
Consistent Text Categorization using Data Augmentation in e-Commerce

Guy Horowitz1,∗, Stav Yanovsky Daye2, Noa Avigdor-Elgrabli2, and Ariel Raviv2

1Technion – Israel Institute of Technology
2Yahoo Research

guy.h@campus.technion.ac.il
{stav.yanovsky,noaa,arielr}@yahooinc.com

Abstract
The categorization of massive e-Commerce
data is a crucial, well-studied task, which is
prevalent in industrial settings. In this work,
we aim to improve an existing product cate-
gorization model that is already in use by a
major web company, serving multiple applica-
tions. At its core, the product categorization
model is a text classification model that takes
a product title as an input and outputs the most
suitable category out of thousands of avail-
able candidates. Upon a closer inspection, we
found inconsistencies in the labeling of simi-
lar items. For example, minor modifications
of the product title pertaining to colors or mea-
surements majorly impacted the model’s out-
put. This phenomenon can negatively affect
downstream recommendation or search appli-
cations, leading to a sub-optimal user experi-
ence.

To address this issue, we propose a new frame-
work for consistent text categorization. Our
goal is to improve the model’s consistency
while maintaining its production-level perfor-
mance. We use a semi-supervised approach
for data augmentation and presents two differ-
ent methods for utilizing unlabeled samples.
One method relies directly on existing cata-
logs, while the other uses a generative model.
We compare the pros and cons of each ap-
proach and present our experimental results.

1 Introduction

In the last two decades, widespread use of e-
commerce platforms such as Amazon and eBay has
contributed to a substantial growth in online retail.
Such platforms rely on both explicit and implicit
product features in order to deliver a satisfying user
experience. There, the inferred product category is
typically a crucial signal for many application such
as browsing, search and recommendation.

We focus on improving an existing product cate-
gorization model, we refer to as ’the categorizer’,

∗Work was done when interning at Yahoo Research.

that is employed by our company for fast catego-
rization of billions of items on a daily basis. It
classifies e-commerce items, such as products or
deals, based on a predefined hierarchy of categories,
namely GPT (Google Product Taxonomy). Given
a product title, the categorizer assigns the most ap-
propriate label in the taxonomy. The model itself
is highly scalable and effective, so it is well-suited
for settings with large and rapidly growing item
catalogs. In our company, the categorizer is used
as a standalone component in various e-commerce
related services, such as recommendation, search,
and ad ranking.

A recent examination of the categorizer’s output
revealed inconsistencies in the labeling of similar
items. It was evident that in some cases small
variations in product titles, such as those relating
to colors or measurements, significantly affect the
categorizer’s output. This inconsistency negatively
impacts search and recommendation algorithms
that rely on the inferred category, leading to a poor
user experience.

The concept of consistency in NLP tasks has
been studied in various research works, including
robustness to paraphrasing (Elazar et al., 2021) and
robustness to adversarial attacks (Jin et al., 2020;
Wang et al., 2020). Other works relate consistency
issues with the misuse of spurious features during
the learning phase (Arjovsky et al., 2019; Veitch
et al., 2021; Wang et al., 2021).

When examining the performance of the catego-
rizer in terms of accuracy alone, the inconsistency
issue may be overlooked. But, since many rec-
ommendation pipelines depend on the output of
the product categorizer, an inconsistent model can
have severe implications on the user experience. In
most cases, the differences include returning the
parent category or a sibling category, rather than a
completely different category path.

To tackle this inconsistency problem, we use
different data augmentation techniques and enrich

ar
X

iv
:2

30
5.

05
40

2v
1 

 [
cs

.L
G

] 
 9

 M
ay

 2
02

3



the training data with item versioning, leading to a
more consistent model. Data augmentation for im-
proving various NLP tasks has been widely studied
and surveyed (Shorten et al., 2021), and particularly
in the context of consistency (Xie et al., 2020). Gen-
erating such data, both manually (Kaushik et al.,
2019) and automatically (Rizos et al., 2019; Bari
et al., 2020; Kumar et al., 2020), has shown to
contribute to the robustness of learnt models in dif-
ferent settings. We chose to use data augmentation,
without changing the current architecture of the
already-in-use product categorizer for two main
reasons. First, for scalability reasons, any change
in the architecture might degrade the model’s abil-
ity to infer the categories of billions of items per
day. Second, maintaining the current model archi-
tecture expedites the productization process and
requires only minimal engineering effort.

This work defines a new framework, Consistent
Semi-Supervised Learning (Consistent-SSL), for
consistent text categorization in the context of
e-commerce (Section 2). We use an unlabeled clus-
tered dataset as a source of legit item versioning.
The dataset is derived from product catalogs, and
includes clusters of different versions of items. We
present two different methods to utilize this unla-
beled clustered data: a self-training method and
a generative approach (Section 3). We describe the
datasets and the experimental framework we use
for the evaluation of the proposed methods (Section
4). Finally, we detail results, showing an improve-
ment in the consistency rate of 4-10% above the
baseline model, and discuss the advantages and
weaknesses of each method (Section 5).

2 Consistent Semi-Supervised Learning

We now formalize our notion of consistent classi-
fication and introduce the settings for consistent
Semi-Supervised Learning (consistent-SSL).

2.1 Consistent Classification

In order to formalize consistent classification, let
X be our set of items, and Y = [c] for c ∈ N, be a
final set of labels. Each item x ∈ X corresponds to
a label y ∈ Y .

Additionally, let V : X → X , be a non-
deterministic perturbation function which trans-
forms an item from one version x to another
x̂. For example, if x = "blue T-shirt small size",
x̂ ∼ V(x) could be x̂ = "black T-shirt small size"
or x̂ = "blue T-shirt large size". We assume that

the perturbation function is label-preserving, i.e.
x, x̂ ∼ V(x) share the same label y. Let p(x, y)
be a joint distribution over items and labels and
p(x) the marginal distribution over items. The goal
of consistent classification is to learn a classifier
f : X → Y from a class F with a dual objective: a
high expected accuracy, i.e. high expected value
of the indicator that an item x ∈ X is labeled by f
to its correct label y:

E
(x,y)∼p(x,y)

[1 {f(x) = y}] (1)

and a high expected consistency, which we define
as:

E
x∼p(x),
x̂∼V(x)

[1 {f(x) = f(x̂)}] (2)

i.e. the expected value of the indicator of two items
x, x̂ ∼ V(x) to be transformed by f to the same
label. Therefore, the dual objective of f can be
formalized as:

min
f

E
(x,y)∼p(x,y),

x̂∼V(x)

[1 {f(x) 6= y}+ λ1 {f(x) 6= f(x̂)}]

(3)
where λ ∈ R controlling the balance between the
accuracy loss and the consistency loss.

2.2 Consistent-SSL Settings
In SSL settings, we are given labeled data DL =
{(xi, yi)}li=1, which is assumed to be sampled i.i.d.
from p, and unlabeled data DU = {xi}l+u

i=l+1 possi-
bly sampled from another distribution q. We tune a
classifier f using both DL and DU .

This work extends the standard SSL settings to
consistent-SSL. The unlabeled dataDU is clustered
with respect to the perturbation function V , i.e. it
consists of u sets of items Xi, each set contains
ki versions x̂(i)j ∼ V(xi) of the same item xi.
More formally, DU = {Xi}l+u

i=l+1, where, Xi ={
x̂
(i)
j

}ki

j=1
, and x̂(i)j ∼ V(xi) for j = 1 . . . ki.

The goal in consistent-SSL is to learn a classifier
f that optimizes the objective in Eq. (3) given DL

and DU . Note that V is unknown, and only appears
indirectly in the DU samples.

3 Methods

We present two methods for consistent-SSL, Con-
sistent Self Training (CST) and Consistent Gener-
ative Augmentation (CGA). Both methods utilize
the unlabeled samples from DU for data augmenta-
tion. In each method we create an augmented set



Daug usingDU and train a classifier f onDL∪Daug.
This approach optimizes indirectly the objective of
Eq. (3), as we add additional training samples Daug
that consists of different versions of the same items.
The goal is to expose f to a more diverse set of item
versions in training time, making it more robust to
minor changes.

Let us review our approach using an illustrative
example. Consider a dataset that contains clothing
items. Assuming thatDL, which was sampled from
the distribution p, exhibits a spurious correlation
between color of an item to its category (e.g. most
of the black items are coats and most of the red
items are dresses), then a classifier that was trained
solely on DL will tend to rely on the color of the
item when it predicts its category. When applying
the model, V could change the items’ colors and
therefore the classifier will not be consistent (e.g. if
V transforms a black coat to a red one, the classifier
might predict different categories). But, assuming
the training data includes an item in multiple colors
(e.g. black coat, red coat, blue coat, etc.), with the
same label (e.g. Coats & Jackets), then a model
that is trained on such data will not relate a specific
color to a specific label. Such a model will be
encouraged to ignore the color of an item when
it predicts the label, and therefore will be more
robust to changes in color. Note that colors here
are only an example of one kind of versioning of
items. Spurious features in the data could be related
to colors, measurements, models, materials etc.

3.1 Consistent Self Training (CST)

In our first method, named Consistent Self Training
(CST), we add samples from DU to the labeled
training data DL and a new classifier f is trained
on the unified dataset. Since the data of DU is
unlabeled, we perform a variant of self training
(Lee et al., 2013; Arazo et al., 2020; Triguero et al.,
2015). To make sure that Daug is consistent, it’s
important that each item setXi is assigned with the
same pseudo-label ỹi. To calculate ỹi, we first train
a base model fbase on the labeled data DL and then
use it to choose a single pseudo-label for each ex-
ample set Xi, i.e. ỹi ← h(Xi; f

base), where h is a
function that given a set of examples and a classifier
fbase returns a single label. For example, h could
return the prediction of fbase that got the highest
confidence score, or the most frequent prediction
across Xi. The function h is an hyperparameter
of the method. Finally, a classifier f is trained over

DL ∪ Daug. Appendixes A, B include a complete
description and illustration of the CST algorithm.

3.2 Consistent Generative Augmentation
(CGA)

We now detail our second method, we refer
to as Consistent Generative Augmentation
(CGA). Here, we train a generative model M
on DU in order to learn the perturbation func-
tion V , and we use it to generate new samples
based on the instances of DL. For this end,
an item-pair dataset of different versions of
items, Dpairs is constructed from DU ; Dpairs ={(
x̂
(i)
j , x̂

(i)
j′

) ∣∣∣l + 1 ≤ i ≤ l + u
∧
j, j′ ∈ [ki]

}
.

We trainM on Dpairs to generate the second item
given the first of each pair, while maintaining its
label. Note that x̂(i)j′ ∼ V(x̂

(i)
j ). Next, we generate

an augmentation set Daug using DL by applying
M on each (x, y) ∈ DL to get a new labeled
sample (x̂, y). Note that we can useM to generate
multiple new samples from a single sample x.
After creating Daug, we filter it using a score
function s : X × X → [0, 1] that aims to measure
the quality of the generated x̂ with respect to its
origin x. Additionally, we remove low quality
samples from Daug according to some predefined
filter threshold T . Finally, we train a classifier f
over DL ∪Daug. Both s and T are hyper-parameter
of the CGA method. Appendixes C,E include a
complete description and illustration of the CGA
algorithm.

3.3 Methods Comparison

We compare the two proposed methods by three
main aspects: the quality of the augmented prod-
uct titles, the quality of the labels and the overall
distribution.

Considering the quality of the product titles, the
CST method utilizes the unlabeled clustered data
itself and thus provides product titles that are sam-
pled from the real world and captures information
about the true perturbation function V . In con-
trast, the CGA method uses generated product ti-
tles, which may not represent V accurately. Re-
garding the label quality, the CGA method utilizes
labels that are taken directly from the ground truth
labels of the original items and thus of a better
quality than the ones of the CST method, which
uses calculated "pseudo-labels". With respect to
the distribution of the data, the generated samples
in the CGA method are taken directly from the dis-



tribution p of the labeled training set. In contrast, in
CST the unlabeled data comes from a distribution
q that is different than p, thus biasing the overall
distribution of the training set.

The quality of the product titles in the augmen-
tation set impacts the consistency and corollary the
overall optimization of the model f . On the other
hand, both the quality of the labels and the distribu-
tion of the augmentation set influence the accuracy
which again affects the overall optimization of f .

4 Empirical Evaluation

We now present our experimental results. We note
that in all of our experiments, we use a model that is
based on FastText (Joulin et al., 2016) architecture,
and has an hierarchical structure. This specific
model is found to perform well on our task, as it
takes into account the hierarchical structure nature
of the labels. For more details, see Appendix F.

4.1 Train And Test Data

We conduct experiments using an e-commerce text
classification dataset in order to empirically evalu-
ate our methods. The items in this dataset are titles
of commercial products, represented as free text,
and the labels are the items’ categories. The la-
bels are taken from a hierarchic products taxonomy
with 4 levels of granularity {Li}4i=1. For example,
consider a product title such as "Greenies Breath
Buster Bites Fresh Flavor Grain-Free Dental Dog
Treats, 1.2-oz bag", and its corresponding category
Animals & Pet Supplies > Pet Supplies > Dog Sup-
plies > Dog Treats.

Our dataset contains 184k labeled samples with
3k different labels, and additional 1.3M unlabeled
samples. The labeled samples correspond to
real-world commerce related items, and are labeled
by human annotators. The unlabeled samples
are retrieved from a product catalog of multiple
retailers that includes grouping information. Each
group contains multiple versions of the same item,
e.g. "L.A. Girl, Matte Lipstick, Snuggle, 0.10 oz"
and "L.A. Girl, Matte Lipstick, Bite Me, 0.10 oz".
There are 363k different groups in the unlabeled
catalog data, each group contains 2 to 192 items,
and the average group size is 3.6. We note that
the labeled and unlabeled data sets originate from
different sources. This results in different category
representation between the labeled and unlabeled
data, e.g. several categories in the unlabeled data
have low coverage compared to the labeled one.

Our experiments measure both accuracy and con-
sistency of the tested models. To this end, we create
two different test sets:

Accuracy test. The accuracy test is a standard
test set that consists of labeled samples, on which
we compute the weighted average F1 score of a
given model. The accuracy test contains 23k la-
beled examples sampled uniformly at random from
the labeled data. We use the remaining 161k la-
beled samples as the DL.

Consistency test. The consistency test consist
of pairs of item titles (x̂1, x̂2), each pair includes
two different versions of the same item. We define
the consistency rate of a given model f to be the
percentage of the (x̂1, x̂2) pairs from the consis-
tency test that receive the same label prediction by
f , i.e. f(x̂1) = f(x̂2). We create this test set by
sampling 9k groups from the unlabeled data, then
by sampling one pair of different titles (x̂1, x̂2)
from each group. Since the consistency rate of a
model on this test should be an empirical evalu-
ation of its consistency as defined in Eq. (2), the
distribution of the data in this test should be similar
to the distribution of the data in the accuracy test.
To mitigate some of the discrepancy between the
unlabeled and labeled datasets, we sub-sample the
unlabeled dataset according to the L1 distribution
of the labeled set. We use the unlabeled samples
that are not selected for the consistency test as DU

for training.

4.2 Experimental Framework

This subsection describes in detail the configuration
of the proposed methods, and the baselines that
were used for comparison.

4.2.1 Baselines

For the first Baseline model, we use the existing
product categorization model, trained using only
DL. The second baseline is a ColorsSizes-Blind
(CS-Blind) model. We train it using DL alone,
while omitting colors and measurements from the
data. We use predefined dictionaries of colors (e.g.
"red", "white") and measurements (e.g. "small",
"XL") to identify appearances in item titles and
replace them with constant tokens, one for colors
and another for sizes. This baseline simulates an
attempt to tackle the consistency issue by manually
identifying few spurious features in the data and
hiding them from the model to make it consistent.



(a) distribution of DL (b) distribution of complete DU (c) distribution of sub sampled DU

Figure 1: Distributions of the different versions of the data for CST. The labels are presented in L1 granularity.

(a) different T , fixed N (b) fixed T , different N (c) different T , different N

Figure 2: CGA experiments results.

4.2.2 CST
We evaluate CST with two configurations, each
utilizes a different version of DU : 1) the complete
data (354k groups with 1.3M samples), and 2) sub-
sampled (SS) data, sampled to be as similar as
possible to DL’s histogram (yielding 70k groups
with 250k samples). Fig. 1 provides an illustrations
of those histograms. In order to assign each group
of items with one single label, as described earlier,
we choose the category with the highest confidence
score within the group provided by fbase 1.

4.2.3 CGA
In order to empirically evaluate CGA, we construct
Dpairs from DU as described earlier and use a T5
model (Raffel et al., 2020) (a large Transformer
based seq-2-seq model) asM, which we fine-tune
on Dpairs for three epochs.

The impact of the filtering score function. We
examine two alternatives of the score function s; 1)
BLEU score (Papineni et al., 2002) and 2) a cosine-
similarity score that was computed on the out-
put vectors of an all-MinmLM-L6-V2 model (All-
MinmLM-L6-V2). This model maps sentences to
a 384 dimensional dense vector space and can be
used for tasks such as clustering or semantic search.
We compute both scores for each pair of original
product title and a corresponding generated title.

1Preliminary experiments showed that this method outper-
formed majority voting.

Preliminary experiments show that filtering by the
BLEU score results in a more consistent model.
For the rest of the experiments we use the BLEU
score as s. See Appendix D for some examples
of generated titles and their corresponding BLEU
score.

Using the T5 model, we generate 8 samples
based on each sample from DL, and compute the s
score of each of those samples. We then perform
three experiments to evaluate the impact of the fil-
tering threshold T and the augmentation size N .
Results are presented in Figure 2.

The impact of the filtering threshold. For
each threshold value T ∈ {0.5, 0.6, 0.7, 0.8}, we
filter the generated samples. Then, we sub-sample
a fixed amount ofN = 200k samples intoDaug and
train a model on DL ∪ Daug. As T gets higher, the
consistency rate of the trained model increases as
well, which indicates the need of a filtering phase.

The impact of the augmentation size. We fil-
ter the generated samples using a fixed T = 0.7.
Out of the remaining generated samples, we sub-
sample N ∈ {50k, 100k, 200k, 400k} samples
into Daug, and train a model on DL ∪ Daug. As
N gets higher, the consistency rate of the trained
model increases as well, which indicates that
adding more generated samples leads to a more
consistent model.

The trade off between filtering threshold and
augmentation size. We filter the generated sam-



ples using different thresholds, and add the filtered
samples to Daug without sub-sampling them. We
train a model on DL ∪ Daug. Evidently, the consis-
tency rate of the trained model increases when T
gets higher but decreases for T = 0.8. As T gets
higher, the filtered samples are of better quality but
there are fewer of them, reaching an optimal trade
off at T = 0.7. Thus, for the rest of the paper, we
use T = 0.7.

5 Results and Discussion

We train each examined model 5 times and present
the mean score of the achieved results. For each
model, we compare the weighted average F1 score
for the accuracy test and the consistency rate of the
consistency test. Table 1 presents our results.

The ColorsSizes-Blind model performs similarly
to the baseline for both measurements; the slight
changes are within the std range, thus making the
differences insignificant compared to the baseline
model. This is an evidence that the item versioning
is more complex than just changing the size or
color and includes title rephrasing concepts that are
hard to tackle in a trivial way.

In addition, the results show that both of the
CST versions, complete and sub-sampled, achieve
significantly higher consistency rates than the base-
line, gaining lifts of 10% and 7% respectively. On
the other hand, both of the methods yield lower
F1 scores, reducing lift by 1.65% and 0.6% respec-
tively. A possible cause of the degradation in the
F1 score is the differences between the data distri-
bution of DL, which we sample the accuracy test
from, and the data distribution ofDU which we use
to augment our training data. The fact that using
the sub-sampled version of DU mitigates most of
this degradation supports this claim. An additional
cause could be the usage of the noisy pseudo-labels
in the augmented set instead of the unavailable
ground truth labels. Note that the amount of added
data using DU to tackle consistency is bigger than
the original DL, which aims to tackle accuracy.
The focus in terms of the training shifts from an
accuracy problem to a consistency problem, thus
hurting the F1 of the new model. The higher consis-
tency rate of CST-Full compared to the CST-Sub-
Sampled can be explained by a difference of more
than 1M samples in the size of Daug.

Similarly, the CGA method also improves the
consistency rate, gaining lift of 4.5%, and doesn’t
significantly affect the accuracy score. As men-

Method F1 F1 lift
Cnst.
rate

Cnst.
lift

Baseline 0.665 - 0.738 -
CS-Blind 0.664 -0.13% 0.740 0.26%
CST-Full 0.654 -1.65% 0.813 10.12%
CST-SS 0.661 -0.6% 0.790 6.99%
CGA 0.667 0.28% 0.771 4.46%

Table 1: Categorization results, indicating the mean.
Lift values are all compared to the Baseline model. The
std ranges between 0.001 to 0.002 for F1 and 0.001 to
0.009 for the consistency rate.

tioned, we use a threshold T = 0.7, thus including
440k samples in Daug. These additional samples
correspond to a similar distribution as DL.The im-
provement in both the consistency and the accu-
racy indicates that the generative model is able to
correctly learn the real-world item versioning and
produce a significant amount of data with high ac-
curacy labels and the same distribution as in the
accuracy test.

Summarizing the above, our experiments high-
light three key factors in the consistent-SSL frame-
work: 1) Scale - enriching the learning set with
more examples of item versioning increases the
consistency. 2) Quality - augmenting the data with
real-world samples is better than using generative
ones in term of performance. 3) Distribution - pre-
serving the original distribution in the augmented
set is important for maintaining good accuracy.

6 Conclusions

This work presents a new framework for consistent
text categorization in the context of e-Commerce.
The aim of this work is to improve a product catego-
rization model that serves various services of a ma-
jor web company. We address the labeling inconsis-
tency issues found in the categorization of similar
items, leading to poor user experience in related rec-
ommendation and search applications. Our frame-
work utilizes an unlabeled clustered dataset in two
ways: a self-training approach and a generative-
augmentation method. We performed a thorough
investigation of the two approaches and investi-
gated several factors that majorly influence their
performance. Our experimental results suggest that
both proposed methods improve the consistency
rate by 4% to 10%, while maintaining the accuracy
of the current production model. Finally, our study
illustrates the trade off between the quality and the



scale of the augmented dataset, and its impact on
the performance of both methods.

Limitations

Our work has several limitations. First, our con-
sistency study focuses on our used categoriza-
tion model and was conducted on only one spe-
cific dataset. It might not perfectly generalize to
other problems. Second, the proposed solutions
are based solely on data augmentation without
changing the current production settings and model.
Other approaches such as changing the model’s ob-
jective function to take consistency into account
might also benefit the solution. Lastly, in terms of
user perspective, while our solution show signifi-
cant improvement over the baseline, inconsisten-
cies are still visible.

Ethics Statement

This NLP research study was designed and carried
out with strict adherence to ethical principles and
guidelines. The study was reviewed and approved
by our company’s research lead prior to the sub-
mission. The study followed the ACL conference’s
guidelines on the use of language data. The re-
searchers take full responsibility for ensuring the
ethical conduct of this study and are committed to
upholding the highest standards of ethical research
practices in NLP.

References
All-MinmLM-L6-V2. 2022. All-minmlm-

l6-v2. https://huggingface.co/
sentence-transformers/all-MiniLM-L6-v2.
[Online; accessed 10-October-2022].

Eric Arazo, Diego Ortego, Paul Albert, Noel E
O’Connor, and Kevin McGuinness. 2020. Pseudo-
labeling and confirmation bias in deep semi-
supervised learning. In 2020 International Joint
Conference on Neural Networks (IJCNN), pages 1–8.
IEEE.

Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and
David Lopez-Paz. 2019. Invariant risk minimization.
arXiv preprint arXiv:1907.02893.

M Saiful Bari, Tasnim Mohiuddin, and Shafiq Joty.
2020. Uxla: A robust unsupervised data augmenta-
tion framework for zero-resource cross-lingual nlp.
arXiv preprint arXiv:2004.13240.

Yanai Elazar, Nora Kassner, Shauli Ravfogel, Abhi-
lasha Ravichander, Eduard Hovy, Hinrich Schütze,

and Yoav Goldberg. 2021. Measuring and im-
proving consistency in pretrained language models.
Transactions of the Association for Computational
Linguistics, 9:1012–1031.

Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter
Szolovits. 2020. Is bert really robust? a strong base-
line for natural language attack on text classification
and entailment. Proceedings of the AAAI conference
on artificial intelligence, 34(05):8018–8025.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2016. Bag of tricks for efficient text
classification. arXiv preprint arXiv:1607.01759.

Divyansh Kaushik, Eduard Hovy, and Zachary C Lip-
ton. 2019. Learning the difference that makes
a difference with counterfactually-augmented data.
arXiv preprint arXiv:1909.12434.

Varun Kumar, Ashutosh Choudhary, and Eunah Cho.
2020. Data augmentation using pre-trained trans-
former models. arXiv preprint arXiv:2003.02245.

Dong-Hyun Lee et al. 2013. Pseudo-label: The sim-
ple and efficient semi-supervised learning method
for deep neural networks. Workshop on challenges
in representation learning, ICML, 3(2):896.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th annual meeting of the Association for Compu-
tational Linguistics, pages 311–318.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, Peter J Liu, et al. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21(140):1–67.

Georgios Rizos, Konstantin Hemker, and Björn
Schuller. 2019. Augment to prevent: short-text data
augmentation in deep learning for hate-speech clas-
sification. In Proceedings of the 28th ACM inter-
national conference on information and knowledge
management, pages 991–1000.

Connor Shorten, Taghi M Khoshgoftaar, and Borko
Furht. 2021. Text data augmentation for deep learn-
ing. Journal of big Data, 8(1):1–34.

Isaac Triguero, Salvador Garcia, and Francisco Herrera.
2015. Self-labeled techniques for semi-supervised
learning: taxonomy, software and empirical study.
Knowledge and Information systems, 42(2):245–
284.

Victor Veitch, Alexander D’Amour, Steve Yadlowsky,
and Jacob Eisenstein. 2021. Counterfactual invari-
ance to spurious correlations: Why and how to pass
stress tests. arXiv preprint arXiv:2106.00545.

Tianlu Wang, Xuezhi Wang, Yao Qin, Ben Packer,
Kang Li, Jilin Chen, Alex Beutel, and Ed Chi.

https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2


2020. Cat-gen: Improving robustness in nlp mod-
els via controlled adversarial text generation. arXiv
preprint arXiv:2010.02338.

Tianlu Wang, Diyi Yang, and Xuezhi Wang. 2021.
Identifying and mitigating spurious correlations for
improving robustness in nlp models. arXiv preprint
arXiv:2110.07736.

Qizhe Xie, Zihang Dai, Eduard Hovy, Thang Luong,
and Quoc Le. 2020. Unsupervised data augmenta-
tion for consistency training. Advances in Neural
Information Processing Systems, 33:6256–6268.

A CST Algorithm

Algorithm 1 CST

Input: labeled training data DL = {(xi, yi)}li=1,
unlabeled data DU = {Xi}l+u

i=l+1, Xi ={
x̂
(i)
j

}ki

j=1
, set function h

1: train a base classifier fbase on DL

2: Daug ← ∅
3: for i = l + 1, l + 2, . . . , l + u do
4: ỹi ← h(Xi; f

base)

5: Daug ← Daug ∪
{
(x̂

(i)
j , ỹi)

}ki

j=1

6: train f on DL ∪ Daug
7: return f

B CST Illustration

Figure 3: Illustration of CST pipeline.

C CGA Algorithm

Algorithm 2 CGA

Input: labeled training data DL = {(xi, yi)}li=1,
unlabeled data DU = {X̂i}l+u

i=l+1, Xi ={
x̂
(i)
j

}ki

j=1
, number of samples to generate

from each original sample n, score function
s, threshold T

1: Dpairs =
{(
x̂
(i)
j , x̂

(i)
j′

) ∣∣∣l + 1 ≤ i ≤ l + u
∧
j, j′ ∈ [ki]

}
2: train a generative modelM on Dpairs
3: Daug ← ∅
4: for i = 1, 2, . . . , l do
5: generate n new samples x̂(i)1 , . . . , x̂

(i)
n withM and xi

6: for j = 1, 2, . . . , n do
7: if s(x̂(i)j , xi) ≥ T
8: then Daug ← Daug ∪

{
(x̂

(i)
j , yi)

}
9: train f on DL ∪ Daug

10: return f

D Generated Titles Example

Table 2 presents examples of generated titles using
the fine-tuned generative model of CGA, together



Original Product Title Generated Product Title
BLEU
score

Polo Ralph Lauren Big Boys Fleece Hoodie Polo Ralph Lauren Little Boys Fleece Hoodie 0.795
Puff Sleeve T Shirt Ivory Frost T Shirt 0.135
Blackberries Prepacked 6 Oz Cranberry Prepacked 6 Oz 0.724
Sunnies Face Airblush in Peached Sunnies Face Airblush in Peached Wall Poster

With Pushpins
0.482

Artistry Signature Color Long-wearing Eye
Pencil Brown

Artistry Signature Color Long-wearing Eye
Pencil Black

0.850

Table 2: Examples of pairs of original product titles and their corresponding generated ones, together with the
computed BLEU score of the pairs.

with their corresponding BLEU score with respect
to the original titles.

E CGA Illustration

Figure 4: Illustration of CGA pipeline.

F Hierarchical-FastText

Hierarchical-FastText (HFT) consist of 4 FastText
models {fi}4i=1. In training time, each fi is trained
over the same data samples, but with different gran-
ularity of the labels: f1 is trained using only the
first level of the labels L1, f2 is trained using the
first and second levels of the labels L1 and L2 and
so on. In inference time, we use an iterative method,
were at each iteration i for i = 1, . . . , 4 we predict
the label using fi. If fi agrees with fi−1 on the
label until the level Li−1, the process continues,
otherwise it returns the prediction of fi−1. If the
process gets to the end, i.e. f4 agrees with f3 on
the label until L3, it returns the prediction of f4 as
the final prediction.


