in R, we derive a tighter upper bound in the following lemma.

Lemma 9. Suppose z ∼N (0,1) is a standard Gaussian variable in R. Then for any t > 0, we have

P

(
∥z∥ > t

)
≤ exp

(
− 1

2
t2

)
.

Proof. Firstly, for any t > 0, compute the probability that z > t:

P(z > t) =
∫ ∞
t

1
√

2π
exp

(
− 1

2
z2

)
dz

=
∫ ∞

0

1
√

2π
exp

(
− 1

2
(u + t)2

)
du

=exp
(
− 1

2
t2

)∫ ∞
0

exp(−tu) · 1
√

2π
exp

(
− 1

2
u2

)
du

≤exp
(
− 1

2
t2

)∫ ∞
0

1
√

2π
exp

(
− 1

2
u2

)
du

=
1
2

exp
(
− 1

2
t2

)
.

Then notice that

P

(
∥z∥ > t

)
= P(z > t) +P(z < −t) = 2P(z > t).

Thereby, we can conclude the proof.
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