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Abstract

In this paper, we establish efficient and uncoupled learning dynamics so that, when em-
ployed by all players in multiplayer perfect-recall imperfect-information extensive-form games,
the trigger regret of each player grows as O(log T ) after T repetitions of play. This improves
exponentially over the prior best known trigger-regret bound of O(T 1/4), and settles a recent
open question by Bai et al. (2022). As an immediate consequence, we guarantee convergence to
the set of extensive-form correlated equilibria and coarse correlated equilibria at a near-optimal
rate of log T

T .
Building on prior work, at the heart of our construction lies a more general result regard-

ing fixed points deriving from rational functions with polynomial degree, a property that we
establish for the fixed points of (coarse) trigger deviation functions. Moreover, our construction
leverages a refined regret circuit for the convex hull, which—unlike prior guarantees—preserves
the RVU property introduced by Syrgkanis et al. (NIPS, 2015); this observation has an indepen-
dent interest in establishing near-optimal regret under learning dynamics based on a CFR-type
decomposition of the regret.
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1 Introduction

A primary objective of artificial intelligence is the design of agents that can adapt effectively in
complex and nonstationary multiagent environments—modeled as general-sum games. Multiagent
decision making often occurs in a decentralized fashion, with each agent only obtaining information
about its own reward function, and the goal is to learn how to play the game through repeated
interactions. This begs the question: How do we measure the performance of a learning agent? A
popular metric commonly used is that of external regret (or simply regret). However, external regret
can be a rather weak benchmark: a no-external-regret agent could still incur substantial regret under
simple in-hindsight “transformations” of its behavior—e.g., consistently switching from an action
a to a different action a′ [Gordon et al., 2008].

A more general metric is Φ regret [Hazan and Kale, 2007, Rakhlin et al., 2011, Stoltz and Lugosi,
2007, Greenwald and Jafari, 2003], parameterized by a set deviations Φ. From a game-theoretic
standpoint, the importance of this framework is that different choices of Φ lead to different types of
equilibria [Greenwald and Jafari, 2003, Stoltz and Lugosi, 2007]. For example, one such celebrated
result guarantees that no-internal-regret players converge—in terms of empirical frequency of play—
to the set of correlated equilibria (CE) [Foster and Vohra, 1997, Hart and Mas-Colell, 2000]. This
brings us to the following central question:

What are the best performance guarantees when no-Φ-regret learners are playing in
multiplayer general-sum games?

Special cases of this question have recently received considerable attention in the literature [Daskalakis
et al., 2011, Rakhlin and Sridharan, 2013a,b, Syrgkanis et al., 2015, Foster et al., 2016, Wei and Luo,
2018, Chen and Peng, 2020, Hsieh et al., 2021, Daskalakis et al., 2021, Daskalakis and Golowich,
2022, Anagnostides et al., 2022a, Piliouras et al., 2021]. In particular, Daskalakis et al. [2021] were
the first to establish O(polylog(T )) external regret bounds for normal-form games,1 and subse-
quent work extended those results to internal regret [Anagnostides et al., 2022a]; those guarantees,
applicable when all players employ specific learning dynamics, improve exponentially over what
is possible when a player is facing a sequence of adversarially produced utilities—the canonical
consideration in online learning. However, much less is known about Φ-regret learning beyond
normal-form games.

One important application revolves around learning dynamics for extensive-form correlated equi-
libria (EFCE) [Von Stengel and Forges, 2008, Gordon et al., 2008, Celli et al., 2020, Morrill et al.,
2021a, Anagnostides et al., 2022b, Morrill et al., 2021b, Bai et al., 2022a, Song et al., 2022]. In-
deed, a particular instantiation of Φ regret, referred to as trigger regret, is known to drive the rate
of convergence to EFCE. Incidentally, minimizing trigger regret lies at the boundary of Φ-regret
minimization problems that are known to be computationally tractable in extensive-form games. In
this context, prior work established O(T 1/4) per-player trigger regret bounds [Anagnostides et al.,
2022b], thereby leaving open the possibility of obtaining near-optimal rates for EFCE; that question
was also recently posed by Bai et al. [2022a].

1With a slight abuse of notation, we use the O(·) notation in our introduction to suppress parameters that depend
(polynomially) on the description of the game.
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1.1 Our Contributions

Our main contribution is to establish the first uncoupled learning dynamics with near-optimal
per-player trigger regret guarantees:

Theorem 1.1 (Informal; precise version in Theorem 3.10). There exist uncoupled and efficient
learning dynamics so that the trigger regret of each player grows as O(log T ) after T repetitions of
play.

This improves exponentially over the O(T 1/4) bounds obtained in prior work [Celli et al., 2020,
Farina et al., 2021, Anagnostides et al., 2022b], and settles an open question recently posed by Bai
et al. [2022b]. As an immediate consequence, given that trigger regret drives the rate of convergence
to EFCE (Theorem 2.3), we obtain the first near-optimal rates to EFCE.

Corollary 1.2. There exist uncoupled and efficient learning dynamics converging to EFCE at a
near-optimal rate of log T

T .

Overview of our techniques Our construction leverages the template of Gordon et al. [2008]
for minimizing Φ regret (Algorithm 1). In particular, we follow the regret decomposition approach
of Farina et al. [2021] to construct an external regret minimizer for the set of deviations correspond-
ing to trigger deviation functions. A key difference is that we instantiate each regret minimizer using
the recent algorithm of Farina et al. [2022], namely LRL-OFTRL, which is based on optimistic follow
the regularizer leader (OFTRL) [Syrgkanis et al., 2015] under logarithmic regularization; LRL-OFTRL
guarantees suitable RVU bounds [Syrgkanis et al., 2015] for each “local” regret minimizer.

To combine those local regret minimizers into a global one for the set of trigger deviations
that still enjoys a suitable RVU bound, we provide a refined guarantee for the “regret circuit”
of the convex hull (Proposition 3.3), which ensures that the RVU property is preserved along the
construction. Incidentally, this simple observation can be used to obtain the first near-optimal regret
guarantees for algorithms based on a CFR-type decomposition of the regret [Zinkevich et al., 2007].

The next key step relates to the behavior of the fixed points of trigger deviation functions. (Fixed
points are at heart of all known constructions for minimizing Φ regret.) More precisely, to convert
the RVU property from the space of deviations to the actual space of the player’s strategies, we
show that it suffices that the fixed points deriving from trigger deviation functions can be expressed
as a rational function with a polynomial degree (Lemma 3.5). Importantly, we prove this property
for the fixed points of trigger deviation functions (Proposition 3.7), thereby leading to Theorem 1.1;
the last part of our analysis builds on a technique developed for obtaining O(log T ) swap regret in
normal-form games [Anagnostides et al., 2022c]. We also obtain slightly improved guarantees for
extensive-form coarse correlated equilibria (EFCCE) [Farina et al., 2020], a relaxation of EFCE
that is attractive due to its reduced per-iteration complexity compared to EFCE.

Finally, we verify our theory through experiments on several benchmark extensive-form games
in Section 4.

1.2 Further Related Work

Φ regret has received extensive attention as a solution concept in the literature since it strength-
ens and unifies many common measures of performance in online learning (e.g., see [Hazan and
Kale, 2007, Rakhlin et al., 2011, Stoltz and Lugosi, 2007, Greenwald and Jafari, 2003, Marks,
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2008, Piliouras et al., 2022]). This framework has been particularly influential in game theory given
that no-Φ-regret learning outcomes are known to converge to different equilibrium concepts, de-
pending on the richness of the set of deviations Φ. For example, when Φ includes all constant
transformations—reducing to external regret—no-regret learning outcomes are known to converge
to coarse correlated equilibria (CCE) [Moulin and Vial, 1978], a relaxation of CE [Aumann, 1974].
Unfortunately, CCE is understood to be a weak equilibrium concept, potentially prescribing ir-
rational behavior [Dekel and Fudenberg, 1990, Viossat and Zapechelnyuk, 2013, Giannou et al.,
2021]. This motivates enlarging the set of deviaitons Φ, thereby leading to stronger—and arguably
more plausible—equilibrium concepts. Indeed, the framework of Φ regret has been central in the
development of the first uncoupled no-regret learning dynamics for EFCE [Celli et al., 2020, Farina
et al., 2021] (see also [Morrill et al., 2021a,b, Zhang, 2022]).2

Our paper lies at the interface of the aforedescribed literature with a recent line of work that
strives for improved regret guarantees when specific learning dynamics are in place; this allows
bypassing the notorious Ω(

√
T ) lower bounds applicable under an adversarial sequence of utili-

ties [Cesa-Bianchi and Lugosi, 2006]. The later line of work was pioneered by Daskalakis et al. [2011],
and has been thereafter extended along several lines [Rakhlin and Sridharan, 2013a,b, Syrgkanis
et al., 2015, Chen and Peng, 2020, Daskalakis et al., 2021, Daskalakis and Golowich, 2022, Piliouras
et al., 2021], incorporating partial or noisy information feedback [Foster et al., 2016, Wei and Luo,
2018, Hsieh et al., 2022], and more recently, general Markov games [Erez et al., 2022, Zhang et al.,
2022].

A key reference point for our paper is the work of Anagnostides et al. [2022b], which established
O(T 1/4) trigger regret bounds through optimistic hedge. Specifically, building on [Chen and Peng,
2020], they showed multiplicative stability of the fixed points associated with EFCE. While those
works operate in the full information model, recent papers have also developed dynamics converging
to EFCE under bandit feedback [Bai et al., 2022a, Song et al., 2022].

2 Preliminaries

In this section, we introduce our notation and basic background on online learning and extensive-
form games. For a more comprehensive treatment on those subjects, we refer to [Cesa-Bianchi and
Lugosi, 2006] and [Leyton-Brown and Shoham, 2008], respectively.

Notation We denote by N = {1, 2, . . . } the set of natural numbers. We use the variable i with a
subscript to index a player, and t with a superscript to indicate the (discrete) time. To access the
r-th coordinate of a d-dimensional vector x ∈ Rd, for some index r ∈ [[d]] := {1, 2, . . . , d}, we use
the symbol x[r].

2.1 Online Learning and Regret

Let X ⊆ [0, 1]d be a nonempty convex and compact set, for d ∈ N. In the framework of online
learning, a learner (or a player), denoted by R, interacts with the environment at time t ∈ N via
the following subroutines.

2While there are other methods for efficiently computing EFCE [Dud́ık and Gordon, 2009, Huang and von Stengel,
2008], approaches based on uncoupled no-regret learning typically scale significantly better in large games.
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• R.NextStrategy(): The learner outputs its next strategy x(t) ∈ X based on its internal
state; and

• R.ObserveUtility(u(t)): The learner receives a feedback from the environment in the form
of a utility vector u(t) ∈ Rd.

The canonical measure of performance in online learning is the notion of regret, denoted by RegT ,
defined for a fixed time horizon T ∈ N as

max
x?∈X

{
T∑
t=1

〈x?,u(t)〉

}
−

T∑
t=1

〈x(t),u(t)〉. (1)

In words, the performance of the learner is compared to the performance of playing an optimal fixed
strategy in hindsight. We will say that the agent has no-regret if RegT = o(T ), under any sequence
of observed utilities.

A much more general performance metric is Φ regret, parameterized by a set of transformations
Φ : X → X . Namely, Φ-regret RegTΦ—for a time horizon T ∈ N—is defined as

sup
φ?∈Φ

{
T∑
t=1

〈φ?(x(t)),u(t)〉

}
−

T∑
t=1

〈x(t),u(t)〉. (2)

External regret (1) is simply a special case of (2) when Φ includes all possible constant transfor-
mations, but Φ regret can be much more expressive. A celebrated game-theoretic motivation for Φ
regret stems from the fact that when all players employ suitable Φ-regret minimizers, the dynamics
converge to different notions of correlated equilibria, well-beyond coarse correlated equilibria [Foster
and Vohra, 1997, Stoltz and Lugosi, 2007, Hart and Mas-Colell, 2000, Celli et al., 2020].

From external to Φ regret As it turns out, there is a general template for minimizing Φ regret
due to Gordon et al. [2008]. In particular, their algorithm assumes access to the following.

1. A no-external-regret minimizer RΦ operating over the set of transformations Φ; and

2. A fixed point oracle FixedPoint(φ) that, for any φ ∈ Φ, computes a fixed point x ∈ X ,
under the assumption that such a point indeed exists.

Based on those ingredients, Gordon et al. [2008] were able to construct a regret minimization
algorithm R with sublinear Φ regret, as illustrated in Algorithm 1. Specifically, R determines its
next strategy by first obtaining the strategy φ(t) of RΦ (Line 2), and then outputing any fixed
point of φ(t) (Line 3). Then, upon receiving the utility vector u(t) ∈ Rd, R forwards as input to
RΦ the utility function φ 7→ 〈u(t), φ(x(t))〉. We will assume that Φ contains linear transformations,
in which case that utility can be represented as U (t) := u(t) ⊗ x(t) (Line 6), where ⊗ denotes the
outer product of the two vectors. This algorithm enjoys the following guarantee.

Theorem 2.1 ([Gordon et al., 2008]). Let RegT be the external regret of RΦ, and RegTΦ be the
Φ-regret of R. Then, for any T ∈ N,

RegT = RegTΦ .
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Algorithm 1: Φ-Regret Minimizer [Gordon et al., 2008]

Data: An external regret minimizer RΦ for Φ

1 function NextStrategy()

2 φ(t) ← RΦ.NextStrategy()

3 x(t) ← FixedPoint(φ(t))

4 return x(t)

5 function ObserveUtility(u(t))

6 Construct the utility U (t) ← u(t) ⊗ x(t)

7 RΦ.ObserveUtility(U (t))

No-Regret learning in games The main focus of our paper is about the behavior of no-regret
learning dynamics when employed by all players in n-player games. More precisely, the strategy set
of each player i ∈ [[n]] is a nonempty convex and compact set Xi. Further, the utility function ui :

×n
i′=1Xi′ → R of each player i ∈ [[n]] is multilinear, so that for any x−i := (x1, . . . ,xi−1,xi+1,xn),

ui(x) := 〈xi,ui(x−i)〉.
In this context, learning procedures work as follows. At every iteration t ∈ N each player i ∈ [[n]]

commits to a strategy x
(t)
i ∈ Xi, and subsequently receives as feedback the utility corresponding

to the other players’ strategies at time t: u
(t)
i := ui(x

(t)
−i). It is assumed that players use no-regret

learning algorithms to adapt to the behavior of the other players, leading to uncoupled learning
dynamics, in the sense that players do not use information about other players’ utilities [Hart and
Mas-Colell, 2000, Daskalakis et al., 2011]. For convenience, and without any loss, we assume that

‖u(t)
i ‖∞ ≤ 1, for i ∈ [[n]] and t ∈ N.

2.2 Background on EFGs

An extensive-form game (EFG) is played on a rooted and directed tree with node-set H. Every
decision (non-terminal) node h ∈ H is uniquely associated with a player who selects an action from
a finite and nonempty set Ah. By convention, the set of players includes a fictitious “chance” player
c that acts according to a fixed distribution. The set of leaves (terminal) nodes Z ⊆ H corresponds
to different outcomes of the game. Once the game reaches a terminal node z ∈ Z, every player
i ∈ [[n]] receives a payoff according to a (normalized) utility function ui : Z → [−1, 1].

In an imperfect-information EFG, the decision nodes of each player i ∈ [[n]] are partitioned into
information sets Ji, inducing a partially ordered set (Ji,≺). For an information set j ∈ Ji and an
action a ∈ Aj , we let σ := (j, a) be the sequence of i’s actions encountered from the root of the tree
until (and including) action a; we use the special symbol ∅ to denote the empty sequence. The set
of i’s sequences is denoted by Σi := {(j, a) : j ∈ Ji, a ∈ Aj} ∪ {∅}. We also let Σ∗i := Σi \ {∅} and
Σj := {σ ∈ Σi : σ � j}. We will write σj to represent the parent sequence of an information set
j ∈ Ji; namely, the last sequence before reaching j, or ∅ if j is a root information set.

Sequence-form strategies The strategy of a player specifies a probability distribution for every
information set encountered in the tree. Assuming perfect-recall—players never forget acquired

information—a strategy can be represented via the sequence-form strategy polytope Qi ⊆ R|Σi|≥0 ,
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defined as

Qi :=

qi ∈ R|Σi|≥0 : qi[∅] = 1, qi[σj ] =
∑
a∈Aj

qi[(j, a)], ∀j ∈ Ji

 .

Further, we let Πi := Qi∩{0, 1}|Σi| be the set of deterministic sequence-form strategies. Analogously,
one can define the sequence-form polytope Qj rooted at information set j ∈ Ji. We also use ‖Qi‖1
to denote the maximum `1-norm of a vector qi ∈ Qi. Finally, we denote by Di the depth of i’s
subtree.

Trigger deviations and EFCE To formalize the connection between EFCE and the framework
of Φ-regret, we introduce trigger deviation functions.

Definition 2.2 ([Farina et al., 2021]). A trigger deviation function with respect to a trigger se-
quence σ̂ = (j, a) ∈ Σ∗i and a continuation strategy π̂i ∈ Πj is any linear mapping f : R|Σi| → R|Σi|
such that

• f(πi) = πi for all πi ∈ Πi such that πi[σ̂] = 0;

• Otherwise, for all πi ∈ Πi,

f(πi)[σ] =

{
πi[σ] if σ 6� j,
π̂i[σ] if σ � j.

We denote by Ψi the convex hull of all trigger deviation functions—over all trigger sequences
and deterministic continuation strategies; Ψi-regret is referred to as trigger regret. In an extensive-
form correlated equilibrium (EFCE) [Von Stengel and Forges, 2008] no trigger deviation by any
player can improve the utility of that player, leading to the following connection.

Theorem 2.3 ([Farina et al., 2021]). If each player i incurs trigger regret RegTΨi after T repetitions

of the game, the average product distribution of play is a 1
T maxi∈[[n]] RegTΨi-approximate EFCE.

Moreover, extensive-form coarse correlated equilibria (EFCCE) [Farina et al., 2020] are defined
analogously based on coarse trigger deviations Ψ̃i; the difference is that in EFCCE the player
decides whether to follow the recommendation before actually seeing the recommendation at that
information set (see Appendix A for the definition and specific examples).

3 Near-Optimal Learning for EFCE

In this section, we establish our main result: efficient learning dynamics with O(log T ) per-player
trigger regret; this is made precise in Theorem 3.10, the informal version of which was stated earlier
in Theorem 1.1. All the proofs from this section are deferred to Appendix B.

3.1 Regret Minimizer for Trigger Deviations

Our construction for minimizing trigger regret uses the general template of Gordon et al. [2008]
(Algorithm 1), and in particular, the approach of Farina et al. [2021] in order to construct an
external regret minimizer for the set Ψi (a similar approach also applies for the set of coarse trigger
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deviations Ψ̃i). More precisely, that construction leverages one separate regret minimizer Rσ̂ for
every possible trigger sequence (recall Definition 2.2) σ̂ ∈ Σ∗i . In Particular, Rσ̂, with σ̂ = (j, a), is—
after performing an affine transformation—operating over sequence-form vectors qσ̂ ∈ Qj (rooted
at information set j ∈ Ji). Then, those regret minimizers are combined using a regret minimizer
R4 operating over the simplex ∆(Σ∗i ). The first key ingredient in our construction is the use of a
logarithmic regularizer.

In particular, we instantiate each regret minimizer with LRL-OFTRL, a recent algorithm due to Fa-
rina et al. [2022]. LRL-OFTRL is an instance of optimistic follow the regularizer leader (OFTRL) [Syrgka-
nis et al., 2015] with logarithmic regularization; the main twist is that LRL-OFTRL operates over
an appropriately lifted space. For our purposes, we first modify [Farina et al., 2022, Proposition 2
and Corollary 1] to obtain a suitable RVU bound for each regret minimizer Rσ̂ instantiated with
LRL-OFTRL, for each σ̂ ∈ Σ∗i .

Proposition 3.1. Fix any σ̂ ∈ Σ∗i , and let RegTσ̂ be the regret of Rσ̂ up to time T ≥ 2. For any
η ≤ 1

256‖Qi‖1 , max{0,RegTσ̂ } can be upper bounded by

2|Σi| log T

η
+ 16η‖Qi‖21

T−1∑
t=1

‖U (t+1)
i −U (t)

i ‖
2
∞ −

1

512η

T−1∑
t=1

‖q(t+1)
σ̂ − q(t)

σ̂ ‖
2

q
(t)
σ̂ ,∞

. (3)

A few remarks are in order. First, we recall that U
(t)
i := u

(t)
i ⊗ x

(t)
i , in accordance to Line 6

of Algorithm 1. Also, η > 0 denotes the (time-invariant) learning rate of LRL-OFTRL. Furthermore,
for σ̂ = (j, a) ∈ Σ∗i , in Proposition 3.1 we used the notation

‖q(t+1)
σ̂ − q(t)

σ̂ ‖
2

q
(t)
σ̂ ,∞

:= max
σ∈Σj

∣∣∣∣∣1− q
(t+1)
σ̂ [σ]

q
(t)
σ̂ [σ]

∣∣∣∣∣ .
Proposition 3.1 establishes an RVU bound [Syrgkanis et al., 2015], but with two important refine-
ments. First, the bound applies to max{0,RegTσ̂ }, instead of RegTσ̂ , ensuring that (3) is nonnega-
tive. Further, the local norm appearing in (3) will also be crucial for our argument in the sequel
(Lemma 3.5). Next, similarly to Proposition 3.1, we obtain the following regret bound for R4, the
regret minimizer “mixing” over all {Rσ̂}σ̂∈Σ∗i

.

Proposition 3.2. Let RegT4 be the regret of R4 up to time T ≥ 2. For any η4 ≤ 1
512|Σi| ,

max{0,RegT4} can be upper bounded by

2|Σi| log T

η4
+ 16η4|Σi|2

T−1∑
t=1

‖u(t+1)
4 − u(t)

4 ‖
2
∞ −

1

512η4

T−1∑
t=1

‖λ(t+1)
i − λ(t)

i ‖
2

λ
(t)
i ,∞

.

Here, we used the notation u
(t)
4 [σ̂] := 〈X(t)

σ̂ ,U
(t)
i 〉, where X

(t)
σ̂ is the output of Rσ̂, for each σ̂ ∈

Σ∗i ; that is, X
(t)
σ̂ ∈ R|Σi|×|Σi| transforms sequence-form vectors based on the continuation strategy

q
(t)
σ̂ below the trigger sequence σ̂ (recall Definition 2.2). We are now ready to use Theorem 2.1 to

obtain a bound for Ψi-regret.

Proposition 3.3. For any T ∈ N,

max{0,RegTΨi} ≤ max{0,RegT4}+
∑
σ̂∈Σ∗i

max{0,RegTσ̂ }.
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This uses the regret circuit for the convex hull [Farina et al., 2019a] to combine all the regret
minimizers {Rσ̂}σ̂∈Σ∗i

via R4 into an external regret minimizer for the set Ψi; by virtue of The-

orem 2.1, the external regret of the induced algorithm is equal to the Ψi-regret (RegTΨi) of player
i. There is, however, one crucial twist: the guarantee of Farina et al. [2019a] would give a bound
in terms of maxσ̂∈Σ∗i

RegTσ̂ , instead of
∑

σ̂∈Σ∗i
RegTσ̂ ; this is problematic for obtaining near-optimal

rates as it breaks the RVU property over the convex hull. In general, it is not clear how to bound
the maximum of the regrets by their sum since (external) regret can be negative. This is, in fact,
a recurrent obstacle encountered in this line of work [Syrgkanis et al., 2015], and it is precisely
the reason why approaches based on regret decomposition—in the spirit of CFR [Zinkevich et al.,
2007]—failed to bring rates better than T−3/4 [Farina et al., 2019b]. Proposition 3.3 circumvents
those obstacles by establishing bounds in terms of nonnegative measures of regret.

Remark 3.4 (Near-optimal regret via CFR-type algorithms). An important byproduct of our tech-
niques, and in particular Proposition 3.3 along with RVU bounds for nonnegative measures of
regret [Anagnostides et al., 2022c], is the first near-optimal O(log T ) regret bound for CFR-type
algorithms in general games, a question that has been open even in zero-sum games.3

3.2 Characterizing the Fixed Points

Next, our main goal is to obtain an RVU bound for max{0,RegTΨi}, but cast in terms of the player’s

strategies (x
(t)
i )1≤t≤T , as well as the utilities (u

(t)
i )1≤t≤T observed by that player. In particular, in

light of Propositions 3.1 and 3.2, the crux is to appropriately bound ‖λ(t+1)
i − λ(t)

i ‖λ(t)
i ,∞ and∑

σ̂∈Σ∗i
‖q(t+1)

σ̂ − q(t)
σ̂ ‖q(t)σ̂ ,∞ in terms of ‖x(t+1)

i − x(t)
i ‖—the deviation of the player’s strategy at

every time t. To do so, we prove the following key result.

Lemma 3.5. Let X
(t)
i ∈ RD>0 be defined for every time t ∈ N, for some D ∈ N. Further, suppose

that for every time t ∈ N and σ ∈ Σi,

x
(t)
i [σ] =

m∑
k=1

pσ,k(X
(t)
i )

qσ,k(X
(t)
i )

, (4)

for some multivariate polynomials {pσ,k}, {qσ,k} with positive coefficients and maximum degree
degi ∈ N. If

max
e∈[[D]]

∣∣∣∣∣1− X(t+1)
i [e]

X
(t)
i [e]

∣∣∣∣∣ ≤ 100

256 degi
, (5)

it holds that

‖x(t+1)
i − x(t)

i ‖1 ≤ (4‖Qi‖1 degi) max
e∈[[D]]

∣∣∣∣∣1− X(t+1)
i [e]

X
(t)
i [e]

∣∣∣∣∣ .
We recall that, based on Algorithm 1 (Line 3), the final strategy x

(t)
i is simply a fixed point

of φ
(t)
i ∈ Ψ

(t)
i , where φ

(t)
i is a function of X

(t)
i = (λ

(t)
i , (q

(t)
σ̂ )σ̂∈Σ∗i

). Equation (4) postulates that
the fixed point is given by a rational function with positive coefficients. Taking a step back, let us

3Liu et al. [2022] very recently obtained near-optimal rates in zero-sum games, though with very different tech-
niques.
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clarify that assumption in the context of the no-swap-regret algorithm of Blum and Mansour [2007],
a specific instance of Algorithm 1. In that algorithm, the fixed point is a stationary distribution of
the underlying stochastic matrix Xi; hence, Equation (4) is simply a consequence of the Markov
chain tree theorem [Anantharam and Tsoucas, 1989], with degree in the order of the rank of the
corresponding stochastic matrix.

While insisting on having positive coefficients in Lemma 3.5 may seem restrictive at first glance,
in Propositions B.5 and B.6 (in Appendix B) we show that it comes without any loss under sequence-
form vectors. We further remark that the degree of the rational function is a measure of the
complexity of the fixed points, as it will be highlighted in Propositions 3.6 and 3.7 below. Finally,
the property in (5) will be satisfied for our construction since the regret minimizers we employ
guarantee multiplicative stability (shown in Lemmas B.2 and B.4).

We now establish that assumption (4) is satisfied for transformations in Ψi with only a moderate
degree. First, as a warm-up, we consider fixed points associated with coarse trigger deviation
functions Ψ̃i.

Proposition 3.6. Let φ
(t)
i ∈ Ψ̃i be a transformation defined by X

(t)
i = (λ

(t)
i , (q

(t)
j )j∈Ji) ∈ RD>0, for

some D ∈ N and time t ∈ N. The unique fixed point x
(t)
i of φ

(t)
i satisfies (4) with degi ≤ 2Di.

This property is established by leveraging the closed-form characterization for the fixed points
associated with EFCCE given in [Anagnostides et al., 2022b]. Next, let us focus on the fixed points
of trigger deviation functions. Unlike EFCCE, determining such fixed points requires computing
stationary distributions of Markov chains along paths of the tree, commencing from the root and
gradually making way towards the leaves [Farina et al., 2021]; this substantially complicates the
analysis. Nevertheless, we leverage a refined characterization of the stationary distribution at every
information set [Anagnostides et al., 2022b] to obtain the following.

Proposition 3.7. Let φ
(t)
i ∈ Ψi be a transformation defined by X

(t)
i = (λ

(t)
i , (q

(t)
σ̂ )σ̂∈Σ∗i

) ∈ RD>0, for

some D ∈ N and time t ∈ N. The (unique) fixed point x
(t)
i of φ

(t)
i satisfies (4) with degi ≤ 2Di|Ai|,

where |Ai| := maxj∈Ji |Aj |.

In proof, we show that augmenting a “partial fixed point” at a new (successor) information set
can only increase the degree of the rational function by an additive factor of 2|Ai|; Proposition 3.7
then follows by induction. It is crucial to note that using the Markov chain tree theorem directly
at every information set would only give a bound on the degree that could be exponential in the
description of the game. Next, we combine Proposition 3.7 with Lemma 3.5 to derive the following
key inequality.

Lemma 3.8. Consider any parameters η ≤ 1
256‖Qi‖1 degi

and η4 ≤ 1
512|Σi|degi

, where degi :=

2|Ai|Di. Then, for any time t ∈ [[T − 1]],

‖x(t+1)
i − x(t)

i ‖1 ≤ 8‖Qi‖1|Ai|DiM(X
(t)
i ),

where M(X
(t)
i ) is defined as

max

{
max
σ̂∈Σ∗i

∣∣∣∣∣1− λ(t+1)
i [σ̂]

λ
(t)
i [σ̂]

∣∣∣∣∣ ,max
σ̂∈Σ∗i

max
σ∈Σi

∣∣∣∣∣1− q
(t+1)
σ̂ [σ]

q
(t)
σ̂ [σ]

∣∣∣∣∣
}
.
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3.3 Putting Everything Together

We can now combine Lemma 3.8 with Propositions 3.1 to 3.3, as well as some additional manipu-

lations of the utilities (U
(t)
i )1≤t≤T (Proposition 3.1) and (u

(t)
4 )1≤t≤T (Proposition 3.2) to derive the

following RVU bound.

Corollary 3.9. Suppose that η ≤ 1
212|Σi|1.5‖Qi‖1 degi

and η4 = 1
2|Σi|η, where degi := 2|Ai|Di. For

any T ≥ 2, max{0,RegTΨi} can be upper bounded by

8|Σi|2 log T

η
+ 256η|Σi|3

T−1∑
t=1

‖u(t+1)
i − u(t)

i ‖
2
∞ −

1

215η deg2
i ‖Qi‖21

T−1∑
t=1

‖x(t+1)
i − x(t)

i ‖
2
1.

Given that the RVU bound in Corollary 3.9 has been obtained for max{0,RegTΨi}, a nonnegative
measure of regret, we can show that the second-order path lengths of the dynamics are bounded
by O(log T ); that is,

T−1∑
t=1

n∑
i=1

‖x(t+1)
i − x(t)

i ‖
2
1 = O(log T ).

This step is formalized in Theorem B.12 (in Appendix B), and follows the technique of Anagnostides
et al. [2022c], leading to our main result; below we use the notation |Σ| := maxi∈[[n]] |Σi|, and
similarly for the other symbols (namely, ‖Q‖1, |A| and D).

Theorem 3.10. If all players employ Algorithm 1 instantiated with LRL-OFTRL for all local regret
minimizers, R4 and {Rσ̂}σ̂, the trigger regret of each player i ∈ [[n]] after T repetitions will be
bounded as

RegTΨi ≤ Cn|Σ|
3.5‖Q‖1|Z||A|D log T,

for a universal constant C > 0.

For EFCCE, in accordance to Proposition 3.6, we obtain a slightly improved regret bound
(Corollary B.14 in Appendix B).

4 Experimental Results

Finally, in this section we experimentally verify our theoretical results on several common bench-
mark extensive-form games: (i) 3-player Kuhn poker [Kuhn, 1953]; (ii) 2-player Goofspiel [Ross,
1971]; and (iii) 2-player Sheriff [Farina et al., 2019c]. All of these are general-sum games. A detailed
description of the game instances we use is included in Appendix C.

In accordance to Theorem 3.10, we instantiate each local regret minimizer using LRL-OFTRL,
and all players use the same learning algorithm. For simplicity we use the same learning rate η > 0
for all the local regret minimizers, which is treated as a hyperparameter in order to obtain better
empirical performance. In particular, after a very mild tuning process, we chose η = 1 for all our
experiments. We compare the performance of our algorithm with that of two other popular regret
minimizers: 1) CFR with regret matching (RM) [Zinkevich et al., 2007], meaning that every local
regret minimizer Rσ̂ uses CFR (with RM) and R4 (which is an algorithm for the simplex) also
uses RM; and 2) CFR+ with RM+ [Tammelin et al., 2015]. We did not employ alternation or linear
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averaging, two popular tricks that accelerate convergence in zero-sum games, as it is not known if
those techniques retain convergence in our setting.

Our findings are illustrated in Figure 1. As predicted by our theory (Theorem 3.10), the trigger
regret of all players appears to grow as O(log T ) (the x-axis is logarithmic), implying convergence
to the set of EFCE with a rate of log T

T . In contrast, although the trigger regret experienced by the
other regret minimizers is sometimes smaller compared to our algorithm, their asymptotic growth
appears to exhibit an unfavorable exponential increase, meaning that their trigger regret grows
as ω(log T ), with the exception of 3-player Kuhn poker. In fact, for Kuhn poker we see that the
learning dynamics actually converge after only a few iterations, but this is not typical behavior in
general-sum games. Indeed, for the other two games in Figure 1 we did not observe convergence. We
also obtained qualitatively similar regret bounds for coarse trigger regret—associated with EFCCE.
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Figure 1: Trigger regret of each player on (i) Kuhn poker (left); (ii) Goofspiel (center); and (iii)
Sheriff (right). Every row corresponds to a different algorithm, starting from ours in the first one.
The x-axis indicates the iteration, while the y-axis indicates the corresponding trigger regret for
each player. We emphasize that the x-axis is logarithmic.

5 Conclusions and Future Research

In this paper, we established the first near-optimal log T
T rates of convergence to extensive-form

correlated equilibria, thereby extending recent work from normal-form games to the substantially
more complex class of imperfect-information extensive-form games. Our approach for obtaining
near-optimal Φ-regret guarantees can be in fact further extended beyond extensive-form games, as
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long as the fixed points admit the characterization imposed by Lemma 3.5. Our techniques also have
an independent interest in deriving near-optimal rates using the regret-decomposition approach, a
question that previously remained elusive.

There are still many interesting avenues for future research. While our trigger-regret bounds are
near-optimal in terms of the dependence on T (Theorem 3.10), the dependence on the parameters
of the game can likely be improved. Establishing near-optimal trigger regret under dynamics that
do not employ logarithmic regularization, such as optimistic hedge, is another challenging open
problem; it is plausible that the techniques of Anagnostides et al. [2022a] could be useful in that
direction.
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A Additional Preliminaries

In this section, we provide some additional background on extensive-form games and (coarse) trigger
deviation functions.

An illustrative example First, to clarify some of the concepts we introduced earlier in Section 2,
we consider the simple two-player EFG of Figure 2. White round nodes correspond to player 1,
while black round nodes to player 2. We use square nodes to represent terminal nodes (or leaves). As
illustrated in Figure 2, player 1 has two information sets, denoted by J1 := {a,b}, each containing
two nodes. Further, the set of sequences of player 1 can be represented as Σ1 := {∅, 1, 2, 3, 4}; here,
we omitted specifying the corresponding information set since we use different symbols for actions
belonging to different information sets.

1 12 2 3 34 4

s r

a b

Figure 2: Example of a two-player EFG.

Before we proceed, let us clarify some notation that will be useful in the sequel. For any pair
of sequences σ, σ′ ∈ Σ∗i , with σ = (j, a) and σ′ = (j′, a′), we write σ ≺ σ′ if the sequence of actions
encountered from the root of the tree to any node in j′ includes selecting action a at some node
from information set j. Further, by convention, we let ∅ ≺ σ for any σ ∈ Σ∗i . We will also write
σ � j if sequence σ must pass from some node in j.

Trigger deviation functions It will be convenient to represent trigger deviation functions, in
the sense of Definition 2.2, as follows.

Definition A.1 ([Farina et al., 2021]). Let σ̂ = (j, a) ∈ Σ∗i , and q ∈ Qj . We let Mσ̂→q ∈ R|Σi|×|Σi|
be a matrix, so that for any σr, σc ∈ Σi,

Mσ̂→q =


1 if σc 6� σ̂ and σr = σc;

q[σr] if σc = σ̂ and σr � j; and

0 otherwise.

We will let φσ̂→q denote the linear function x 7→Mσ̂→qx, for some q ∈ Qj . It is immediate to
verify that for any σ̂ = (j, a) ∈ Σ∗i and q ∈ Qj , φσ̂→q is a trigger deviation function in the sense of
Definition 2.2.

To clarify Definition A.1, below we give two examples for the EFG of Figure 2. If q = (1
2 ,

1
2) ∈ ∆2,

then
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M1→q =

∅ 1 2 3 4


∅ 1 0 0 0 0
1 0 1/2 0 0 0
2 0 1/2 1 0 0
3 0 0 0 1 0
4 0 0 0 0 1

, M3→q =

∅ 1 2 3 4


∅ 1 0 0 0 0
1 0 1 0 0 0
2 0 0 1 0 0
3 0 0 0 1/2 0
4 0 0 0 1/2 1

.

The following characterization can be readily extracted from [Farina et al., 2021].

Claim A.2. Every transformation φi ∈ Ψi can be expressed as
∑

σ̂∈Σ∗i
λi[σ̂]φσ̂→qσ̂ , where λi ∈

∆(Σ∗i ) and qσ̂ ∈ Qj for σ̂ = (j, a) ∈ Σ∗i .

Coarse trigger deviation functions Analogously, coarse trigger deviation functions can be
represented as follows.

Definition A.3 ([Anagnostides et al., 2022b]). Let j ∈ Ji and q ∈ Qj . We let Mj→q ∈ R|Σi|×|Σi|
be a matrix, so that for any σr, σc ∈ Σi,

Mj→q =


1 if σc 6� j and σr = σc;

q[σr] if σc = σj and σr � j; and

0 otherwise.

Unlike trigger deviations, which are “triggered” by a sequence, we point out that coarse trigger
deviations are “triggered” by an information set; see [Farina et al., 2020] for a more detailed
discussion on this point.

Returning to the example of Figure 2, and letting again q = (1
2 ,

1
2) ∈ ∆2,

MA→q =

∅ 1 2 3 4


∅ 1 0 0 0 0
1 1/2 0 0 0 0
2 1/2 0 0 0 0
3 0 0 0 1 0
4 0 0 0 0 1

, MC→q =

∅ 1 2 3 4


∅ 1 0 0 0 0
1 0 1 0 0 0
2 0 0 1 0 0
3 1/2 0 0 0 0
4 1/2 0 0 0 0

.

Analogously to Claim A.2, one can show the following characterization.

Claim A.4. Every transformation φi ∈ Ψ̃i can be expressed as
∑

j∈Ji λi[j]φj→qj , where λi ∈ ∆(Ji)
and qj ∈ Qj.

The connection between coarse trigger deviation functions and EFCCE is illuminated in the
following fact.

Theorem A.5 ([Anagnostides et al., 2022b]). If each player i incurs coarse trigger regret RegT
Ψ̃i

after T repetitions of the game, the average product distribution of play is a 1
T maxi∈[[n]] RegT

Ψ̃i
-

approximate EFCCE.
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B Omitted Proofs

In this section, we provide all the omitted proofs from the main body (Section 3). For the conve-
nience of the reader, we restate each claim before proceedings with its proof.

B.1 RVU Bounds for the Set of Deviations

Let us fix a player i ∈ [[n]]. First, we prove Proposition 3.1. To this end, let us provide some
auxiliary claims. Recall that, for each σ̂ = (j, a) ∈ Σ∗i , Rσ̂ receives at every time t the utility

U
(t)
i := u

(t)
i ⊗ x

(t)
i , and the next strategy is computed via LRL-OFTRL [Farina et al., 2022]; namely,

we first compute q̃
(t)
σ̂ = (λ

(t)
σ̂ ,y

(t)
σ̂ ) ∈ Q̃j , for a time t ∈ N, as

arg max
q̃σ̂∈Q̃j

η 〈S(t−1)
σ̂ , q̃σ̂

〉
+

∑
e∈Σj∪{0}

log q̃σ̂[e]

 , (6)

where,

(i) Q̃j := {(λσ̂,yσ̂) : λσ̂ ∈ [0, 1],yσ̂ ∈ λσ̂Qj};

(ii) Ũ
(t)
σ̂ := (−〈q(t)

σ̂ ,U
(t)
σ̂ 〉,U

(t)
σ̂ ), where in turn U

(t)
σ̂ is the component of U

(t)
i that corresponds to

sequence σ̂;

(iii) S
(t−1)
σ̂ := Ũ

(t−1)
σ̂ +

∑t−1
τ=1 Ũ

(τ)
σ̂ ; and

(iv) η > 0 is the learning rate—common among all Rσ̂.

Finally, having determined q̃
(t)
σ̂ = (λ

(t)
σ̂ ,y

(t)
σ̂ ), we compute q

(t)
σ̂ :=

y
(t)
σ̂

λ
(t)
σ̂

∈ Qj . In turn, this gives

the next strategy of Rσ̂ as X
(t)
σ̂ := M

σ̂→q(t)σ̂
(recall Definition A.1). It is evident that the regret

minimization problem faced by each Rσ̂ is equivalent to minimizing regret over Qj , since only the

components of X
(t)
σ̂ that correspond to q

(t)
σ̂ cumulate regret (the rest are constant), leading to the

regret bound below. We note that all the subsequent analysis operates under the tacit premise
that each local regret minimizer is updated via LRL-OFTRL, without explicitly mentioned in the
statements in order to lighten the exposition.

Proposition B.1. For any learning rate η ≤ 1
256‖Qi‖1 and T ≥ 2, max{0,RegTσ̂ } can be upper

bounded by

2
|Σi| log T

η
+ 16η‖Qi‖2

T−1∑
t=1

‖U (t+1)
i −U (t)

i ‖
2
∞ −

1

32η

T−1∑
t=1

∥∥∥∥∥
(
λ

(t+1)
σ̂

y
(t+1
σ̂

)
−

(
λ

(t)
σ̂

y
(t
σ̂

)∥∥∥∥∥
2

t

.

Proof. This regret bound is an immediate implication of [Farina et al., 2022, Proposition 2 and
Corollary 1]. More precisely, we note that the regret bound in [Farina et al., 2022] applies if

‖U (t)
i ‖∞ ≤

1
‖Qi‖1 , for any t ∈ N. That assumption can be met by rescaling the learning rate

by a factor of 1
‖Qi‖1 since in our setting it holds that ‖U (t)

i ‖∞ ≤ 1; the latter follows from the

definition of U
(t)
i := u

(t)
i ⊗ x

(t)
i (Line 6), and the fact that ‖u(t)

i ‖∞ ≤ 1 (by assumption) and

‖x(t)
i ‖∞ ≤ 1 (since Qi ⊆ [0, 1]|Σi|).
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In Proposition B.1 we used the shorthand notation∥∥∥∥∥
(
λ

(t+1)
σ̂

y
(t+1
σ̂

)
−

(
λ

(t)
σ̂

y
(t
σ̂

)∥∥∥∥∥
2

t

:=

∥∥∥∥∥
(
λ

(t+1)
σ̂

y
(t+1
σ̂

)
−

(
λ

(t)
σ̂

y
(t
σ̂

)∥∥∥∥∥
2

(λ
(t)
σ̂ ,y

(t)
σ̂ )

,

where for a vector w̃ ∈ Rd+1 and x̃ ∈ Rd+1
>0 , we used the notation

‖w̃‖x̃ :=

√√√√ ∑
e∈[[d+1]]

(
w̃[e]

x̃[e]

)2

for the local norm induced by x̃. Further, we will also use the notation

‖w̃‖x̃,∞ := max
e∈[[d+1]]

∣∣∣∣w̃[e]

x̃[e]

∣∣∣∣ .
Lemma B.2. For any sequence σ̂ = (j, a) ∈ Σ∗i , learning rate η ≤ 1

50‖Qi‖1 and time t ∈ [[T − 1]],

max
σ∈Σj

∣∣∣∣∣1− q
(t+1)
σ̂ [σ]

q
(t)
σ̂ [σ]

∣∣∣∣∣ ≤ 4

∥∥∥∥∥
(
λ

(t+1)
σ̂

y
(t+1)
σ̂

)
−

(
λ

(t)
σ̂

y
(t)
σ̂

)∥∥∥∥∥
t,∞

≤ 100η‖Qi‖1.

Proof. We will need the following stability bound, extracted from [Farina et al., 2022, Proposition
3].

Lemma B.3 ([Farina et al., 2022]). For any sequence σ̂ = (j, a) ∈ Σ∗i , time t ∈ [[T−1]] and learning
rate η ≤ 1

50‖Qi‖1 , ∥∥∥∥∥
(
λ

(t+1)
σ̂

y
(t+1)
σ̂

)
−

(
λ

(t)
σ̂

y
(t)
σ̂

)∥∥∥∥∥
t,∞

≤ 22η‖Qi‖1.

Now let us fix a time t ∈ [[T − 1]]. For convenience, we introduce the notation

µ(t) :=

∥∥∥∥∥
(
λ

(t+1)
σ̂

y
(t+1)
σ̂

)
−

(
λ

(t)
σ̂

y
(t)
σ̂

)∥∥∥∥∥
t,∞

. (7)

For our choice of the learning rate η ≤ 1
50‖Qi‖1 , Lemma B.3 implies that µ(t) ≤ 1

2 . By definition, we
have

q
(t+1)
σ̂ :=

y
(t+1)
σ̂

λ
(t+1)
σ̂

≤
(1 + µ(t))y

(t)
σ̂

(1− µ(t))λ
(t)
σ̂

=

(
1 +

2µ(t)

1− µ(t)

)
q

(t)
σ̂ ≤ (1 + 4µ(t))q

(t)
σ̂ ,

where the last bound follows since µ(t) ≤ 1
2 . That is,

q
(t+1)
σ̂

q
(t)
σ̂

≤ (1 + 4µ(t)). (8)
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Similarly,

q
(t+1)
σ̂ =

y
(t+1)
σ̂

λ
(t+1)
σ̂

≥ 1− µ(t)

1 + µ(t)

y
(t)
σ̂

λ
(t)
σ̂

=

(
1− 2µ(t)

1 + µ(t)

)
q

(t)
σ̂ ≥ (1− 2µ(t))q

(t)
σ̂ .

Thus,

q
(t+1)
σ̂

q
(t)
σ̂

≥ 1− 2µ(t). (9)

As a result, the claim follows from (8) and (9).

We are now ready to establish Proposition 3.1, restated below.

Proposition 3.1. Fix any σ̂ ∈ Σ∗i , and let RegTσ̂ be the regret of Rσ̂ up to time T ≥ 2. For any
η ≤ 1

256‖Qi‖1 , max{0,RegTσ̂ } can be upper bounded by

2|Σi| log T

η
+ 16η‖Qi‖21

T−1∑
t=1

‖U (t+1)
i −U (t)

i ‖
2
∞ −

1

512η

T−1∑
t=1

‖q(t+1)
σ̂ − q(t)

σ̂ ‖
2

q
(t)
σ̂ ,∞

. (3)

Proof. The claim follows directly from Proposition B.1 and Lemma B.2.

Under the premise that R4 is also updated via LRL-OFTRL, similar reasoning yields the proof
of Proposition 3.2.

Proposition 3.2. Let RegT4 be the regret of R4 up to time T ≥ 2. For any η4 ≤ 1
512|Σi| ,

max{0,RegT4} can be upper bounded by

2|Σi| log T

η4
+ 16η4|Σi|2

T−1∑
t=1

‖u(t+1)
4 − u(t)

4 ‖
2
∞ −

1

512η4

T−1∑
t=1

‖λ(t+1)
i − λ(t)

i ‖
2

λ
(t)
i ,∞

.

Proof. The argument is analogous to the proof of Proposition 3.1, leveraging the fact that ‖u(t)
4 ‖∞ =

|〈X(t)
σ̂ ,U

(t)
i 〉| ≤ ‖X

(t)
σ̂ ‖1‖U

(t)
i ‖∞ ≤ 2|Σi|, for any σ̂ ∈ Σ∗i , by Cauchy-Schwarz inequality.

Lemma B.4. For any t ∈ [[T − 1]] and η4 ≤ 1
512|Σi| ,

max
σ̂∈Σ∗i

∣∣∣∣∣1− λ(t+1)
i [σ̂]

λ
(t)
i [σ̂]

∣∣∣∣∣ ≤ 200η4|Σi|.

Proof. The argument is analogous to Lemma B.2.

Next, we combine all those local regret minimizers, namely R4, (Rσ̂)σ̂∈Σ∗i
, into a global regret

minimizer RΨi for the set Ψi via the regret circuit for the convex hull. Finally, we denote by R the
Ψi-regret minimizer derived from Algorithm 1, based on RΨi .

Proposition 3.3. For any T ∈ N,

max{0,RegTΨi} ≤ max{0,RegT4}+
∑
σ̂∈Σ∗i

max{0,RegTσ̂ }.
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Proof. Using guarantee of the regret circuit for the convex hull [Farina et al., 2019a], we have

RegT ≤ RegT4+ max
σ̂∈Σ∗i

RegTσ̂ ,

where RegT is the external regret cumulated by RΨi up to time T . But, by Theorem 2.1, this is
equal to the Ψi-regret of R, constructed according to Algorithm 1. As a result,

RegTΨi ≤ RegT4+ max
σ̂∈Σ∗i

RegTσ̂ ,

In turn, this implies that

max{0,RegTΨi} ≤ max

{
0,RegT4+ max

σ̂∈Σ∗i
RegTσ̂

}
≤ max{0,RegT4}+ max

σ̂∈Σ∗i
max{0,RegTσ̂ }

≤ max{0,RegT4}+
∑
σ̂∈Σ∗i

max{0,RegTσ̂ },

where the last inequality follows from the fact that max{0,RegTσ̂ } ≥ 0, for any σ̂ ∈ Σ∗i .

B.2 Characterizing the Fixed Points

We recall that (x
(t)
i )1≤t≤T denotes the sequence of fixed points produced by Algorithm 1—that

is, the strategies produced by R. The next key result relates the deviation of the fixed points—in
`1 norm—in terms of the multiplicative deviation of the transformations, assuming a particular
rational function characterization of the fixed points.

Lemma 3.5. Let X
(t)
i ∈ RD>0 be defined for every time t ∈ N, for some D ∈ N. Further, suppose

that for every time t ∈ N and σ ∈ Σi,

x
(t)
i [σ] =

m∑
k=1

pσ,k(X
(t)
i )

qσ,k(X
(t)
i )

, (4)

for some multivariate polynomials {pσ,k}, {qσ,k} with positive coefficients and maximum degree
degi ∈ N. If

max
e∈[[D]]

∣∣∣∣∣1− X(t+1)
i [e]

X
(t)
i [e]

∣∣∣∣∣ ≤ 100

256 degi
, (5)

it holds that

‖x(t+1)
i − x(t)

i ‖1 ≤ (4‖Qi‖1 degi) max
e∈[[D]]

∣∣∣∣∣1− X(t+1)
i [e]

X
(t)
i [e]

∣∣∣∣∣ .
Proof. Let us define

µ(t) := max
e∈[[D]]

∣∣∣∣∣1− X(t+1)
i [e]

X
(t)
i [e]

∣∣∣∣∣ . (10)
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By assumption, it holds that µ(t) ≤ 100
256 degi

≤ 1
2 degi

. Further, suppose that

pσ,k : Xi 7→
∑
T ∈Tσ,k

CT
∏
e∈T

Xi[e], (11)

and
qσ,k : Xi 7→

∑
T ∈T′σ,k

CT
∏
e∈T

Xi[e], (12)

for all (σ, k) ∈ Σi × [[m]], where CT > 0 for any T ∈ Tσ,k and CT > 0 for any T ∈ T′σ,k. Here, T
can be a multiset or an empty set. Then, for (σ, k) ∈ Σi × [[m]],

pσ,k(X
(t+1)
i ) =

∑
T ∈Tσ,k

CT
∏
e∈T

X
(t+1)
i [e]

≤
∑
T ∈Tσ,k

CT
∏
e∈T

(1 + µ(t))X
(t)
i [e] (13)

≤ (1 + µ(t))degi
∑
T ∈Tσ,k

CT
∏
e∈T

X
(t)
i [e] (14)

= (1 + µ(t))degipσ,k(X
(t)
i )

≤ (1 + 1.5µ(t) degi)pσ,k(X
(t)
i ), (15)

where (13) follows since X
(t+1)
i [e] ≤ (1 + µ(t))X

(t)
i [e], for any e ∈ [[D]], by definition of µ(t) in

(10); (14) uses the fact that |T | ≤ deg for any T ∈ Tσ,k; and (15) follows since (1 + µ(t))degi ≤
exp{µ(t) degi} ≤ 1 + 1.3µ(t) degi for µ(t) ≤ 1

2 degi
. Similarly, for (σ, k) ∈ Σi × [[m]], we get

pσ,k(X
(t+1)
i ) =

∑
T ∈Tσ,k

CT
∏
e∈T

X
(t+1)
i [e]

≥
∑
T ∈Tσ,k

CT
∏
e∈T

(1− µ(t))X
(t)
i [e]

≥ (1− µ(t))degipσ,k(X
(t)
i )

≥ (1− µ(t) degi)pσ,k(X
(t)
i ), (16)

where the last bound follows from Bernoulli’s inequality. Analogous reasoning yields that for any
(σ, k) ∈ Σi × [[m]],

qσ,k(X
(t+1)
i ) ≤ (1 + 1.3µ(t) degi)qσ,k(X

(t)
i ), (17)

and
qσ,k(X

(t+1)
i ) ≥ (1− µ(t) degi)qσ,k(X

(t)
i ). (18)
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As a result, for σ ∈ Σi,

x
(t+1)
i [σ]− x(t)

i [σ] =
m∑
k=1

pσ,k(X
(t+1)
i )

qσ,k(X
(t+1)
i )

−
m∑
k=1

pσ,k(X
(t)
i )

qσ,k(X
(t)
i )

≤
m∑
k=1

(
1 + 1.3µ(t) degi

1− µ(t) degi

)
pσ,k(X

(t))

qσ,k(X
(t)
i )
−

m∑
k=1

pσ,k(X
(t)
i )

qσ,k(X
(t)
i )

(19)

≤

(
1 +

2.3µ(t) degi
1− µ(t) deg

)
m∑
k=1

pσ,k(X
(t)
i )

qσ,k(X
(t)
i )
−

m∑
k=1

pσ,k(X
(t)
i )

qσ,k(X
(t)
i )

=
2.3µ(t) degi
1− µ(t) degi

x
(t)
i [σ] ≤ 4µ(t) degi x

(t)
i [σ]. (20)

where (19) uses (15) and (18), and (20) follows from the fact that µ(t) ≤ 100
256 degi

. Similarly, by (16)

and (17),

x
(t)
i [σ]− x(t+1)

i [σ] =
m∑
k=1

pσ,k(X
(t)
i )

qσ,k(X
(t)
i )
−

m∑
k=1

pσ,k(X
(t+1)
i )

qσ,k(X
(t+1)
i )

≤ 4µ(t) degi x
(t)
i [σ].

As a result, we conclude that

‖x(t+1)
i − x(t)

i ‖1 ≤ 4µ(t) degi ‖Qi‖1.

Lemma 3.5 makes the assumption that each polynomial in (4) has positive coefficients. While
this might seem rather restrictive, we next show that there is a procedure that eliminates the
negative monomials, as long as the involved variables are deriving from the sequence-form polytope.
As a warm-up, we first establish this property for variables deriving from the simplex.

We note that the processes described in the proofs below are not meant to be algorithmic
meaningful, but instead highlight the generality of Lemma 3.5. Indeed, the way one computes the
fixed point should not be related to the rational function formula postulated in (4); for example,
computing the stationary distribution of a Markov chain using the Markov chain tree theorem
would make little sense, as it would require exponential time.

Proposition B.5. Let p : X 7→ R be a non-constant multivariate polynomial of degree deg ∈ N
such that p(0) = 0. If X = (x1, . . . ,xm) such that xk ∈ ∆dk , for all k ∈ [[m]], p can be expressed
as a combination of monomials with positive coefficients and degree at most deg.

Proof. Let

p(X) =
∑
T ∈T

CT
∏
e∈T

X[e],

where T is a finite and nonempty set, and T 6= ∅ and CT 6= 0 for all T ∈ T; the validity of such a
formulation follows since, by assumption, p(0) = 0 and p is non-constant. To establish the claim,
we consider the following iterative algorithm.
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First, if it happens that CT > 0, for all T ∈ T, the algorithm terminates. Otherwise, we take
any monomial of the form CT

∏
e∈T X[e] with CT < 0. Since T 6= ∅, we might take e ∈ T .

Further, we let X[e] = xk[r], for some k ∈ [[m]], r ∈ [[dk]], where xk ∈ ∆dk . As such, we have that
xk[r] = 1−

∑
r′ 6=r xk[r

′]. Thus,

CT
∏
e′∈T

X[e′] = CT
∏

e′∈T \{e}

X[e′]

+
∑
r′ 6=r

(−CT )xk[r
′]

∏
e′∈T \{e}

X[e′].

Here, by convention the product over an empty set is assumed to be 1. This step clearly cannot
increase the degree of the polynomial. Now to analyze this iterative process, we consider as the
potential function the sum of the degrees of all the negative monomials—monomials for which
CT < 0. It should be evident that every step of the previous algorithm will decrease the potential
function by one. Further, the previous step can always be applied as long as the potential function
is not zero. As a result, given that T is finite, we conclude that after a finite number of iterations
the potential function will be zero. Then, we will have that

p(X) =
∑
T ∈T′

CT
∏
e∈T

X[e] + C,

where T 6= ∅ and CT > 0. But, given that p(0) = 0, we conclude that C = 0, and the claim
follows.

Proposition B.6. Let p : X 7→ R be a non-constant multivariate polynomial of degree deg ∈ N
such that p(0) = 0. If X = (q1, . . . , qm) such that qk ∈ Qdk , for all k ∈ [[m]], p can be expressed as
a combination of monomials with positive coefficients and degree at most deg.

Proof. As in Proposition B.5, let

p(X) =
∑
T ∈T

CT
∏
e∈T

X[e],

where T is a finite and nonempty set, and T 6= ∅ and CT 6= 0 for all T ∈ T. We consider the
following algorithm.

First, if CT > 0, for all T ∈ T, the algorithm may terminate. In the contrary case, we consider
any monomial CT

∏
e∈T X[e] for which CT < 0. Further, take any e ∈ T , which is possible since

T 6= ∅. Now let us assume that X[e] = qk[σ], for some k ∈ [[m]], σ = (j, a). By the sequence-form
polytope constraints, we have

qk[σ] = qk[σj ]−
∑

a′∈Aj\{a}

qk[(j, a
′)].

Thus,

CT
∏
e′∈T

X[e′] = CT qk[σj ]
∏

e′∈T \{e}

X[e′]

+
∑
a′ 6=a

(−CT )qk[(j, a
′)]

∏
e′∈T \{e}

X[e′].
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This step clearly does not increase the degree of the polynomial. To construct a potential function,
we will say that the depth of a monomial

∏
e∈T X[e], for T 6= ∅, is the sum of the depths of each

X[e]; more precisely, the depth of qk[σ] is 0 if σ = ∅, or 1 plus the depth of qk[σj ] otherwise.
Now we claim that the sum of the depths of the negative monomials is a proper potential function.
Indeed, by construction every step reduces the potential by 1, while the previous step can always
be applied when the potential function is not zero. As a result, given that T is finite, we conclude
that after a finite number of iterations the potential function will be zero, which in turn implies
that

p(X) =
∑
T ∈T′

CT
∏
e∈T

X[e] + C,

where T 6= ∅ and CT > 0. But, since p(0) = 0, it follows that C = 0, concluding the proof.

Now we show that the fixed points associated with EFCCE and EFCE can be analyzed through
the lens of Lemma 3.5, establishing Propositions 3.6 and 3.7.

Proposition 3.6. Let φ
(t)
i ∈ Ψ̃i be a transformation defined by X

(t)
i = (λ

(t)
i , (q

(t)
j )j∈Ji) ∈ RD>0, for

some D ∈ N and time t ∈ N. The unique fixed point x
(t)
i of φ

(t)
i satisfies (4) with degi ≤ 2Di.

Proof. Consider any coarse trigger deviation function φ
(t)
i =

∑
j∈Ji λ

(t)
i [j]φ

j→q(t)j
, where q

(t)
j ∈ Qj

(Claim A.4). Given that we are updating R4 using LRL-OFTRL, it follows that λ
(t)
i [j] > 0 for any

j ∈ Ji. As a result, by [Anagnostides et al., 2022b, Theorem 5.1], the (unique) fixed point x
(t)
i ∈ Qi

can be computed in a top-down fashion as follows.

x
(t)
i [σ] =

∑
j′�j λ

(t)
i [j′]q

(t)
j′ [σ]x

(t)
i [σj′ ]∑

j′�j λ
(t)
i [j′]

, (21)

for any sequence σ = (j, a) ∈ Σ∗i . We will prove the claim by induction. For the basis of the
induction, we note that the empty sequence is trivially given by a 0-degree rational function with
positive coefficients; namely, xi[∅] = 1

1 .
Now for the inductive step, let us take any sequence σ = (j, a) ∈ Σ∗i . We suppose that for any

sequence σj′ , for j′ � j, it holds that

x
(t)
i [σj′ ] =

mσj′∑
k=1

pσj′ ,k(X
(t)
i )

qσj′ ,k(X
(t)
i )

,

where {pσj′ ,k}, {qσj′ ,k} are multivariate polynomials with positive coefficients and maximum degree
at most h ∈ N ∪ {0}. Then, the term

λ
(t)
i [j′]q

(t)
j′ [σ]∑

j′�j λ
(t)
i [j′]

·
pσj′ ,k(X

(t)
i )

qσj′ ,k(X
(t)
i )

is a rational function in X
(t)
i with positive coefficients and maximum degree at most h+ 2. Hence,

the term below is a sum of rational functions with positive coefficients and maximum degree at
most h+ 2: ∑

j′�j λ
(t)
i [j′]q

(t)
j′ [σ]x

(t)
i [σj′ ]∑

j′�j λ
(t)
i [j′]
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As a result, by (21) we conclude that

x
(t)
i [σ] =

mσ∑
k=1

pσ,k(X
(t)
i )

qσ,k(X
(t)
i )

,

where {pσ,k}, {qσ,k} have positive coefficients and maximum degree h + 2. This establishes the
inductive step, concluding the proof.

Next, for the proof of Proposition 3.7, we will need the following key refinement of the Markov
chain tree theorem [Anagnostides et al., 2022b, Corollary A.8].

Theorem B.7 ([Anagnostides et al., 2022b]). Let M be the transition matrix of a d-state Markov
chain such that M = v1>d + C, where C ∈ Rd×d>0 and v ∈ Rd>0 has entries summing to λ > 0.
Further, let v = r/l, for some l > 0. If x ∈ ∆d is the (unique) stationry distribution of M, then for
each r ∈ [[d]] there exist a nonempty and finite set Fr, and F = ∪dr=1Fr, and parameters bk ∈ {0, 1},
0 ≤ pk ≤ d − 2, |Sk| = d − pk − bk − 1, for each k ∈ Fr, such that the r-th coordinate of w := lx
can be expressed as

w[r] =

∑
k∈Fr λ

pk+1(r[qk])
bk l1−bk

∏
(a,b)∈Sk C[a, b]∑

k∈F λ
pk+bkCk

∏
(a,b)∈Sk C[a, b]

,

for each r ∈ [[d]], where Ck = Ck(d) > 0.

Let us also introduce the following terminology, borrowed from [Farina et al., 2021].

Definition B.8 ([Farina et al., 2021]). Let J ⊆ Ji be a subset of i’s information sets. We say that
J is a trunk of Ji if for all j ∈ J , all predecessors of j are also in J .

Definition B.9 ([Farina et al., 2021]). Let φi ∈ Ψi and J be a trunk of Ji. We say that a vector

xi ∈ R|Σi|≥0 is a J-partial fixed point if it satisfies all the sequence-form constraints at all information
sets j ∈ J , and

φi(xi)[∅] = xi[∅] = 1,

φi(xi)[(j, a)] = xi[(j, a)], ∀j ∈ J , a ∈ Aj .

Proposition 3.7. Let φ
(t)
i ∈ Ψi be a transformation defined by X

(t)
i = (λ

(t)
i , (q

(t)
σ̂ )σ̂∈Σ∗i

) ∈ RD>0, for

some D ∈ N and time t ∈ N. The (unique) fixed point x
(t)
i of φ

(t)
i satisfies (4) with degi ≤ 2Di|Ai|,

where |Ai| := maxj∈Ji |Aj |.

Proof. For the base of the induction, the claim trivially holds for x
(t)
i [∅] = 1

1 . For the inductive

step, let us first define a vector r(t) ∈ R|Aj∗ |≥0 , so that r(t)[a] is equal to∑
j′�σj∗

∑
a′∈Aj′

λ
(t)
i [(j′, a′)]q

(t)
(j′,a′)[(j

∗, a)]x
(t)
i [(j′, a′)].

Further, we let W(t) ∈ S|Aj∗ | be a stochastic matrix, so that for any ar, ac ∈ Aj∗ , W(t)[ar, ac] is
equal to

1

x
(t)
i [σj∗ ]

r(t)[ar] + λ
(t)
i [(j∗, ac)]q

(t)
(j∗,ac)

[(j∗, ar)] +

1−
∑

σ̂�(j∗,ac)

λ
(t)
i [σ̂]

1{ar = ac},
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By [Farina et al., 2021, Proposition 4.14], if b(t) ∈ ∆(Aj∗) is the (unique) stationary distribution of

W(t), extending by x
(t)
i [σj∗ ]b

(t) at information set j∗ yields a (J ∪ {j∗})-partial fixed point (Defi-
nition B.9). To bound the increase in the degree of the rational function, we will use Theorem B.7.
In particular, we define a matrix C(t) ∈ R|Aj∗ |×|Aj∗ |, so that for any ar, ac ∈ Aj∗ ,

C(t)[ar, ac] := λ
(t)
i [(j∗, ac)]q

(t)
(j∗,ac)

[(j∗, ar)] +

1−
∑

σ̂�(j∗,ac)

λ
(t)
i [σ̂]

1{ar = ac}. (22)

For a fixed ac ∈ Aj∗ , we have∑
ar∈Aj∗

C(t)[ar, ac] = λ
(t)
i [(j∗, ac)] +

∑
σ̂ 6�(j∗,ac)

λ
(t)
i [σ̂], (23)

where we used the fact that for any ac ∈ Aj∗ ,
∑

ar∈Aj∗ q(j∗,ac)[(j
∗, ar)] = 1 since q(j∗,ac) ∈ Qj∗ .

Thus, from (23) we obtain that

1−
∑

ar∈Aj∗
C(t)[ar, ac] =

∑
σ̂≺(j∗,ac)

λ
(t)
i [σ̂]. (24)

Now for the inductive step, suppose that for any information set j′ � σj∗ and a′ ∈ Aj′ , the partial

fixed point x
(t)
i [σ′], with σ′ = (j′, a′), can be expressed as

x
(t)
i [σ′] =

mσ′∑
k=1

pσ′,k(X
(t)
i )

qσ′,k(X
(t)
i )

, (25)

where {pσ′,k}, {qσ′,k} are multivariate polynomials with positive coefficients and maximum degree
h. By (22), (24), the inductive hypothesis (25), and Theorem B.7, we conclude that for any a ∈ Aj∗ ,

x
(t)
i [(j∗, a)] =

m∑
k=1

pa,k(X
(t)
i )

qa,k(X
(t)
i )

,

where {pa,k}, {qa,k} are multivariate polynomials with positive coefficients and maximum degree
h+ 2|Aj∗ | ≤ h+ 2|Ai|. This concludes the inductive step, and the proof.

Before we proceed, we note that while Propositions 3.1 and 3.2 and Lemmas B.2 and B.4
were stated for the construction relating to trigger deviations, those results readily apply for the
construction relating to coarse trigger deviations as well; we omit the formal statements as they
are almost identical to Propositions 3.1 and 3.2 and Lemmas B.2 and B.4.

In this context, combining Propositions 3.6 and 3.7 with Lemma 3.5 we arrive at the following
conclusions.

Lemma B.10. For any parameters η ≤ 1
512‖Qi‖1Di , η4 ≤

1
1024|Σi|Di , and time t ∈ [[T − 1]],

‖x(t+1)
i − x(t)

i ‖1 ≤ 8‖Qi‖1DiM(X
(t)
i ),

where M(X
(t)
i ) is defined as

max

{
max
j∈Ji

∣∣∣∣∣1− λ(t+1)
i [j]

λ
(t)
i [j]

∣∣∣∣∣ ,max
j∈Ji

max
σ∈Σi

∣∣∣∣∣1− q
(t+1)
j [σ]

q
(t)
j [σ]

∣∣∣∣∣
}
.
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Proof. By Proposition 3.6, it follows that the fixed point x
(t)
i can be expressed, for any σ ∈ Σi, as

x
(t)
i [σ] =

m∑
k=1

pσ,k

(
λ

(t)
i , (q

(t)
j )j∈Ji

)
qσ,k

(
λ

(t)
i , (q

(t)
j )j∈Ji

) ,
such that {pσ,k}, {qσ,k} are multivariate polynomials in X

(t)
i = (λ

(t)
i , (q

(t)
j )j∈Ji) with positive coef-

ficients and maximum degree degi := 2Di. As a result, similarly to Lemmas B.2 and B.4, it follows
that

max
σ∈Σj

∣∣∣∣∣1− q
(t+1)
j [σ]

q
(t)
j [σ]

∣∣∣∣∣ ≤ 100η‖Qi‖1 ≤
100

256 degi
,

for any j ∈ Ji, and

max
j∈Ji

∣∣∣∣∣1− λ(t+1)
i [j]

λ
(t)
i [j]

∣∣∣∣∣ ≤ 200η4|Σi| ≤
100

256 degi
.

As a result, the claim follows from Lemma 3.5.

Lemma 3.8. Consider any parameters η ≤ 1
256‖Qi‖1 degi

and η4 ≤ 1
512|Σi|degi

, where degi :=

2|Ai|Di. Then, for any time t ∈ [[T − 1]],

‖x(t+1)
i − x(t)

i ‖1 ≤ 8‖Qi‖1|Ai|DiM(X
(t)
i ),

where M(X
(t)
i ) is defined as

max

{
max
σ̂∈Σ∗i

∣∣∣∣∣1− λ(t+1)
i [σ̂]

λ
(t)
i [σ̂]

∣∣∣∣∣ ,max
σ̂∈Σ∗i

max
σ∈Σi

∣∣∣∣∣1− q
(t+1)
σ̂ [σ]

q
(t)
σ̂ [σ]

∣∣∣∣∣
}
.

Proof. By Proposition 3.7, it follows that the fixed point x
(t)
i can be expressed, for any σ ∈ Σi, as

x
(t)
i [σ] =

m∑
k=1

pσ,k

(
λ

(t)
i , (q

(t)
σ̂ )σ̂∈Σ∗i

)
qσ,k

(
λ

(t)
i , (q

(t)
σ̂ )σ̂∈Σ∗i

) ,
such that {pσ,k}, {qσ,k} are multivariate polynomials in X

(t)
i = (λ

(t)
i , (q

(t)
σ̂ )σ̂∈Σ∗i

) with positive coef-
ficients and maximum degree degi := 2|Ai|Di. As a result, in light of Lemmas B.2 and B.4,

max
σ∈Σj

∣∣∣∣∣1− q
(t+1)
σ̂ [σ]

q
(t)
σ̂ [σ]

∣∣∣∣∣ ≤ 100η‖Qi‖1 ≤
100

256 degi
,

for any σ̂ = (j, a) ∈ Σ∗i , and

max
σ̂∈Σ∗i

∣∣∣∣∣1− λ(t+1)
i [σ̂]

λ
(t)
i [σ̂]

∣∣∣∣∣ ≤ 200η4|Σi| ≤
100

256 degi
.

As a result, the claim follows from Lemma 3.5.
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B.3 Completing the Proof

Finally, here we combine all of the previous ingredients to complete the proof of Theorem 3.10.

Proposition B.11. Let η ≤ 1
256|Σi|1.5 and η4 ≤ 1

512|Σi|2.5 . Then, for any T ≥ 2,

max{0,RegTΨi} ≤
2|Σi|2 log T

η
+

2|Σi| log T

η4

+ (32η|Σi||Qi|2 + 256η4|Σi|4)
T−1∑
t=1

‖u(t+1)
i − u(t)

i ‖
2
∞ + (32η|Σi||Qi|2 + 256η4|Σi|4)

T−1∑
t=1

‖x(t+1)
i − x(t)

i ‖
2
∞

− 1

512η4

T−1∑
t=1

‖λ(t+1)
i − λ(t)

i ‖
2

λ
(t)
i ,∞

− 1

1024η

∑
σ̂∈Σi

T−1∑
t=1

‖q(t+1)
σ̂ − q(t)

σ̂ ‖q(t)σ̂ ,∞.

Proof. Fix any t ∈ [[T − 1]]. By definition of U
(t)
i (Line 6),

‖U (t+1)
i −U (t)

i ‖
2
∞ ≤ ‖u

(t+1)
i ⊗ x(t+1)

i − u(t)
i ⊗ x

(t)
i ‖

2
∞

≤ 2‖u(t+1)
i ⊗ (x

(t+1)
i − x(t)

i )‖2∞ + 2‖x(t)
i ⊗ (u

(t+1)
i − u(t)

i )‖2∞ (26)

= 2‖u(t+1)
i ‖2∞‖x

(t+1)
i − x(t)

i ‖
2
∞ + 2‖x(t)

i ‖
2
∞‖u

(t+1)
i − u(t)

i ‖
2
∞ (27)

≤ 2‖x(t+1)
i − x(t)

i ‖
2
∞ + 2‖u(t+1)

i − u(t)
i ‖

2
∞, (28)

where (26) follows from the triangle inequality for the ‖ · ‖∞ norm, as well as Young’s inequality;
(27) uses the fact that ‖x ⊗ u‖∞ = ‖x‖∞‖u‖∞, for any vectors x,u; and (28) follows from the

assumption that ‖u(t)
i ‖∞, ‖x

(t)
i ‖∞ ≤ 1. Similarly, for any t ∈ [[T − 1]],

‖u(t+1)
4 − u(t)

4 ‖
2
∞ = |〈X(t+1)

σ̂ ,U
(t+1)
i 〉 − 〈X(t)

σ̂ ,U
(t)
i 〉|

2 (29)

≤ 2|〈X(t+1)
σ̂ ,U

(t+1)
i −U (t)

i 〉|
2 + 2|〈U (t)

i ,X
(t+1)
σ̂ −X(t)

σ̂ 〉|
2 (30)

≤ 8|Σi|2‖U (t+1)
i −U (t+1)

i ‖2∞ + 2‖q(t+1)
σ̂ − q(t)

σ̂ ‖
2
1, (31)

for some σ̂ ∈ Σ∗i , where (29) follows from the definition of u
(t)
4 ; (30) uses Young’s inequality; and

(31) uses the Cauchy-Schwarz inequality, along with the fact that ‖U (t)
i ‖∞ ≤ 1 and ‖X(t)

σ̂ ‖1 ≤ 2|Σi|.
Further, for any σ̂ ∈ Σ∗i , η ≤ 1

256|Σi|1.5 and η4 ≤ 1
512|Σi|2.5 ,

− 1

1024η
‖q(t+1)

σ̂ − q(t)
σ̂ ‖

2

q
(t)
σ̂ ,∞

+ 32η4|Σi|2‖q(t+1)
σ̂ − q(t)

σ̂ ‖
2
1

≤
(
− 1

1024η
+ 32η4|Σi|4

)
‖q(t+1)

σ̂ − q(t)
σ̂ ‖

2
∞

≤
(
−|Σi|1.5

4
+
|Σi|1.5

16

)
‖q(t+1)

σ̂ − q(t)
σ̂ ‖

2
∞ ≤ 0. (32)

As a result, the proof follows from Propositions 3.1 to 3.3, (28), (31), and (32).

As a result, we are now ready to establish Corollary 3.9, the statement of which is recalled
below.
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Corollary 3.9. Suppose that η ≤ 1
212|Σi|1.5‖Qi‖1 degi

and η4 = 1
2|Σi|η, where degi := 2|Ai|Di. For

any T ≥ 2, max{0,RegTΨi} can be upper bounded by

8|Σi|2 log T

η
+ 256η|Σi|3

T−1∑
t=1

‖u(t+1)
i − u(t)

i ‖
2
∞ −

1

215η deg2
i ‖Qi‖21

T−1∑
t=1

‖x(t+1)
i − x(t)

i ‖
2
1.

Proof. By Lemma 3.8,

1

512η4

T−1∑
t=1

‖λ(t+1)
i − λ(t)

i ‖
2

λ
(t)
i ,∞

+
1

1024η

∑
σ̂∈Σi

T−1∑
t=1

‖q(t+1)
σ̂ − q(t)

σ̂ ‖q(t)σ̂ ,∞

≥ 1

214η‖Qi‖21 deg2
i

‖x(t+1)
i − x(t)

i ‖
2
1.

Thus, the proof follows directly from Proposition B.11 since for any t ∈ [[T − 1]],(
256η|Σi|3 −

1

215η‖Qi‖21 deg2
i

)
‖x(t+1)

i − x(t)
i ‖

2
1 ≤ 0,

for any η ≤ 1
212|Σi|1.5‖Qi‖1 degi

.

So far we have performed the analysis from the perspective of a fixed player i ∈ [[n]], while being

oblivious to the mechanism that produces the sequence of utilities (u
(t)
i )1≤t≤T . Having established

the RVU bound of Corollary 3.9, we are ready to show that when all players employ our learning
dynamics, the second-order path lengths are bounded by O(log T ). (In what follows, we tacitly
assume that each player uses η4 := 1

2|Σi|η, in accordance to Corollary 3.9.)

Theorem B.12. Suppose that each player i ∈ [[n]] uses learning rate η ≤ 1
212(n−1)|Σ|1.5‖Q‖1|Z| deg

,

where deg = 2|A|D. Then, for any T ≥ 2,

T−1∑
t=1

n∑
i=1

‖x(t+1)
i − x(t)

i ‖
2
1 ≤ 219n|Σ|2‖Q‖21 deg2 log T.

Proof. For any time t ∈ [[T − 1]] and player i ∈ [[n]],

‖u(t+1)
i − u(t)

i ‖
2
∞ ≤ (n− 1)|Z|2

∑
i′ 6=i
‖x(t+1)

i′ − x(t)
i′ ‖

2
1,

by [Anagnostides et al., 2022b, Claim 4.16]. Further, for η ≤ 1
212(n−1)|Σ|1.5‖Q‖1|Z| deg

,(
256η(n− 1)2|Σ|3|Z|2 − 1

216η‖Q‖21 deg2

)
≤ 0.

As a result, using Corollary 3.9,
∑n

i=1 max{0,RegTΨi} can be upper bounded by

8n|Σ|2 log T

η
− 1

216η deg2 ‖Q‖21

n∑
i=1

T−1∑
t=1

‖x(t+1)
i − x(t)

i ‖
2
1.
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But, given that
∑n

i=1 max{0,RegTΨi} ≥ 0, we conclude that

n∑
i=1

T−1∑
t=1

‖x(t+1)
i − x(t)

i ‖
2
1 ≤ 219n|Σ|2 deg2 ‖Q‖21 log T.

We now arrive at Theorem 3.10, which is restated below with the precise parameterization.

Corollary B.13. Suppose that all players employ Algorithm 1 instantiated with LRL-OFTRL for all
local regret minimizers, R4 and {Rσ̂}σ̂, with η = 1

213(n−1)|Σ|1.5‖Q‖1|Z||A|D and η4 = 1
2|Σi|η. Then,

the trigger regret of each player i ∈ [[n]] after T repetitions will be bounded as

RegTΨi ≤ 217n|Σ|3.5‖Q‖1|Z||A|D log T.

Proof. This follows directly from Corollary 3.9 and Theorem B.12.

Corollary B.14. Suppose that all players employ Algorithm 1 instantiated with LRL-OFTRL for all
local regret minimizers, R4 and {Rj}j, with η = 1

213(n−1)|Σ|1.5‖Q‖1|Z|D and η4 = 1
2|Σi|η. Then, the

trigger regret of each player i ∈ [[n]] after T repetitions will be bounded as

RegTΨi ≤ 217n|Σ|3.5‖Q‖1|Z|D log T. (33)

Proof. The proof is analogous to Corollary B.13.

We remark that for coarse trigger regret, our bound (33) is loose, as the analysis is not optimized
to handle coarse trigger deviation functions; instead, Corollary B.14 follows the construction of
trigger deviations, with the exception of using Lemma B.10 in order to obtain a slightly improved
RVU bound. Further refining Corollary B.14 was not within our scope.

C Description of the Game Instances

In this section, to keep our paper self-contained, we describe the games we used in our experiments
(Section 4), as well as the precise parameterization for each instance.

Kuhn poker Kuhn poker is a simple poker variant studied by Kuhn [1953]. For simplicity, below
we describe the 2-player version of Kuhn poker; the 3-player version we consider in our experiments
is analogous.

In Kuhn poker each player initially submits an ante worth of 1 in the pot. Then, each player is
privately dealt one card from a deck of r unique cards—or ranks; in our experiments we used r = 3.
Next, a single round of betting occurs: First, player 1 gets to decide either check or bet. Then,

• If player 1 checked, the second player can either check or raise.

– If player 2 also checked, a “showdown” occurs, meaning that the player with the highest
card wins the pot, thereby terminating the game.

– On the other hand, if player 2 raised, player 1 can either fold or call; in the former case
player 2 wins the pot, while in the latter a showdown follows.
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• If player 1 raised, player 2 can either fold or call.

– If player 2 folded, then player 1 wins the pot, while

– if player 2 called, a showdown occurs.

Sheriff Sheriff [Farina et al., 2019c] is a 2-player bargaining game inspired by the board game
“Sheriff of Nottingham.” Initially, player 1 (or the “Smuggler”) secretly loads his cargo with m ∈
{0, 1, . . . ,mmax} illegal items. The game then proceeds for r bargaining rounds. In each round,

• the Smuggler first gets to decide a bribe amount b in {0, 1, . . . , bmax}. This amount also
becomes available to player 2 (the “Sheriff”), although the smuggler does not transfer than
amount unless it is the ultimate round.

• The Sheriff then decides whether to accept the bribe.

– If the Sheriff accepts the bribe of value b, the smuggler gets a payoff of p ·m− b, while
Sheriff receives a payoff of b.

– In the contrary case, Sheriff decides whether to inspect the cargo.

∗ If the Sheriff does not inspect the cargo, the Smuggler receives a payoff of v · m,
while the Sheriff gets 0 utility;

∗ Otherwise, if the Sheriff detects illegal items, the Smuggler must pay the Sheriff an
amount of p ·m, while if no illegal items were loaded, the Sheriff has to compensate
the Smuggler with a utility of s.

In our experiments, we use the baseline version of Sheriff, wherein v = 5, p = 1, s = 1,mmax =
5, bmax = 2, and r = 2.

Goofspiel Goofspiel is a 2-player card game introduced by Ross [1971]. The game is based on
three identical decks of r cards each, with values ranging from 1 to r; we use r = 3 in our experi-
ments. Initially, each player is dealt a full deck, while the third deck (the “prize” deck) is faced down
on the board after being shuffled. In each round, the topmost card from the prize deck is revealed.
Then, each player privately selects a card from their hand with the goal of winning the card that
was revealed from the prize deck. The players’ selected cards are revealed simultaneously, and the
card with the highest value prevails; in case of a tie, the prize card is discarded. This tie-breaking
mechanism makes the game general-sum. Finally, the score of each player is the sum of the values
of the prize cards that player has won.
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