
Accelerating Personalized PageRank Vector Computation
Zhen Chen

zhenchen21@m.fudan.edu.cn
Fudan University,

Shanghai Key Laboratory of Data
Science, Shanghai, China

Xingzhi Guo
xingzguo@cs.stonybrook.edu

Stony Brook University
Stony Brook, USA

Baojian Zhou∗
bjzhou@fudan.edu.cn
Fudan University,

Shanghai Key Laboratory of Data
Science, Shanghai, China

Deqing Yang
yangdeqing@fudan.edu.cn

Fudan University,
Shanghai Key Laboratory of Data

Science, Shanghai, China

Steven Skiena
skiena@cs.stonybrook.edu
Stony Brook University

Stony Brook, USA

ABSTRACT

Personalized PageRank Vectors are widely used as fundamental
graph-learning tools for learning graph embeddings, training graph
neural networks, and detecting anomalous spammers. The well-
known local FwdPush algorithm [6] approximates PPVs and has a
sublinear rate of O

( 1
𝛼𝜖

)
. A recent study [89] found that when high

precision is required, FwdPush is similar to the power iteration
method, and its run time is pessimistically bounded by O

(
𝑚
𝛼 log 1

𝜖

)
.

This paper looks closely at calculating PPVs for both directed and
undirected graphs. By leveraging the linear invariant property, we
show that FwdPush is a variant of Gauss-Seidel and propose a
Successive Over-Relaxation based method, FwdPushSOR to speed
it up by slightly modifying FwdPush. Additionally, we prove Fwd-
Push has local linear convergence rate O

( vol(S)
𝛼 log 1

𝜖

)
enjoying

advantages of two existing bounds. We also design a new local
heuristic push method that reduces the number of operations by
10-50 percent compared to FwdPush. For undirected graphs, we
propose two momentum-based acceleration methods that can be ex-
pressed as one-line updates and speed up nonacceleration methods
by O(1/

√
𝛼). Our experiments on six real-world graph datasets con-

firm the efficiency of FwdPushSOR and the acceleration methods
for directed and undirected graphs, respectively.

KEYWORDS

Personalized PageRank, large-scale graph, local linear convergence,
Successive Over-Relaxation

ACM Reference Format:

Zhen Chen, Xingzhi Guo, Baojian Zhou, Deqing Yang, and Steven Skiena.
2023. Accelerating Personalized PageRank Vector Computation. In Proceed-
ings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data

∗Corresponding Author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
KDD ’23, August 6–10, 2023, Long Beach, CA, USA.
© 2023 Association for Computing Machinery.
ACM ISBN 979-8-4007-0103-0/23/08. . . $15.00
https://doi.org/10.1145/1122445.1122456

Mining (KDD ’23), August 6–10, 2023, Long Beach, CA, USA. ACM, New York,
NY, USA, 16 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION

As fundamental graph-learning tools, Personalized PageRank Vec-
tors (PPVs) [52] have been widely used in classic graphmining tasks
such as detecting anomalous spammers [4, 5, 14, 81], and modern
graph representation learning methods such as graph embeddings
[44, 76, 86] and graph neural networks [17, 18, 25, 31, 35, 36, 46, 59,
84, 85, 93]. PPVs effectively capture the local proximity of graph
nodes, making them useful for training improved graph neural
network models and designing effective clustering algorithms [6].
As a result, efficient computation of PPVs is crucial for the current
field of graph representation learning.

The well-known FwdPush algorithm [6, 15] is a widely used
tool for computing PPVs due to its effectiveness in approximating
PPVs, easy implementation, and local nature. The cost of each
iteration of FwdPush is dependent only on the volumes of nodes
near the target node, and its total run time complexity can be
bounded by O

( 1
𝛼𝜖

)
, where 𝛼 is the damping factor, and precision

parameter 𝜖 controls the precision of the per-entry of PPV. This time
complexity bound is independent of the graph structure, making
FwdPush a preferred method over the power iteration method,
which requires access to the entire graph in each iteration. However,
a recent study [89] showed that when high precision is required,
FwdPush behaves more like the power iteration method, with a
pessimistically bounded run time complexity of O

(
𝑚
𝛼 log 1

𝜖

)
, where

𝑚 is the number of edges in the graph. This bound only holds for
𝜖 < (2𝑚)−1, and it is unclear whether there exists a logarithmic
factor bound for 𝜖 ≥ (2𝑚)−1.

A natural question we address in this paper is Q1. whether Fwd-
Push has a locally linear convergence rate, meaning that the per-
epoch complexity is locally dependent on the graph, but the total
number of epochs is still bounded by a logarithmic factor O

(
log 1

𝜖

)
.

To answer this question, a key observation is that when 𝛼 is close
to 1, the local push method will not explore nodes far from the
current target node, and thus the total run time per epoch remains
local. It has been proven that when the graph is undirected, Fwd-
Push is essentially a coordinate descent method, and computing
an approximate PPV corresponds to an ℓ1-regularized optimiza-
tion problem, which has a sparse solution [33]. This suggests that

ar
X

iv
:2

30
6.

02
10

2v
1 

 [
cs

.D
S]

  3
 J

un
 2

02
3

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456


KDD ’23, August 6–10, 2023, Long Beach, CA, USA. Zhen Chen, Xingzhi Guo, Baojian Zhou, Deqing Yang, and Steven Skiena

FwdPush is truly local. However, this equivalence is based on the
assumption that the graph is undirected and is still unknown Q2.

whether a similar optimization algorithm equivalence exists for
directed graphs.

Questions Q1 and Q2 motivate us to study the PPV computation
further. In this paper, we show for the first time that the well-
known FwdPush algorithm is a variant of Gauss-Seidel when the
underlying graph is directed. This is due to the linear invariant
property of FwdPush, which means that the updates of Gauss-
Seidel for each coordinate of the target linear system are equal to the
residual updates of FwdPush.We then propose to use the Successive
Over Relaxation (SOR) based method to speed up FwdPush, namely
FwdPushSOR. The advantage of FwdPushSOR is that it speeds
up the original method, and it can be naturally applied to other
variants of FwdPush [89], even ones for dynamic graph settings
[92]. Furthermore, to study the convergence rate better, we prove a
locally linear convergence rate O

( vol(S)
𝛼 log 1

𝜖

)
where the precision

is any positive number 𝜖 > 0 and vol(S) is the expected volume of a
subset of active nodes explored. Our analysis is simplified by adding
a dummy node to the queue and considering only the non-zero
residual nodes. For undirected graphs with small 𝛼 , momentum
acceleration-based methods can accelerate by a factor of O(1/

√
𝛼).

Both acceleration-based methods can be implemented in one-line
iteration updates. Our contributions are summarized as follows

• For the first time, we show that the well-known FwdPush
algorithm is a variant of Gauss-Seidel. To further improve
its performance, we propose FwdPushSOR, a speed-up local
method of the original FwdPush based on the SOR technique.
FwdPushSOR is as simple as that of FwdPush.

• We prove a locally linear convergence rate of FwdPush with
a complexity of O

( vol(S)
𝛼 log 1

𝜖

)
, which combines the ad-

vantages of existing bounds where the expected volume of
explored nodes, vol(S), is locally dependent on the underly-
ing graph. Based on this insight, we design FwdPushMean,
a new local push method variant that reduces the number of
operations by 10-50% for most target nodes.

• For undirected graphs, we propose using the Heavy-Ball
(HB) and Nesterov Acceleration Gradient (NAG) method to
calculate high-precision PPR vectors, which are O(1/

√
𝛼)

times faster than the power iteration and FwdPush variants.
Our methods can be implemented in just one line of code.

• We conduct experiments on six real-world graphs and find
that, FwdPushSOR and acceleration methods can signifi-
cantly reduce run time and the number of operations re-
quired. For example, these local SOR methods are about 3
times faster on undirected graphs and about 2 times faster
on directed graphs, respectively, when 𝛼 = 0.15.

The rest of the paper is organized as follows: In Sec. 2, we dis-
cuss related work. Notations and the definition of PPV are pre-
sented in Sec. 3. Sec. 4 gives the locality analysis of FwdPush.
The accelerated algorithms for PPVs are presented in Sec. 5. Fi-
nally, we present our experimental results and conclusions in Sec.
6 and Sec. 7, respectively. Our code and datasets are available at
https://github.com/ccczhen/AccPPR.

2 RELATEDWORK

PPVs and power iteration-based accelerations. The Person-
alized PageRank computation traces its roots to the work of Jeh
and Widom [52], who proposed using a personalized vector as
a starting point for PageRank calculation instead of the uniform
distribution used in the original PageRank algorithm [74]. Accel-
eration methods for directed graphs are mainly based on power
iteration, accessing the whole graph once per iteration, resulting
in O(𝑚) per-iteration updates. Arasu et al. [9] used Gauss-Seidel
method to globally accelerate power iteration. Kamvar et al. [55]
proposed to use the Aitken extrapolation to speed up the PPVs
calculation, but its effectiveness largely depends on the underlying
graph and can sometimes lead to insignificant improvements. Other
acceleration techniques, including the inner-outer loop approach
[39], and methods proposed by Lee et al. [61] and systematically
studied by Langville and Meyer [60], have also been proposed to
improve the power iteration-based method. Different from these
methods, this paper mainly focuses on accelerating local methods.

FwdPush and its variants. The work of Andersen et al.
[6] proposed FwdPush (also known as an Approximate PageRank
Approximation, APPR) algorithm for approximating PageRank per-
sonalization vectors. Later, it was used to approximate columns of
the PPV matrix [4]. The algorithm has a sublinear time complexity
bound of O( 1

𝜖𝛼 ) due to significant residuals being pushed out from
the residual vector per iteration. It is worth mentioning that the
essentially same idea as the local push method is also proposed
in Berkhin [15]. Recent work by Wu et al. [89] showed that for
𝜖 < (2𝑚)−1, FwdPush converges more like power iteration meth-
ods, leading to a total run time complexity of O(𝑚𝛼 log 1

𝜖 ). However,
it remains unknown if there is an exponential improvement when
𝜖 > (2𝑚)−1, which corresponds to local approximation. We take a
step further in this direction.

A recent study by Fountoulakis et al. [33] found that computing
PPV is equivalent to solving an ℓ1-regularized problem that can
be treated as a variant of the coordinate descent algorithm. The
reason is that the linear system can be reformulated as a quadratic
strongly convex optimization problemwhen the graph is undirected.
However, this analysis only works for undirected graphs, as the
objective of the optimization requires a symmetric matrix. It is
unclear how to apply the analysis to directed graph settings. When
the graph is undirected, alternative global methods, such as the
conjugate gradient method, exist but are complex to implement.
Therefore, we explore using NAG and HB-based methods to speed
up the computation. The question of whether there exists a locally
independent bound O

( 1√
𝛼𝜖

)
for the accelerated methods such as

Accelerated Coordinate Descents [3, 62], linear coupling [2] remains
open asked by Fountoulakis and Yang [34].

Other relatedmethods. Many Personalized PageRank-related
algorithms [38, 48, 52, 64, 87] have been proposed, including for
dynamic graph settings [12, 92]. These works mainly focus on com-
puting the PPR for a single or subset of entries. The generalized
PageRank problem has been reviewed in [38] and symmetrically
studied [60, 63]. One can find more details in [38, 60, 63] and ref-
erences therein. Our technique may be of independent interest to
these directions.

https://github.com/ccczhen/AccPPR


Accelerating Personalized PageRank Vector Computation KDD ’23, August 6–10, 2023, Long Beach, CA, USA.

3 PRELIMINARY

Notations. We consider unweighted simple graph G = (V, E)
where V = {1, 2, . . . , 𝑛} is a set of nodes and E ⊆ V ×V is a set
of edges with𝑚 = |E |. The underlying graph G is either a directed
graph or an undirected graph depending on the context. Bold lower
letters are column vectors, e.g., 𝒑 ∈ R𝑛 . Bold capital letters, e.g.,
𝑨 ∈ R𝑛×𝑛 are matrices.𝑫 = diag(𝑑1, 𝑑2, . . . , 𝑑𝑛) is the diagonal out-
degree matrix of G.1 The minimal and maximal degree is denoted
as 𝑑min and 𝑑max. Nei(𝑢) is the set of neighbors of𝑢.𝑨 is denoted as
the adjacency matrix of G. The column stochastic matrix associated
with 𝑨 is defined as 𝑷 := 𝑨⊤𝑫−1.2 The teleportation parameter
(a.k.a dumping factor) 𝛼 ∈ (0, 1) (usually 𝛼 ∈ (0.0, 0.5) in practice).
A vector 𝒓 at time 𝑡 is denoted as 𝒓𝑡 := [𝑟𝑡1, 𝑟

𝑡
2, . . . , 𝑟

𝑡
𝑛]⊤. The volume

of S ⊆ V is defined as vol(S) ≜ ∑
𝑣∈S 𝑑𝑣 . The support of 𝒓 is the

set of nonzero indices, i.e., supp(𝒓) = {𝑣 : 𝑟𝑣 ≠ 0, 𝑣 ∈ V}. For any
matrix 𝑴 , we denote𝑚𝑖 𝑗 as the element of 𝑴 at 𝑖-th row and 𝑗-th
column. An indicating vector 𝒆𝑣 ∈ {𝒆1, 𝒆2, . . . , 𝒆𝑛} has value 1 in
𝑣-th entry and 0 otherwise. Similarly, (𝒂)𝑢 is an indicator vector
with 𝑎𝑢 at 𝑢-th column and 0 otherwise. 𝑴𝑖,: is the 𝑖-th row of 𝑴 .

3.1 Personalized PageRank Vector

Given an underlying graph G = (V, E), an initial indicating vector
𝒆𝑠 , and a teleportation parameter 𝛼 ∈ (0, 1), PPV of a target node 𝑠
is a probability vector 𝒙 such that

𝒙 = 𝛼𝒆𝑣 + (1 − 𝛼)𝑨⊤𝑫−1𝒙, (1)

where we call 𝒙 satisfying Equ. (1) a PPV. The above equation is
essential to access the 𝑣-th column of a nonnegative matrix, that is

𝒙 = 𝛼

(
𝑰 − (1 − 𝛼)𝑨⊤𝑫−1

)−1
𝒆𝑣 .

The definition of PPV is a generalization of Google matrix compu-
tation where 𝒆𝑠 = 1/𝑛 used [74]. The standard method of solving
the linear system (1) is the fixed-point iteration working as the
following

𝒙𝑡+1 = (1 − 𝛼)𝑨⊤𝑫−1𝒙𝑡 + 𝛼𝒆𝑣 .

As shown in [40], if we use 𝒙0 = 0, one immediately obtains that
∥𝒙𝑡 − 𝒙∗∥1 = (1 − 𝛼)𝑡 where we denote 𝒙∗ as the true solution of
the PPV for the target node 𝑣 . However, the above iteration method
needs to access the whole graph, thus resulting in O(𝑚) run time
complexity per iteration. Next, we introduce the local FwdPush
method and explain how it can obtain a good approximation of
PPV by only exploring a small set of nodes.

3.2 FwdPush algorithm

An efficient first-in-first-out queue-based implementation of Fwd-
Push is presented in Algo. 1. At a higher level, FwdPush iteratively
accesses nodes and their neighbors and moves a distribution 𝒓 to
another distribution 𝒙 . At each iteration, each node 𝑢 in Q satisfies
𝑟𝑢 ≥ 𝜖𝑑𝑢 . We call such a node 𝑢 an active node. Similarly, if a node
𝑣 has a low residual, i.e., 𝑟𝑣 < 𝜖𝑑𝑣 , then it is inactive. Initially, Fwd-
Push has the source node 𝑠 in Q. With each iteration, it maintains
the updates of two vectors 𝒓 and 𝒙 , where 𝒓 is a residual vector ,
and 𝒙 is the estimation vector . For each active node 𝑢, it pushes 𝛼
magnitudes of 𝑟𝑢 to 𝒙 and spreads (1 − 𝛼)𝑟𝑢 uniformly to Nei(𝑢).
1See Appendix A for dealing with dangling nodes.
2In case of 𝑑𝑣 = 0 for some 𝑣, 𝑫−1 = 𝑫+ where 𝑫+ is Moore–Penrose inverse of 𝑫 .

Algorithm 1 FwdPush(G, 𝜖, 𝛼, 𝑠 )
1: Initialization: 𝒓 = 𝒆𝑠 , 𝒙 = 0
2: Q = [𝑠 ]
3: while Q ≠ ∅ do

4: 𝑢 = Q.pop( )
5: 𝑥𝑢 = 𝑥𝑢 + 𝛼 · 𝑟𝑢
6: for 𝑣 ∈ Nei(𝑢 ) do
7: 𝑟𝑣 = 𝑟𝑣 + (1−𝛼 )𝑟𝑢

𝑑𝑢
8: if 𝑟𝑣 ≥ 𝜖𝑑𝑣 & 𝑣 ∉ Q then

9: Q.push(𝑣)
10: 𝑟𝑢 = 0
11: Return 𝒙

It terminates when all
𝑟𝑢 < 𝜖𝑑𝑢 . During these
push operations, one al-
ways have 𝑟𝑢 , 𝑥𝑢 ≥ 0
and ∥𝒓 ∥1 + ∥𝒙 ∥1 = 1.
It can be shown that re-
turned 𝒙 is guaranteed
by |𝑥𝑢−𝑥∗𝑢 | ≤ 𝜖𝑑𝑢 ,∀𝑢 ∈
V (See details in [6]).
The essential effective-
ness of FwdPush is be-
cause entries 𝒙 indexing
by nodes near to 𝑠 have
large magnitudes, and

entries of 𝒙 follow a power-law distribution as demonstrated in Fig.
7 in the Appendix. Therefore, FwdPush quickly approximate 𝒙 by
only exploring these nodes near to it. We aim to improve the speed
of this local method. In the following section, we will present our
key findings.

4 LOCALITY ANALYSIS OF FWDPUSH

This section presents the equivalence between FwdPush and a
variant of Gauss-Seidel (G-S) and introduces a faster method based
on the SOR technique. We demonstrate that FwdPush has a locally
linear convergence rate and offer insights that could help find more
effective variants.

4.1 FwdPush is a variant of Gauss-Seidel

To show that FwdPush is a variant of G-S iteration (See Section
10.1.1 of [41]). Recall, for solving the linear system

𝑴𝒙 = 𝒃, (2)

the G-S iteration updates 𝒙 using the following online iteration

𝑥𝑡+1
𝑢 =

1
𝑚𝑢𝑢

©«𝑏𝑢 −
𝑢−1∑︁
𝑗=1

𝑚𝑢 𝑗𝑥
𝑡+1
𝑗 −

𝑛∑︁
𝑗=𝑢+1

𝑚𝑢 𝑗𝑥
𝑡
𝑗
ª®¬ , 𝑢 ∈ S𝑡 , (3)

where 𝑡 indexes the current super-iteration, 𝑥𝑡+1
𝑗

are elements have
been updated up to time 𝑗𝑡+1, and 𝑥𝑡

𝑗
are entries will be updated.

S𝑡 presents the set of indices of 𝒙 updated in 𝑡-th super-iteration.
Note that we have S𝑡 = V for all 𝑡 in the standard G-S itera-
tion. G-S iteration is usually for solving system (2) when 𝑴 is
strictly diagonally-dominant. We note that 𝑰 − (1 − 𝛼)𝑨⊤𝑫−1 is a
strictly diagonally-dominant matrix for a simple graph. The follow-
ing theorem presents the equivalence between the variant of the
Gauss-Seidel iteration and the FwdPush algorithm.

Theorem 1 (FwdPush is Gauss-Seidel). Each iteration updates 𝒓
and 𝒙 in Algo. 1 of the FwdPush(G, 𝜖, 𝛼, 𝑠) algorithm is equivalent
to an iteration of the Gauss-Seidel iteration as defined in (3) when
𝒃 = 𝛼𝒆𝑠 and 𝑴 = 𝑰 − (1 − 𝛼)𝑨⊤𝑫−1. Furthermore, S𝑡 corresponds
to the set of active nodes processed in Algo. 1 at 𝑡-th epoch. 3

Proof. The key to our proof is to use the linear invariant prop-
erty. We state it as follows: Let 𝒙𝑡 and 𝒓𝑡 be the estimation and

3We will define an epoch of FwdPush by adding a dummy node presented in the next
subsection.



KDD ’23, August 6–10, 2023, Long Beach, CA, USA. Zhen Chen, Xingzhi Guo, Baojian Zhou, Deqing Yang, and Steven Skiena

residual vector of calling FwdPush(G, 𝜖, 𝛼, 𝑠) at time 𝑡 , then for all
𝑡 ≥ 0, we have the following linear invariant property

𝛼𝒓𝑡 = 𝛼𝒓0 −
(
𝑰 − (1 − 𝛼)𝑨⊤𝑫−1)𝒙𝑡 . (4)

To verify Equ. (4), note that it is trivially true at the initial time
𝑡 = 0 where 𝒙0 = 0. For all 𝑡 ≥ 1 and any active node 𝑢, notice that
FwdPush updates 𝒙𝑡−1 and 𝒓𝑡−1 as the following

𝒙𝑡 = 𝒙𝑡−1 + 𝛼𝑟𝑡−1
𝑢 · 𝒆𝑢 (5)

𝒓𝑡 = 𝒓𝑡−1 − 𝑟𝑡−1
𝑢 · 𝒆𝑢 + (1 − 𝛼)𝑟𝑡−1

𝑢 𝑨⊤𝑫−1𝒆𝑢 , (6)

where Equ. (5) corresponds to Line 5 and Equ. (6) represents Line6-
10 of Algo. 1 with the initial setup 𝒙0 = 0, 𝒓0 = 𝒆𝑠 . To simplify Equ.
(6), one can reformulate it as

𝛼𝑟𝑡−1
𝑢 𝒆𝑢 = 𝛼

(
𝑰 − (1 − 𝛼)𝑨⊤𝑫−1

)−1
(𝒓𝑡−1 − 𝒓𝑡 ).

𝒙𝑡 is thus the sum of the left-hand side of the above over 𝑡 , that is,

𝒙𝑡 = 𝛼

𝑡∑︁
𝑖=1

𝑟 𝑖−1
𝑢 𝒆𝑢 = 𝛼

(
𝑰 − (1 − 𝛼)𝑨⊤𝑫−1

)−1 𝑡∑︁
𝑖=1

(𝒓𝑖−1 − 𝒓𝑖 )

= 𝛼

(
𝑰 − (1 − 𝛼)𝑨⊤𝑫−1

)−1 (
𝒓0 − 𝒓𝑡

)
.

Move the above-inverted matrix to the left; we see the linear invari-
ant property (4) is valid. Next, we show FwdPush is a variant type of
G-S iteration defined in (3). Since we assume𝑴 = 𝑰 −(1−𝛼)𝑨⊤𝑫−1

and 𝒃 = 𝛼𝒆𝑠 , then𝑚𝑢𝑢 = 1 for the simple graph. The G-S iteration
of (3) can be rewritten as

𝑥𝑡+1
𝑢 = 𝑥𝑡𝑢 +

(
𝑏𝑢 −

𝑛∑︁
𝑗=1

𝑚𝑢 𝑗𝑥
𝑡
𝑗

)
, //𝑥𝑡𝑗 = 𝑥𝑡+1

𝑗 for 𝑗 < 𝑢

where we can use 𝒙𝑡 to represent the updated 𝒙 up to time 𝑖𝑡 . Hence,
each update can be represented as a vector form as the following

𝒙𝑡+1 = 𝒙𝑡 +
(
𝒃 −𝑴𝑢,:𝒙

𝑡 )
𝑢

= 𝒙𝑡 +
(
𝛼𝒓0 −

(
𝑰 − (1 − 𝛼)𝑨⊤𝑫−1)𝒙𝑡 )𝑢

= 𝒙𝑡 + 𝛼𝑟𝑡𝑢𝒆𝑢 ,

where the second equality is from the definition of 𝒃 and 𝑴 , and
the last equality follows from the linear invariant property (4). □

When 𝛼 is small,𝑴 has a large condition number corresponding
to slow convergence of FwdPush and G-S. Fortunately, Thm. 1
immediately tells us that to speed up FwdPush, the acceleration
technique used for G-S can also be applied for FwdPush. To speed
up the G-S procedure, we propose to use the Successive Over-
Relaxation (SOR) technique [45, 91], a well-known method for
accelerating G-S of solving diagonally-dominant matrix. To update
𝒙𝑡 , by using SOR, we have (note𝑚𝑢𝑢 = 1)

𝒙𝑡+1 = (1 − 𝜔)𝒙𝑡 + 𝜔

(
𝑏𝑢 −

𝑢−1∑︁
𝑗=1

𝑚𝑢 𝑗𝑥
𝑡+1
𝑗 −

𝑛∑︁
𝑗=𝑢+1

𝑚𝑢 𝑗𝑥
𝑡
𝑗

)
· 𝒆𝑢

= (1 − 𝜔)𝒙𝑡 + 𝜔𝒙𝑡 + 𝜔 (𝒃 −𝑴𝑢,:𝒙
𝑡 )𝑢

= 𝒙𝑡 + 𝜔𝛼𝑟𝑡𝑢𝒆𝑢 ,

where the relaxation parameter 𝜔 ∈ (0, 2). The relaxed method
is simply different by 𝜔 times. The next key is maintaining the
invariant property for 𝒙𝑡 and 𝒓𝑡 . To maintain the linear invariant

property, we apply Equ. (5) and (6) 𝜔 times of original magnitudes.
Hence, the corresponding residual updates of FwdPush become

𝒙𝑡 = 𝒙𝑡−1 + 𝜔𝛼𝑟𝑡−1
𝑢 · 𝒆𝑢 (7)

𝒓𝑡 = 𝒓𝑡−1 − 𝜔𝑟𝑡−1
𝑢 · 𝒆𝑢 + 𝜔 (1 − 𝛼)𝑟𝑡−1

𝑢 𝑨⊤𝑫−1𝒆𝑢 , (8)

where we relax the assumption that entries of 𝒓𝑡 could be negative.

Algorithm 2 FwdPushSOR(G, 𝜖, 𝛼, 𝑠,𝜔 )
1: Initialization: 𝒓 = 1𝑠 , 𝒙 = 0
2: Q = [𝑠 ]
3: while Q ≠ ∅ do

4: 𝑢 = Q.pop( )
5: 𝑥𝑢 = 𝑥𝑢 +𝜔 · 𝛼𝑟𝑢
6: for 𝑣 ∈ Nei(𝑢 ) do
7: 𝑟𝑣 = 𝑟𝑣 + 𝜔 (1−𝛼 )𝑟𝑢

𝑑𝑢
8: if |𝑟𝑣 | ≥ 𝜖𝑑𝑣 and 𝑣 ∉ Q then

9: Q.push(𝑣)
10: 𝑟𝑢 = (1 − 𝜔 )𝑟𝑢
11: Return 𝒙

This violation enables
us to move more
magnitudes of resid-
uals at once to 𝑥𝑢 ,
thereby speeding up
the entire procedure.
Thus, based on the
over-relaxed Equ. (7)
and (8), we propose
FwdPushSOR shown
in Algo. 2, which is
simple to implement
and requires only the
relaxation parameter
𝜔 . The key invariant

property of FwdPushSOR is that 𝜔𝑟𝑢 magnitudes are excessively
removed from 𝑟𝑢 and distributed to all its outer neighbors and es-
timate 𝑥𝑢 . Furthermore, this SOR-based method is still local. It is
worth noting that this approach can generally be applied to other
variants of FwdPush [89, 92]. For instance, the PwrPush algo-
rithm proposed in [89] can easily be modified to incorporate the
SOR technique. We call this method PwrPushSOR.

Parameter choosing for𝜔 . First of all, FwdPushSOR exactly
recovers FwdPush when 𝜔 = 1. Note that 𝑴 is symmetric and
positive-definite for undirected graphs, and SOR would converge
on any 𝜔 ∈ (0, 2) (see Thm. 4.4.12 of [45]). The optimal 𝜔 is

𝜔 = 1 +
(

1−𝛼
1+
√

1−(1−𝛼 )2

)2
. (9)

For directed graphs, choosing 𝜔 is more difficult since the matrix
𝑴 is not easy to characterize. However, to choose 𝜔 , one can use
the following heuristic way: 𝜔 starts from the optimal value; if it
fails, we decrease 𝜔 by a constant step until it reaches 1. In practice,
𝜔 can reach about 1.5 when 𝛼 = 0.15, which is more than two times
faster than existing FwdPush. Yet, the convergence of SOR-based
methods remains an open problem for future research.

Unlike the standard G-S iteration, FwdPush updates a subset of
nodes S𝑡 of V at each epoch. In a recent work of Wu et al. [89], it
has been proved that the queue-based implementation of FwdPush
is similar to the power iteration method, hence for obtaining the
final solution 𝒙𝑡 with precision 𝜖 < (2𝑚)−1, it requires O(𝑚𝛼 log 1

𝜖 )
operations. In the following, we improve the analysis and show
that FwdPush is locally linear convergent to 𝒙∗.

4.2 Local linear convergence of FwdPush

To establish the locally linear convergence rate and have a better il-
lustration, we present slightly different FwdPush and add a dummy
node ‡ as presented in Algo. 3 where the dummy node helps to
identify the super epochs. The parameter 𝑡 is indexing the epoch id,
and 𝑡 ′ is indexing active node processing time, as shown in Fig. 1.



Accelerating Personalized PageRank Vector Computation KDD ’23, August 6–10, 2023, Long Beach, CA, USA.

ut′ ut′+1 ut′+s

St

‡

· · ·vt′1 vt′i

· · · vt′1 vt′i · · ·
St+1

Figure 1: The 𝑡-th epoch of FwdPush in Algo. 3. FwdPush

maintains a queue Q which contains all active nodes. At

the beginning of 𝑡-th epoch, S𝑡 contains all active nodes(red),
whichwill be processed in 𝑡-th epoch. New active nodes (blue)

generated in the current epoch will be processed in the next.

The only difference between Algo. 3 and Algo. 1 is that Algo. 3
always keeps ‡ in the queue until no active nodes pushed into Q. A
new epoch begins whenever ‡ pops out and is pushed into Q again.
In the next theorem, we prove that FwdPush admits a local linear
convergence rate, and the total run time of FwdPush is only locally
dependent on G. We have the following notations: At the beginning
of 𝑡-th epoch, the set of active and inactive nodes are denoted as
S𝑡 = {𝑢 : 𝑟𝑢 ≥ 𝜖 ·𝑑𝑢 , 𝑢 ∈ V} andU𝑡 = {𝑣 : 0 < 𝑟𝑣 < 𝜖 ·𝑑𝑣, 𝑣 ∈ V},
respectively. We also denote the support of 𝒓𝑡 as I𝑡 = supp(𝒓𝑡 ). By
these definitions, the total operations of FwdPush are the volume
of all active nodes of all epochs, i.e.,

∑𝑇
𝑡=1 vol(S𝑡 ).

Algorithm 3 FwdPush(G, 𝜖, 𝛼, 𝑠) with a dummy node
1: Initialization: 𝒓 = 𝒆𝑠 , 𝒙 = 0
2: Q = [𝑠, ‡] // Dummy node ‡ at the end of Q
3: 𝑡 = 0, 𝑡 ′ = 0
4: while Q.size() ≠ 1 do

5: 𝑢 = Q.pop()
6: if 𝑢 == ‡ then
7: Q.push(𝑢)
8: 𝑡 = 𝑡 + 1 // Next epoch time
9: continue

10: 𝑥𝑢 = 𝑥𝑢 + 𝛼 · 𝑟𝑢
11: for 𝑣 ∈ Nei(𝑢) do
12: 𝑟𝑣 = 𝑟𝑣 + (1−𝛼 )𝑟𝑢

𝑑𝑢
13: if 𝑟𝑣 ≥ 𝜖𝑑𝑣 and 𝑣 ∉ 𝑄 then

14: Q.push(𝑣)
15: 𝑟𝑢 = 0
16: 𝑡 ′ = 𝑡 ′ + 1
17: Return 𝒙

Theorem 2 (Local linear convergence of FwdPush). Let S𝑡 and
U𝑡 be the set of active and inactive nodes, respectively. Let 𝒙𝑡 be the
estimated PPR vector updated by FwdPush after 𝑡-th epoch, that is
𝒙𝑡 = FwdPush(G, 𝜖, 𝛼, 𝑠). Then, for all 𝑡 ≥ 0, the ℓ1 estimation error
∥𝒙𝑡+1 − 𝒙∗∥1 has locally linear convergence rate, that is

∥𝒙𝑡+1 − 𝒙∗∥1 ≤ (1 − 𝛼𝛾𝑡 )∥𝒙𝑡 − 𝒙∗∥1, (10)

where 𝛾𝑡 is the local convergence factor 𝛾𝑡 :=
∑
𝑢∈S𝑡

𝑑𝑢/
∑

𝑣∈I𝑡 𝑑𝑣 .
Furthermore, the total run time of FwdPush is locally dependent on

G, is bounded by
𝑇∑︁
𝑡=1

vol(S𝑡 ) ≤
vol(𝑆1:𝑇 )
𝛼 · 𝛾1:𝑇

log
(
𝐶𝛼,𝑇

𝜖

)
, (11)

where vol(𝑆1:𝑇 ) is the average volume, vol(𝑆1:𝑇 ) =
∑𝑇
𝑡=1 vol(𝑆𝑡 )/𝑇

and 𝛾1:𝑇 =
∑𝑇
𝑡=1 𝛾𝑡/𝑇 .

Before we prove the theorem, we introduce a key lemma, a new
refinement from Wu et al. [89] as the following.

Lemma 3 (Locally linear decay of 𝒙𝑡 ). Let S𝑡 and U𝑡 be the set
of active and inactive nodes at the beginning of 𝑡-th epoch with
𝑡 ∈ {0, 1, . . . , 𝑡}, respectively. Then, after 𝑡-th epoch, we have ∥𝒙 −
𝒙𝑡+1∥1 ≤ (1 − 𝛼𝛾𝑡 ) ∥𝒙−𝒙𝑡 ∥1, where𝛾𝑡 is the local convergence factor
𝛾𝑡 :=

∑
𝑢∈S𝑡

𝑑𝑢/
∑

𝑣∈I𝑡 𝑑𝑣 .

Proof. We prove this lemma by showing that a significant resid-
ual has been pushed out from 𝒓𝑡 to 𝒓𝑡+1 and corresponding gain
from 𝒙𝑡 into 𝒙𝑡+1. The set of active nodes S𝑡 has been processed:
we use time 𝑡 ′ to index these nodes. The updates are the following.
For each 𝑖-th active node 𝑢𝑡 ′

𝑖
, the updates are from Line 10 to Line

15 of Algo. 3 give us the following iterations

𝒙𝑡 = 𝒙𝑢𝑡 ′0

𝑢𝑡 ′1−−−→ 𝒙𝑡 ′1

𝑢𝑡 ′2−−−→ 𝒙𝑡 ′2 · · ·
𝑢𝑡 ′|S𝑡 |−−−−→ 𝒙𝑡 ′|S𝑡 |

= 𝒙𝑡+1

𝒓𝑡 = 𝒓𝑢𝑡 ′0

𝑢𝑡 ′1−−−→ 𝒓𝑢𝑡 ′1

𝑢𝑡 ′2−−−→ 𝒓𝑢𝑡 ′2
· · ·

𝑢𝑡 ′|S𝑡 |−−−−→ 𝒓𝑢′
|S𝑡 |

= 𝒓𝑡+1 .

For 𝑡-th epoch, the total amount of residual that had been pushed
out is 𝛼

∑
𝑢𝑡 ′ ∈S𝑡

𝑟𝑢𝑡 ′ (Line 10). That is,

∥𝒓𝑡 ∥1 − ∥𝒓𝑡+1∥1 ≥ 𝛼
∑︁

𝑢𝑡 ′ ∈S𝑡

𝑟𝑢𝑡 ′ . (12)

By the definition of S𝑡 andU𝑡 , we have

∀𝑢𝑡 ′ ∈ S𝑡 , 𝑟𝑢𝑡 ′ ≥ 𝜖 · 𝑑𝑢𝑡 ′ , ∀𝑣 ∈ U𝑡 , 0 < 𝑟𝑣 < 𝜖 · 𝑑𝑣 .
Summation above inequalities over all active nodes 𝑢𝑡 ′ and inactive
nodes 𝑣 , we have ∑

𝑢𝑡 ′ ∈S𝑡
𝑟𝑢𝑡 ′∑

𝑢𝑡 ′ ∈S𝑡
𝑑𝑢𝑡 ′

≥ 𝜖 >

∑
𝑣∈U𝑡

𝑟𝑣∑
𝑣∈U𝑡

𝑑𝑣
,

which indicates∑
𝑢𝑡 ′ ∈S𝑡

𝑟𝑢𝑡 ′∑
𝑢𝑡 ′ ∈S𝑡

𝑑𝑢𝑡 ′
>

∑
𝑢𝑡 ′ ∈S𝑡

𝑟𝑢𝑡 ′ +
∑

𝑣∈U𝑡
𝑟𝑣∑

𝑢𝑡 ′ ∈S𝑡
𝑑𝑢𝑡 ′ +

∑
𝑣∈U𝑡

𝑑𝑣

=

∑
𝑣∈I𝑡 𝑟𝑣∑
𝑣∈I𝑡 𝑑𝑣

=
∥𝒓𝑡 ∥1∑
𝑣∈I𝑡 𝑑𝑣

, (13)

where the last equality is due to the fact that I𝑡 indexes all nonzero
entries of 𝒓𝑡 , i.e., ∥𝒓𝑡 ∥1 =

∑
𝑣∈I𝑡 𝑟𝑡 (𝑣). On the other hand, the 𝑡-th

iteration error of FwdPush as ∥𝒙𝑡 − 𝒙∗∥1. Clearly, when 𝑡 = 0,
∥𝒙𝑡 − 𝒙∗∥1 = 1. For 𝑡 ≥ 0, we have

∥𝒙∗ − 𝒙𝑡+1∥1 = ∥𝒙∗ − 𝒙𝑡 ∥1 − 𝛼
∑︁

𝑢𝑡 ′ ∈𝑆𝑡
𝑟𝑡
𝑢′
𝑡

=

(
1 −

𝛼
∑
𝑢𝑡 ′ ∈𝑆𝑡 𝑟

𝑡
𝑢′
𝑡

∥𝒓𝑡 ∥1

)
∥𝒙∗ − 𝒙𝑡 ∥1

≤
(
1 −

𝛼
∑
𝑢∈S𝑡

𝑑𝑢∑
𝑣∈I𝑡 𝑑𝑣

)
∥𝒙∗ − 𝒙𝑡 ∥1,



KDD ’23, August 6–10, 2023, Long Beach, CA, USA. Zhen Chen, Xingzhi Guo, Baojian Zhou, Deqing Yang, and Steven Skiena

where the last inequality follows from (13). □

Our new local convergence factor is (1 − 𝛼𝜂𝑡 ) which is strictly
great than 1 − 𝛼

∑
𝑢∈𝑆𝑡 𝑑𝑢/𝑚 from Wu et al. [89], meaning better

convergence rate. The other key ingredient of our theorem is to
estimate the total number of epochs needed. The observation is that
the total amount of residuals left in 𝒓𝑡 is still relatively significant,
so the residual in the last epoch ∥𝒓𝑇 ∥1 is lower bounded. We state
the upper bound of 𝑇 as the following.

Lemma 4. Let 𝑇 be the total epochs used in FwdPush(G, 𝜖, 𝛼, 𝑠),
then it can be bounded by

𝑇 ≤ 1
𝛼 · 𝛾1:𝑇

log
(
𝐶𝛼,𝑇

𝜖

)
, (14)

where 𝐶𝛼,𝑇 = 1/((1 − 𝛼) |I𝑡 |) and 𝛾1:𝑇 =
∑𝑇
𝑡=1 𝛾𝑡/𝑇 .

Proof. After the last epoch𝑇 , for each of nonzero node 𝑣 , there
was an active neighbor of 𝑣 , denote as 𝑢, which pushed some resid-
ual (1−𝛼 )𝑟𝑢

𝑑𝑢
to 𝑣 . We denote each of this amount residual as 𝑟𝑣 , then

for all 𝑣 ∈ I𝑇 , we have

∥𝒓𝑇 ∥1 =
∑︁
𝑣∈I𝑇

𝑟𝑣 ≥
∑︁
𝑣∈I𝑇

𝑟𝑣 :=
∑︁
𝑣∈I𝑇

(1 − 𝛼)𝑟𝑢
𝑑𝑢

≥
∑︁
𝑣∈I𝑇

(1 − 𝛼)𝜖𝑑𝑢
𝑑𝑢

=
∑︁
𝑣∈I𝑇

(1 − 𝛼)𝜖 = (1 − 𝛼)𝜖 |𝐼𝑇 |.

From (10) of Lemma 3, the upper bound of ∥𝒓𝑇 ∥1 is

∥𝒓𝑇 ∥1 ≤
𝑇∏
𝑡=1

(
1 −

𝛼
∑
𝑢∈S𝑡

𝑑𝑢∑
𝑣∈I𝑇 𝑑𝑣

)
∥𝒙∗ − 𝒙0∥1 =

𝑇∏
𝑡=1

(1 − 𝛼𝛾𝑡 ) .

Combine the lower and upper bound, we obtain

(1 − 𝛼)𝜖 |𝐼𝑇 | ≤
𝑇∏
𝑡=1

(1 − 𝛼𝛾𝑡 ) .

Take log on both sides of the above and use the fact log(1 − 𝛼𝛾𝑡 ) <
−𝛼𝛾𝑡 , we reach

𝑇 ≤ 1
𝛼 · 𝛾1:𝑇

log
(
𝐶𝛼,𝑇

𝜖

)
,

where 𝐶𝛼,𝑇 = 1/((1 − 𝛼) |I𝑇 |) and 𝛾1:𝑇 =
∑𝑇
𝑡=1 𝛾𝑡/𝑇 . □

Proof of Theorem 2. To obtain ourmain theory, we apply Lemma
3 and Lemma 4, and notice that

𝑇∑︁
𝑡=1

vol(𝑆𝑡 ) = 𝑇 · vol(𝑆1:𝑇 ) ≤
vol(𝑆1:𝑇 )
𝛼 · 𝛾1:𝑇

log
(
𝐶𝛼,𝑇

𝜖

)
.

□

Remark 5. Our locality analysis provides intuition on the perfor-
mance of local FwdPush. The total convergence rate is determined
by 𝛾𝑡 , which is always a positive number. Note that 𝛾0 = 1 for the
first epoch. The average volume accessed by FwdPush is certainly
controlled by the following

vol(supp(𝒙𝜖,𝛼 ))
𝑇

≤ vol(𝑆1:𝑇 ) ≤ vol(supp(𝒙𝜖,𝛼 )), (15)

where we simply denote 𝒙𝑇 as 𝒙𝜖,𝛼 which only depends on 𝛼 and 𝜖
when 𝑠 and G are fixed. The above inequality indicates that when the

10 8 10 7 10 6 10 5

104

105

106

107

108

109

N
um

be
r o

f O
pe

ra
tio

ns Real
B1
B2
Ours

10 8 10 7 10 6 10 5
103

104

105

106

107

108

10 8 10 7 10 6 10 5
102

103

104

105

106

107

108

Figure 2: The number of operations estimated for the dblp

dataset as a function of 𝜖. Real stands for actual number of

operations used in FwdPush, i.e. Real=
∑𝑇
𝑡=1 vol(𝑺𝑡 ). 𝐵1 =

𝑚
𝛼 log( 1

𝜖𝑚 ) +𝑚 provided in [89], 𝐵2 = 1
𝜖𝛼 , and our new local

bound. Left: 𝛼 = 0.15, Middle: 𝛼 = 0.5, and Right: 𝛼 = 0.85. We

randomly selected 100 nodes for each experiment and took

the average of operations estimated.

solution is sparse, the volume will be much less than𝑚. Another ob-
servation is that when 𝜖 → 0, we have 𝛾1:𝑇 → 1, and vol(𝑆1:𝑇 ) →𝑚.
Hence, it will recover to the power iteration-like method studied in
[89]. To see how the bound estimated the total operations, we conduct
experiments on the dblp graph applying FwdPush over different 𝜖 as
illustrated in Fig. 2. Compared to two known bounds, our parameter-
ized local bound is tighter. We find a similar pattern on other graph
datasets, detailed explained in the appendix.

Heuristic method FwdPush-Mean. Our parameterized
bound in Equ. (11) involves a flexible quantity 𝜂𝑇 =

vol(𝑆1:𝑇 )
𝛾1:𝑇

, which
can guide us in finding better methods. For example, we can find
a method that tries to minimize 𝜂𝑇 . By noticing that 𝜂𝑇 is a trade-
off between the ratio of active nodes processed in each epoch,
we can either postpone pushing nodes with a large degree or the
magnitudes 𝑟𝑢 are small. Doing this can save some operations and
push more residuals for the next epoch.

To make this idea concrete, at the beginning of each epoch, we
push a subset of active nodes with a large magnitude ratio at each
epoch, that is, to measure the magnitude factor 𝑟𝑢/𝑑𝑢 . To do this,
we check these nodes for each epoch by seeing whether the current
magnitude factor of node 𝑢 is bigger than the mean of these ratios
(which is an easy quantity to measure at the beginning of each
super epoch). We postpone 𝑢 ∈ S𝑡 to the next epoch if its current
magnitude factor satisfies

𝑟𝑢

𝑑𝑢
< 𝑟 ≜

1
|S𝑡 |

∑︁
𝑣∈𝑆𝑡

𝑟𝑣

𝑑𝑣
,

which means it is not worth pushing it; we can save 𝑢 to the next
epoch so that 𝑢 accumulates more residual from 𝑢’s neighbors. We
implemented this idea, called it FwdPush-Mean, and presented
it in Algo. 4 of the appendix. Interestingly, FwdPush-Mean can
effectively reduce the number of operations of FwdPush. Fig. 3 illus-
trates the number of operations reduced by the proposed FwdPush-
Mean (see details of Algo. 4 in the appendix). Although run time
may not be significantly reduced (observed in our experiments), this
is still valuable in resource-limited scenarios as a significant amount
of operations are reduced. This method could also aid in finding a
better heuristic for improving FwdPush. A detailed description of
Algo. 4 can be found in the appendix.



Accelerating Personalized PageRank Vector Computation KDD ’23, August 6–10, 2023, Long Beach, CA, USA.

0 200 400 600 800
Nodes s

0%

10%

20%

30%

40%

50%

P
er

ce
nt

ag
e

of
op

er
at

io
ns

re
du

ce
d

livejournal

pokec

web-Standford

dblp

orkut

products

Figure 3: The percentage of total operations reduced by

FwdPush-Mean as a function of nodes over all six graphs.

We fix 𝜖 = 10−6, 𝛼 = 0.2 and run both FwdPush-Mean and

FwdPush on 1,000 randomly selected nodes from six graphs.

The reduced percentage of operations is defined as the dif-

ference in the number of operations between two methods

divided by the operations of FwdPush.

Our local linear convergence guarantee for FwdPush allows for
improvement through a trade-off between the number of active
nodes explored in each epoch S𝑡 and the total number of epochs
O( 1

𝛼 log 𝐶𝛼,𝑇

𝜖 ). If 𝛾1:𝑇 is large, the total number of epochs is ex-
pected to be small, and log 𝐶𝛼,𝑇

𝜖 will also have a minimal effect.
However, the total number of epochs will greatly depend on 𝛼 . If
𝛼 is small, FwdPush becomes slow. Using SOR can speed up Fwd-
Push. In the next section, we demonstrate that we can further save
1/
√
𝛼 run time by employing global acceleration-based methods if

the underlying graph is undirected.

5 MOMENTUM-BASED METHODS FOR PPVS

This section analyzes the calculation of PPV when G is undirected.
It reformulates the computation of PPV as a convex optimization
problem and employs an acceleration-based technique to solve the
linear system.

5.1 Quadratic optimization lens

We can rewrite the linear system of (1) into strongly convex opti-
mization and then transform the problem into a strongly convex
optimization problem. Recall our target linear system is (𝑰 − (1 −
𝛼)𝑨𝑫−1)𝒙 = 𝛼𝒆𝑠 . For an undirected graph, we multiply both sides
by 𝑫−1/2 and rewrite the system such that the right-hand side ma-
trix is symmetric; that is (1) can be reformulated as the following(

𝑰 − (1 − 𝛼)𝑫−1/2𝑨𝑫−1/2)𝑫−1/2𝒙 = 𝛼𝑫−1/2𝒆𝑠 .

Denote �̃� := 𝑫−1/2𝑨𝑫−1/2,𝒚 := 𝑫−1/2𝒙 , and 𝒔 := 𝑫−1/2𝒆𝑠 . Notice
that 𝑰 − (1−𝛼)�̃� is symmetric normalized Laplacian parameterized
by (1−𝛼). That is, we shall solve the linear system, (𝑰 −(1−𝛼)�̃� )𝒚 =

𝛼𝒔. We define the minimization problem of a quadratic objective
function 𝑓 as the following

arg min
𝒚∈R𝑛

{
𝑓 (𝒚) ≜ 1

2
𝒚⊤

(
𝑰 − (1 − 𝛼)�̃�

)
𝒚 − 𝛼𝒔⊤𝒚

}
, (16)

where �̃� is not a row stochastic matrix any more but 𝑰 − (1 − 𝛼)�̃�
is still positive definite. Clearly, 𝑓 is a strongly convex function,
by taking the gradient ∇𝑓 (𝒚) and letting it be zero, i.e. ∇𝑓 (𝒚) :=
(𝑰 − (1 − 𝛼)�̃� )𝒚 − 𝛼𝒔 = 0, we see that 𝑓 has a unique solution 𝒚∗ =
𝑫−1/2𝒙∗. Therefore, the original solution 𝒙∗ can be recovered from
𝑫1/2𝒚∗. To characterize the strongly convex and strong smoothness
parameters of 𝑓 (See definitions of strongly convex and smoothness
in Appendix B), denote 𝜆1, 𝜆2, . . . , 𝜆𝑛 as eigenvalues of 𝑷 with 𝜆1 =

1 ≥ 𝜆2 ≥ 𝜆3 ≥ · · · ≥ 𝜆𝑛 ≥ −1 and let �̃�1, . . . , �̃�𝑛 be eigenvalues
of �̃� . Therefore, by the fact from the graph spectral theory [28],
given the normalized 𝑰 − 𝑫−1/2𝑨𝑫−1/2, we have its eigenvalues
0 = �̃�1 ≤ · · · ≤ �̃�𝑛 ≤ 2. Therefore, the range of eigenvalues of
𝑰 − (1 − 𝛼)�̃� is 𝜆(𝑰 − (1 − 𝛼)�̃� ) ∈ [𝛼, 2 − 𝛼].

The above reformulation is commonly used in the optimization
community and has also been studied in Fountoulakis et al. [33].
It was observed that when the graph is undirected, FwdPush is a
special case of a coordinate descent. The coordinate descent for the
above problem (16) is

𝒚𝑡+1 = 𝒚𝑡 − 𝜂𝑡∇𝑢 𝑓 (𝒚𝑡 ) · 𝒆𝑢 , (17)

where each step size should be chosen such that 𝜂𝑡 ≤ 1/𝐿𝑢 , where
𝐿𝑢 is the Lipschitz continuous parameter, |∇𝑢 𝑓 (𝒚+𝛿𝒆𝑢 )−∇𝑢 𝑓 (𝒚) | ≤
𝐿𝑢 · 𝛿 , for all 𝒚 ∈ R𝑛 . Clearly, 𝐿𝑢 corresponds to the diagonal of
𝑰 − (1−𝛼)𝑫−1/2𝑨𝑫−1/2, which we always have 𝐿𝑢 ≤ 1. Replacing
𝜂𝑡 = 1 and letting −∇(𝒚𝑡 ) = 𝒓𝑡 in (17). We can recover FwdPush
accordingly. The coordinate descent algorithm could be accelerated
by choosing momentum strategy [3, 62].

The challenge of obtaining faster iteration based on the acceler-
ated coordinate descent method remains open due to the lack of
linear-invariant property for the momentum method [34]. Never-
theless, we use standard momentum techniques and leverage the
advantage of continuous memory. Our momentum-based method
can be expressed in a single line, and local linear convergence sug-
gests that the number of iterations is O

(
1

𝛼 ·𝛾1:𝑇
log 𝐶𝛼,𝑇

𝜖

)
. In the

next section, we will demonstrate that one can save 1/
√
𝛼 run time.

5.2 Accelerated methods

Nesterov’s Accelerated Gradient (NAG) Method. Given a strongly
convex function 𝑓 , NAG method [71], at 𝑡-th iteration, updates two
vectors 𝒚𝑡 and 𝒛𝑡 . It updates 𝒚𝑡 with the help of 𝒛𝑡 (with 𝒛0 = 𝒚0)
as the following

𝒛𝑡 = 𝒚𝑡−1 − 𝜂𝑡∇𝑓 (𝒚𝑡−1)
𝒚𝑡 = 𝒛𝑡 + 𝛽𝑡 (𝒛𝑡 − 𝒛𝑡−1).

If we set 𝜂𝑡 = 1/(2 − 𝛼) and 𝛽𝑡 = (1 − 𝜅)/(1 + 𝜅) with the inverse
square root of condition number 𝜅 =

√︁
(2 − 𝛼)/𝛼 , then we can

write the iteration in one line as the following iteration procedure

NAG: 𝒚𝑡+1 = 2
[
𝜂 (𝑰 + �̃� )𝒚𝑡

]
− (1−𝜅)

[
𝜂 (𝑰 + �̃� )𝒚𝑡−1] +𝜅2𝒔, (18)



KDD ’23, August 6–10, 2023, Long Beach, CA, USA. Zhen Chen, Xingzhi Guo, Baojian Zhou, Deqing Yang, and Steven Skiena

where 𝜂 = (1 − 𝛼)/((2 − 𝛼) (1 + 𝜅)) and 𝒚0 = 0,𝒚1 = 𝛼𝑫−1/2𝒆𝑠 .
Notice that (𝑰 + �̃� )𝒚𝑡 can be used for the next iteration; hence the
per-iteration operations are at most𝑚. Then we have the following
convergence rate for ℓ1 estimation error of 𝒙∗.

Theorem 6. Let 𝒚𝑡+1 be the estimated vector returned by NAG
method using iteration (18) (with 𝒛0 = 𝒚0 = 0) and let 𝒙𝑡 = 𝑫1/2𝒚𝑡 ,
then the estimation error of 𝒙∗ is upper bounded by

∥𝒙𝑡 − 𝒙∗∥1 ≤ 𝑑max

√︂
2𝑛
𝛼

exp

(
− 𝑡 − 1

2
√︁
(2 − 𝛼)/𝛼

)
. (19)

And the total number of operations required for 𝜖-precision of per-
entry of 𝒙𝑡 − 𝒙∗, i.e., ∥𝒙𝑡 − 𝒙∗∥∞ ≤ 𝜖 is

𝑅𝑇 = O
(
𝑚
√
𝛼

log

(
𝑑max
𝜖

√︂
2𝑛
𝛼

))
. (20)

Proof. The proof can be found at Appendix C. □

Remark 7. When high precision is required, and𝛼 is small, FwdPush
is likely not a local method, meaning the per-epoch needs to touch
the whole graph, hence the total complexity is about O(𝑚𝛼 log 1

𝜖 ).
Compared with the bound provided in Thm. 8, NAG method is 1/

√
𝛼

times faster. However, whether there exists a local acceleration-based
method like bound O

( vol(𝑆 )√
𝛼

log 1
𝜖

)
is still an open problem [34].

Polyak’s Heavy Ball (HB) method. Similar to the NAG method,
the other popular momentum-based acceleration method is the
Heavy Ball method [75]; different from the NAG method, the HB
method updates 𝒚𝑡 as the following

𝒚𝑡+1 = 𝒚𝑡 − 𝜂𝑡∇𝑓 (𝒚𝑡 ) + 𝛽𝑡 (𝒚𝑡 −𝒚𝑡−1),
where we set 𝜂𝑡 = 4/(

√
2 − 𝛼 +

√
𝛼)2 and 𝛽𝑡 = ((1 − 𝜅)/(1 + 𝜅))2,

we can reach the following update method:

𝒚𝑡+1 = 2(1 − 𝛼) 1 + 𝜅2

(1 + 𝜅)2 �̃�𝒚
𝑡 − (1 − 𝜅)2

(1 + 𝜅)2𝒚
𝑡−1 + 2𝛼 (1 + 𝜅2)

(1 + 𝜅)2 𝒔 .

By changing variable 𝑫1/2𝒚𝑡+1 = 𝒙𝑡+1, we have HB

𝒙𝑡+1 =
2𝛼 (1 + 𝜅2)
(1 + 𝜅)2 𝑨𝑫−1𝒙𝑡 − (1 − 𝜅)2

(1 + 𝜅)2 𝒙
𝑡−1 + 2(1 − 𝛼) (1 + 𝜅2)

(1 + 𝜅)2 𝒗 .

Compared with local linear methods such as CD and FwdPush,
the NAG and HB method admits a better convergence rate where
the total number of iterations is about O(𝑚/

√
𝛼) compared with

linear ones O(𝑚/𝛼). Hence O(1/
√
𝛼) times faster than methods

presented in Sec. 4. One can also consider the most popular method,
the conjugate gradient method [79], which also has a better con-
vergence rate than the standard gradient descent method and is the
same as our momentum-based methods. However, our two methods
are easier to implement.

6 EXPERIMENTS

We conduct experiments on 6 real-world benchmark graphs to
evaluate our proposed PPV algorithms, including HB, NAG, and
FwdPushSOR, and PwrPushSOR, which is the combination of
PwrPush [89] and SOR. In the experiments, we aim to answer the
following question: How fast are these proposed methods compared

with baselines in terms of run time and the number of operations
needed for different settings of 𝛼? The results demonstrate the
supreme efficiency boosted by SOR, achieving 2-3 times faster than
strong baselines when 𝛼 = 0.15.
Datasets. We use both directed graphs (dblp [90], products [51]
and orkut [90]) as well as undirected graphs (web-Stanford [54],
pokec [83],livejournal [11]). These are the most common datasets for
benchmark PPR algorithms. We remove nodes with no in-degrees
or out-degrees (dangling nodes), relabel the rest nodes, and use two
directed edges to denote an undirected edge. Table 1 presents the
detailed statistics.

Table 1: Datasets statistics

Dataset 𝑛 𝑚 Type of G
dblp 317,080 1,049,866 undirected
products 2,449,029 123,718,280 undirected
orkut 3,072,441 117,185,083 undirected
web-Stanford 281,903 2,312,497 directed
livejournal 4,847,571 68,993,773 directed
pokec 1,632,803 30,622,564 directed

Baselines. We compare our proposed algorithms with three state-
of-the-art baselines: FwdPush [6], PowItr, and PwrPush [89],
a variant of FwdPush. We use the proposed SOR technique to
implement both FwdPushSOR and PwrPushSOR. For choosing
the relaxation parameter 𝜔 : 1) for undirected graphs, we directly
use optimal value in (9); 2) for directed graphs, we take an adaptive
strategy described in Sec. 4 to search 𝜔 where we set the minimal
𝜔 = 1 with step size 0.1 to the maximal value defined in Sec. 4. We
only record the time consumed by the best 𝜔 .
Experiment Settings. For each graph, we uniformly sample 50
nodes for PPV calculation with 𝜖 = min

(
1/108, 1/𝑚

)
(same as [89])

and repeat experiments 5 times, recording the average running time,
the number of residual updates, and the corresponding ℓ1-error.
Note that the number of residual updates reflects the theoretical
complexity regardless of the overheads incurred by various data
structures. We measure PPV precision using ℓ1 error ∥𝒙𝑡 − 𝒙∗∥1
which can be measured by ∥𝒓𝑡 ∥1.
Infrastructure and Implementation. All experiments were con-
ducted on a machine equipped with an Intel Xeon Gold 5218R
CPU @ 2.10GHz (80 cores) with 256GB Memory. All algorithms are
implemented in Python with the Numba library.4

6.1 Experimental results

SOR-based methods are faster and need much less number

of operations on both undirected and directed graphs. A-F
of Fig. 4 and 5 present the run time and the number of operations of
PPV methods when 𝛼 = 0.15, respectively. First, SOR-based meth-
ods are more than 2 times faster than their counterparts on both
undirected and directed graphs shown in Fig. 4 (A-F). This confirms
our SOR-based methods effectively speed up their counterparts.
Note that by using a continuous memory access strategy, PwrPush
and PwrPushSOR is, in general, faster than FwdPush and Fwd-
PushSOR even if the number of operations for both is similar as
shown in Fig. 5 (A-F). Indeed, our SOR-based methods save half of
4https://numba.pydata.org/

https://numba.pydata.org/


Accelerating Personalized PageRank Vector Computation KDD ’23, August 6–10, 2023, Long Beach, CA, USA.

0 5 10
Time

10 8

10 6

10 4

10 2

1

xt
x

*

(A) dblp

FwdPush PowItr HB NAG PwrPush PwrPushSOR FwdPushSOR

0 200 400
Time

(B) orkut

0 200 400 600
Time

(C) products

0 1 2 3
Time

(D) web-Stanford

0 50 100
Time

(E) livejournal

0 25 50 75
Time

(F) pokec

Figure 4: Estimation error v.s. run time (seconds), 𝛼 = 0.15.

0.0 0.5 1.0 1.5
#updates 1e8

10 8

10 6

10 4

10 2

1

xt
x

*

(A) dblp

0 1
#updates 1e10
(B) orkut

0.0 0.5 1.0
#updates 1e10

(C) products

0 2 4 6
#updates 1e8

(D) web-Stanford

0 2 4
#updates 1e9

(E) livejournal

0 1 2
#updates 1e9
(F) pokec

Figure 5: Estimation error v.s. #residue updates (total operations), 𝛼 = 0.15

the total operations. As shown in the appendix, we observed more
significant speedup results when 𝛼 = 0.05. The speedup advantages
still exist even when 𝛼 is large, i.e., 𝛼 = 0.2 and 0.25.

Acceleration-based methods are faster and need fewer op-

erations for undirected graphs. (A, B, C) of Fig. 4 and 5 present
results on undirected graphs. Among all methods, HB and NAG
are faster than these non-acceleration methods but also use fewer
operations. When 𝛼 = 0.05 is a smaller value, the gap is more sig-
nificant, as seen in Fig. 10 and 11. These results verify the O(1/

√
𝛼)

times faster predicted by our theorem. However, compared with
these local methods, the speedup of acceleration-based methods is
insignificant. One may expect a local version of acceleration-based
methods could further improve HB and NAG. PwrIter as a global
method uses more operations than FwdPush but requires less run
time, as shown in the results of directed graphs. This is, again, be-
cause PwrIter uses a continuous memory access strategy while
the nodes in the queue of FwdPush are randomly ordered, thus
slowing down the process.

Local linear convergence rate of FwdPush. To empirically
answer Q1 asked in Sec. 1, we show that FwdPush has local linear
convergence rate even when 𝜖 > (2𝑚)−1. To do this, we simply set
𝜖 = 1/𝑚, randomly pick a node from three directed graphs, and
then run FwdPush. The convergence rates are illustrated in Fig.
6. These linear decay rates of estimation error are consistent with
Thm. 2. We found similar patterns on undirected graphs.

7 DISCUSSION

This paper examines the calculation of PPV for directed and undi-
rected graphs. We show that the commonly used local method for
undirected graphs, FwdPush, is a variation of Gauss-Seidel. To
improve the efficiency of FwdPush, we propose to use the SOR

200 400 600 800
#updates

10 1

10 2

10 3

x
t

x
*

(A) web-Stanford

0.5 1.0
#updates 1e9

(B) livejournal

2 4 6
#updates 1e8

(C) pokec

Figure 6: Locally linear convergence of FwdPush. For each

directed graph, we randomly pick up a node and run Fwd-

Push with 𝜖 = 1/𝑚.

technique. Our SOR-based methods can successfully speed up cur-
rent local methods significantly. Our SOR-based and acceleration
methods could help build large-scale graph neural networks. It is
worth seeing whether the SOR technique can be applied to the
dynamic graph computation of PPVs. Additionally, we demonstrate
that momentum-based acceleration methods can be used to obtain
the PPV calculation for undirected graphs, providing O(1/

√
𝛼) ac-

celeration. Both acceleration methods are easy to implement and
perform faster than other local methods when 𝛼 is small. As a future
work, it is interesting to see if it is possible to reduce O(𝑚) from
the bound in Thm. 8 to a local quantity.

8 ACKNOWLEDGEMENT

The authors would like to thank the anonymous reviewers for
their helpful comments. The work of Baojian Zhou is sponsored
by Shanghai Pujiang Program (No. 22PJ1401300). The work of
Deqing Yang is supported by Chinese NSF Major Research Plan
No.92270121, Shanghai Science and Technology Innovation Action
Plan No.21511100401. Steven Skiena was partially supported by
NSF grants IIS-1926781, IIS-1927227, IIS-1546113, OAC-191952, and
a New York State Empire Innovation grant.



KDD ’23, August 6–10, 2023, Long Beach, CA, USA. Zhen Chen, Xingzhi Guo, Baojian Zhou, Deqing Yang, and Steven Skiena

REFERENCES

[1] Alekh Agarwal and Leon Bottou. 2015. A lower bound for the optimization of
finite sums. In International conference on machine learning. PMLR, 78–86.

[2] Zeyuan Allen-Zhu and Lorenzo Orecchia. 2014. Linear coupling: An ultimate
unification of gradient and mirror descent. arXiv preprint arXiv:1407.1537 (2014).

[3] Zeyuan Allen-Zhu, Zheng Qu, Peter Richtárik, and Yang Yuan. 2016. Even faster
accelerated coordinate descent using non-uniform sampling. In International
Conference on Machine Learning. PMLR, 1110–1119.

[4] Reid Andersen, Christian Borgs, Jennifer Chayes, John Hopcraft, Vahab S Mir-
rokni, and Shang-Hua Teng. 2007. Local computation of PageRank contributions.
In WAW, Vol. 4863. Springer, 150–165.

[5] Reid Andersen, Christian Borgs, Jennifer Chayes, John Hopcroft, Kamal Jain,
Vahab Mirrokni, and Shanghua Teng. 2008. Robust PageRank and locally com-
putable spam detection features. In Proceedings of the 4th international workshop
on Adversarial information retrieval on the web. 69–76.

[6] Reid Andersen, Fan Chung, and Kevin Lang. 2006. Local graph partitioning
using PageRank vectors. In 2006 47th Annual IEEE Symposium on Foundations of
Computer Science (FOCS’06). IEEE, 475–486.

[7] William N Anderson Jr and Thomas DMorley. 1985. Eigenvalues of the Laplacian
of a graph. Linear and multilinear algebra 18, 2 (1985), 141–145.

[8] Anton Anikin, Alexander Gasnikov, Alexander Gornov, Dmitry Kamzolov, Yury
Maximov, and Yurii Nesterov. 2020. Efficient numerical methods to solve sparse
linear equations with application to PageRank. Optimization Methods and Soft-
ware (2020), 1–29.

[9] Arvind Arasu, Jasmine Novak, Andrew Tomkins, and John Tomlin. 2002. PageR-
ank computation and the structure of the web: Experiments and algorithms. In
Proceedings of the eleventh international World Wide Web conference, poster track.
107–117.

[10] Yossi Arjevani, Shai Shalev-Shwartz, and Ohad Shamir. 2016. On Lower and
Upper Bounds in Smooth and Strongly Convex Optimization. JMLR 17, 1 (2016),
4303–4353.

[11] Lars Backstrom, Dan Huttenlocher, Jon Kleinberg, and Xiangyang Lan. 2006.
Group formation in large social networks: membership, growth, and evolution.
In Proceedings of the 12th ACM SIGKDD international conference on Knowledge
discovery and data mining. 44–54.

[12] Bahman Bahmani, Abdur Chowdhury, and Ashish Goel. 2010. Fast Incremental
and Personalized PageRank. Proceedings of the VLDB Endowment 4, 3 (2010).

[13] Amir Beck and Marc Teboulle. 2009. A Fast Iterative Shrinkage-Thresholding
Algorithm for Linear Inverse Problems. SIAM Journal on Imaging Sciences 2, 1
(2009), 183–202.

[14] Andras A Benczur, Karoly Csalogany, Tamas Sarlos, and Mate Uher. 2005.
Spamrank–fully automatic link spam detection work in progress. In Proceedings
of the first international workshop on adversarial information retrieval on the web.
1–14.

[15] Pavel Berkhin. 2006. Bookmark-coloring algorithm for personalized PageRank
computing. Internet Mathematics 3, 1 (2006), 41–62.

[16] Abraham Berman and Robert J Plemmons. 1994. Nonnegative matrices in the
mathematical sciences. SIAM.

[17] Aleksandar Bojchevski, Johannes Klicpera, Bryan Perozzi, Martin Blais, Amol
Kapoor, Michal Lukasik, and Stephan Günnemann. 2019. Is PageRank all you
need for scalable graph neural networks?. In ACM KDD, MLG Workshop.

[18] Aleksandar Bojchevski, Johannes Klicpera, Bryan Perozzi, Amol Kapoor, Martin
Blais, Benedek Rózemberczki, Michal Lukasik, and Stephan Günnemann. 2020.
Scaling graph neural networks with approximate PageRank. In Proceedings of
the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining. 2464–2473.

[19] Paolo Boldi, Roberto Posenato, Massimo Santini, and Sebastiano Vigna. 2006.
Traps and pitfalls of topic-biased PageRank. In International Workshop on Algo-
rithms and Models for the Web-Graph. Springer, 107–116.

[20] Paolo Boldi, Massimo Santini, and Sebastiano Vigna. 2005. PageRank as a function
of the damping factor. In Proceedings of the 14th international conference on World
Wide Web. 557–566.

[21] Stephen Boyd. 2006. Convex optimization of graph Laplacian eigenvalues. In
Proceedings of the International Congress of Mathematicians, Vol. 3. 1311–1319.

[22] Sergey Brin and Lawrence Page. 1998. The anatomy of a large-scale hypertextual
web search engine. Computer networks and ISDN systems 30, 1-7 (1998), 107–117.

[23] Andrei Broder, Ravi Kumar, Farzin Maghoul, Prabhakar Raghavan, Sridhar Ra-
jagopalan, Raymie Stata, Andrew Tomkins, and Janet Wiener. 2011. Graph
structure in the web. In The Structure and Dynamics of Networks. Princeton
University Press, 183–194.

[24] Sébastien Bubeck et al. 2015. Convex optimization: Algorithms and complexity.
Foundations and Trends® in Machine Learning 8, 3-4 (2015), 231–357.

[25] Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. 2020.
Simple and deep graph convolutional networks. In International conference on
machine learning. PMLR, 1725–1735.

[26] Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh.
2019. Cluster-gcn: An efficient algorithm for training deep and large graph

convolutional networks. In Proceedings of the 25th ACM SIGKDD international
conference on knowledge discovery & data mining. 257–266.

[27] Edmond Chow, Andreas Frommer, and Daniel B Szyld. 2021. Asynchronous
Richardson iterations: theory and practice. Numerical Algorithms 87, 4 (2021),
1635–1651.

[28] Fan RK Chung and Fan Chung Graham. 1997. Spectral graph theory. Number 92.
American Mathematical Soc.

[29] Aaron Clauset, Cosma Rohilla Shalizi, and Mark EJ Newman. 2009. Power-law
distributions in empirical data. SIAM review 51, 4 (2009), 661–703.

[30] Anna Concas, Lothar Reichel, Giuseppe Rodriguez, and Yunzi Zhang. 2021. Itera-
tive Methods for the Computation of the Perron Vector of Adjacency Matrices.
Mathematics 9, 13 (2021), 1522.

[31] Alessandro Epasto, Vahab Mirrokni, Bryan Perozzi, Anton Tsitsulin, and Peilin
Zhong. 2022. Differentially Private Graph Learning via Sensitivity-Bounded Per-
sonalized PageRank. In NeurIPS 2022 Workshop: New Frontiers in Graph Learning.
https://openreview.net/forum?id=dzVZGSe0NoJ

[32] Dániel Fogaras, Balázs Rácz, Károly Csalogány, and Tamás Sarlós. 2005. Towards
scaling fully personalized PageRank: Algorithms, lower bounds, and experiments.
Internet Mathematics 2, 3 (2005), 333–358.

[33] Kimon Fountoulakis, Farbod Roosta-Khorasani, Julian Shun, Xiang Cheng, and
Michael W Mahoney. 2019. Variational perspective on local graph clustering.
Mathematical Programming 174, 1 (2019), 553–573.

[34] Kimon Fountoulakis and Shenghao Yang. 2022. Open Problem: Running time
complexity of accelerated ℓ1-regularized PageRank. In Conference on Learning
Theory. PMLR, 5630–5632.

[35] Johannes Gasteiger, Aleksandar Bojchevski, and Stephan Günnemann. 2019.
Predict then Propagate: Graph Neural Networks meet Personalized PageRank. In
International Conference on Learning Representations.

[36] Johannes Gasteiger, Stefan Weißenberger, and Stephan Günnemann. 2019. Diffu-
sion improves graph learning. Advances in neural information processing systems
32 (2019).

[37] Claudio Gentile. 2003. The robustness of the p-norm algorithms. Machine
Learning 53, 3 (2003), 265–299.

[38] David F Gleich. 2015. PageRank Beyond theWeb. SIAM Rev. 57, 3 (2015), 321–363.
[39] David F Gleich, Andrew P Gray, Chen Greif, and Tracy Lau. 2010. An inner-outer

iteration for computing PageRank. SIAM Journal on Scientific Computing 32, 1
(2010), 349–371.

[40] David F Gleich, Lek-Heng Lim, and Yongyang Yu. 2015. Multilinear PageRank.
SIAM J. Matrix Anal. Appl. 36, 4 (2015), 1507–1541.

[41] Gene H Golub and Charles F Van Loan. 2013. Matrix computations. JHU press.
[42] Anne Greenbaum. 1997. Iterative methods for solving linear systems. SIAM.
[43] Vince Grolmusz. 2015. A note on the PageRank of undirected graphs. Inform.

Process. Lett. 115, 6-8 (2015), 633–634.
[44] Xingzhi Guo, Baojian Zhou, and Steven Skiena. 2021. Subset Node Representation

Learning over Large Dynamic Graphs. In Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining. 516–526.

[45] Wolfgang Hackbusch. 1994. Iterative solution of large sparse systems of equations.
Vol. 95. Springer.

[46] Kaveh Hassani and Amir Hosein Khasahmadi. 2020. Contrastive multi-view rep-
resentation learning on graphs. In International Conference on Machine Learning.
PMLR, 4116–4126.

[47] Taher Haveliwala and Sepandar Kamvar. 2003. The second eigenvalue of the Google
matrix. Technical Report. Stanford.

[48] Taher H Haveliwala. 2003. Topic-sensitive PageRank: A context-sensitive ranking
algorithm for web search. IEEE transactions on knowledge and data engineering
15, 4 (2003), 784–796.

[49] Magnus Rudolph Hestenes, Eduard Stiefel, et al. 1952. Methods of conjugate
gradients for solving linear systems. Vol. 49. NBS Washington, DC.

[50] Sungpack Hong, Nicole C Rodia, and Kunle Olukotun. 2013. On fast parallel
detection of strongly connected components (SCC) in small-world graphs. In
Proceedings of the International Conference on High Performance Computing, Net-
working, Storage and Analysis. 1–11.

[51] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu,
Michele Catasta, and Jure Leskovec. 2020. Open graph benchmark: Datasets for
machine learning on graphs. Advances in neural information processing systems
33 (2020), 22118–22133.

[52] Glen Jeh and Jennifer Widom. 2003. Scaling personalized web search. In Proceed-
ings of the 12th international conference on World Wide Web. 271–279.

[53] Jürgen Jost, RaffaellaMulas, and FlorentinMünch. 2021. Spectral gap of the largest
eigenvalue of the normalized graph Laplacian. Communications in Mathematics
and Statistics (2021), 1–11.

[54] Jinhong Jung, Namyong Park, Sael Lee, and U Kang. 2017. Bepi: Fast and memory-
efficient method for billion-scale random walk with restart. In Proceedings of the
2017 ACM International Conference on Management of Data. 789–804.

[55] Sepandar D Kamvar, Taher H Haveliwala, Christopher D Manning, and Gene H
Golub. 2003. Extrapolation methods for accelerating PageRank computations. In
Proceedings of the 12th international conference on World Wide Web. 261–270.

https://openreview.net/forum?id=dzVZGSe0NoJ


Accelerating Personalized PageRank Vector Computation KDD ’23, August 6–10, 2023, Long Beach, CA, USA.

[56] Sai Praneeth Karimireddy, Anastasia Koloskova, Sebastian U Stich, and Martin
Jaggi. 2019. Efficient greedy coordinate descent for composite problems. In
The 22nd International Conference on Artificial Intelligence and Statistics. PMLR,
2887–2896.

[57] Jonathan A Kelner, Lorenzo Orecchia, Aaron Sidford, and Zeyuan Allen Zhu. 2013.
A simple, combinatorial algorithm for solving SDD systems in nearly-linear time.
In Proceedings of the forty-fifth annual ACM symposium on Theory of computing.
911–920.

[58] Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. 2019. Pre-
dict then Propagate: Graph Neural Networks meet Personalized PageRank. In
International Conference on Learning Representations (ICLR).

[59] Johannes Klicpera, Chandan Yeshwanth, and Stephan Günnemann. 2021. Di-
rectional Message Passing on Molecular Graphs via Synthetic Coordinates. In
Thirty-Fifth Conference on Neural Information Processing Systems.

[60] Amy N Langville and Carl D Meyer. 2011. Google’s PageRank and beyond. Prince-
ton university press.

[61] Chris Pan-Chi Lee, Gene H Golub, and Stefanos A Zenios. 2003. A fast two-stage
algorithm for computing PageRank and its extensions. Technical Report. Citeseer.

[62] Yin Tat Lee and Aaron Sidford. 2013. Efficient accelerated coordinate descent
methods and faster algorithms for solving linear systems. In 2013 ieee 54th annual
symposium on foundations of computer science. IEEE, 147–156.

[63] Peter Lofgren. 2015. Efficient algorithms for personalized PageRank. Stanford
University.

[64] Peter Lofgren, Siddhartha Banerjee, and Ashish Goel. 2016. Personalized PageR-
ank estimation and search: A bidirectional approach. In Proceedings of the Ninth
ACM International Conference on Web Search and Data Mining. 163–172.

[65] Haihao Lu, Robert Freund, and Vahab Mirrokni. 2018. Accelerating greedy
coordinate descent methods. In International Conference on Machine Learning.
PMLR, 3257–3266.

[66] DORIN Marghidanu. 2008. Generalizations and refinements for Bergstrom and
Radon’s inequalities. Journal of Science and Arts 8, 1 (2008), 57–62.

[67] FrankMcSherry. 2005. A uniform approach to accelerated PageRank computation.
In Proceedings of the 14th international conference on World Wide Web. 575–582.

[68] Robert Meusel, Sebastiano Vigna, Oliver Lehmberg, and Christian Bizer. 2014.
Graph structure in the web—revisited: a trick of the heavy tail. In Proceedings of
the 23rd international conference on World Wide Web. 427–432.

[69] Bojan Mohar. 1991. Eigenvalues, diameter, and mean distance in graphs. Graphs
and combinatorics 7, 1 (1991), 53–64.

[70] Deanna Needell, Rachel Ward, and Nati Srebro. 2014. Stochastic gradient descent,
weighted sampling, and the randomized kaczmarz algorithm. Advances in neural
information processing systems 27 (2014), 1017–1025.

[71] Yurii Nesterov. 2003. Introductory lectures on convex optimization: A basic course.
Vol. 87. Springer Science & Business Media.

[72] Yurii E Nesterov. 1983. A method for solving the convex programming problem
with convergence rate O (1/kˆ 2). In Dokl. akad. nauk Sssr, Vol. 269. 543–547.

[73] Julie Nutini, Mark Schmidt, Issam Laradji, Michael Friedlander, and Hoyt Koepke.
2015. Coordinate descent converges faster with the gauss-southwell rule than
random selection. In International Conference on Machine Learning. PMLR, 1632–
1641.

[74] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. The
PageRank Citation Ranking: Bringing Order to the Web. Technical Report 1999-66.
Previous number = SIDL-WP-1999-0120.

[75] Boris T Polyak. 1964. Some methods of speeding up the convergence of iteration
methods. Ussr computational mathematics and mathematical physics 4, 5 (1964),
1–17.

[76] Ştefan Postăvaru, Anton Tsitsulin, Filipe Miguel Gonçalves de Almeida, Yingtao
Tian, Silvio Lattanzi, and Bryan Perozzi. 2020. InstantEmbedding: Efficient Local
Node Representations. arXiv preprint arXiv:2010.06992 (2020).

[77] Samantha Samuelson, Hesameddin Mohammadi, and Mihailo R Jovanović. 2020.
Transient growth of accelerated first-order methods. In 2020 American Control
Conference (ACC). IEEE, 2858–2863.

[78] Damien Scieur, Alexandre d’Aspremont, and Francis Bach. 2020. Regularized
nonlinear acceleration. Mathematical Programming 179, 1 (2020), 47–83.

[79] Jonathan Richard Shewchuk et al. 1994. An introduction to the conjugate gradient
method without the agonizing pain.

[80] Daniel A Spielman and Shang-Hua Teng. 2014. Nearly linear time algorithms
for preconditioning and solving symmetric, diagonally dominant linear systems.
SIAM J. Matrix Anal. Appl. 35, 3 (2014), 835–885.

[81] Nikita Spirin and Jiawei Han. 2012. Survey on web spam detection: principles
and algorithms. ACM SIGKDD explorations newsletter 13, 2 (2012), 50–64.

[82] Thomas Strohmer and Roman Vershynin. 2009. A randomized Kaczmarz algo-
rithm with exponential convergence. Journal of Fourier Analysis and Applications
15, 2 (2009), 262–278.

[83] Lubos Takac and Michal Zabovsky. 2012. Data analysis in public social networks.
In International scientific conference and international workshop present day trends
of innovations, Vol. 1. Present Day Trends of Innovations Lamza Poland.

[84] Zekun Tong, Yuxuan Liang, Henghui Ding, Yongxing Dai, Xinke Li, and Changhu
Wang. 2021. Directed Graph Contrastive Learning. Advances in Neural Informa-
tion Processing Systems 34 (2021).

[85] Zekun Tong, Yuxuan Liang, Changsheng Sun, Xinke Li, David Rosenblum, and
Andrew Lim. 2020. Digraph inception convolutional networks. Advances in
neural information processing systems 33 (2020), 17907–17918.

[86] Anton Tsitsulin, Davide Mottin, Panagiotis Karras, and Emmanuel Müller. 2018.
Verse: Versatile graph embeddings from similarity measures. In Proceedings of
the 2018 world wide web conference. 539–548.

[87] Hanzhi Wang, Zhewei Wei, Junhao Gan, Sibo Wang, and Zengfeng Huang. 2020.
Personalized PageRank to a target node, revisited. In Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.
657–667.

[88] Stephen J Wright. 2015. Coordinate descent algorithms. Mathematical Program-
ming 151, 1 (2015), 3–34.

[89] Hao Wu, Junhao Gan, Zhewei Wei, and Rui Zhang. 2021. Unifying the Global and
Local Approaches: An Efficient Power Iteration with Forward Push. In Proceedings
of the 2021 International Conference on Management of Data. 1996–2008.

[90] Jaewon Yang and Jure Leskovec. 2012. Defining and evaluating network commu-
nities based on ground-truth. In Proceedings of the ACM SIGKDD Workshop on
Mining Data Semantics. 1–8.

[91] David Young. 1954. Iterative methods for solving partial difference equations of
elliptic type. Trans. Amer. Math. Soc. 76, 1 (1954), 92–111.

[92] Hongyang Zhang, Peter Lofgren, and Ashish Goel. 2016. Approximate person-
alized PageRank on dynamic graphs. In Proceedings of the 22nd ACM SIGKDD
international conference on knowledge discovery and data mining. 1315–1324.

[93] Muhan Zhang and Yixin Chen. 2018. Link prediction based on graph neural
networks. Advances in Neural Information Processing Systems 31 (2018), 5165–
5175.



KDD ’23, August 6–10, 2023, Long Beach, CA, USA. Zhen Chen, Xingzhi Guo, Baojian Zhou, Deqing Yang, and Steven Skiena

A STOCHASTIC MATRIX OF G AND DANGLING NODES

Given the directed graph G, we present several standard ways to construct row stochastic matrix 𝑷 . Recall 𝑫 is the diagonal out-degree
matrix of G and 𝑨 is the associated adjacency matrix of G. Case 1. If all nodes in V are not dangling nodes, that is, each node has at least
one outgoing edge, then 𝑷 = 𝑫−1𝑨; Case 2. If some nodes are dangling nodes, two popular ways to create 𝑷 . Let 𝑆 = {𝑣 : 𝑑𝑣 = 0, 𝑣 ∈ V} be
the set of dangling nodes.

• For each dangling node, we create𝑛 edges pointing all nodes, and the augmented degree matrix is𝑫′ = 𝑫+𝑛 diag(1𝑆 ). So, 𝑷 = (𝐷′)−1𝑨.
• We add a dummy node 𝑣 and create |𝑆 | edges pointing from 𝑆 to 𝑣 meanwhile adding self-loop for node 𝑣 . Hence, 𝑷 =

[
𝑫−1𝑨; [1⊤

𝑆
, 1]

]
where ; is the sign of row append.

For more options of creating 𝑷 , one can refer to Section 3 of Gleich [38].

B STRONGLY-CONVEX AND SMOOTH OF 𝑓 AND THE CONVERGENCE OF NAG METHOD

Given a convex function 𝑓 : R𝑛 → R, we say 𝑓 is 𝜇-strongly convex if ∀𝒙,𝒚 ∈ R𝑛 , we have

𝑓 (𝒙) − 𝑓 (𝒚) ≤ ∇𝑓 (𝒙)⊤ (𝒙 −𝒚) − 𝜇

2
∥𝒙 −𝒚∥2

2 .

We say 𝑓 is 𝐿-smooth, if for all 𝒙,𝒚 ∈ 𝑅𝑛 , we have

𝑓 (𝒙) − 𝑓 (𝒚) − ∇𝑓 (𝒚)⊤ (𝒙 −𝒚) ≤ 𝐿

2
∥𝒙 −𝒚∥2

2 .

Define Nesterov’s Accelerated Gradient descent method (NAG) as the following iteration procedure

𝒚𝑡+1 = 𝒙𝑡 −
1
𝛽
∇𝑓 (𝒙𝑡 ) ,

𝒙𝑡+1 =

(
1 +

√
𝜅 − 1

√
𝜅 + 1

)
𝒚𝑡+1 −

√
𝜅 − 1

√
𝜅 + 1

𝒚𝑡 ,

where 𝜅 = 𝐿/𝜇 is the condition number of 𝑓 .

Theorem 8 ([24]). Let 𝑓 be 𝜇-strongly convex and 𝐿-smooth, then NAG method has the following convergence rate

𝑓 (𝒚𝑡 ) − 𝑓
(
𝒙∗

)
≤ 𝜇 + 𝐿

2
𝒙1 − 𝒙∗

2
2 exp

(
− 𝑡 − 1

√
𝜅

)
. (21)

C PROOF OF THEOREM 6

Proof. Notice that 𝑓 defined in (16) is 𝛼-strongly convex and (2 − 𝛼)-strongly smooth. Hence letting 𝜇 = 𝛼 and 𝐿 = 2 − 𝛼 , by applying
Thm. 8, we have

𝑓
(
𝒚𝑡

)
− 𝑓

(
𝒚∗

)
≤ 𝜇 + 𝐿

2
𝒙0 −𝒚∗

2
2 exp

(
− 𝑡
√
𝜅

)
=

𝒙0 −𝒚∗
2

2 exp

(
− 𝑡√︁

(2 − 𝛼)/𝛼

)
.

Note for any strongly convex function 𝑓 , the optimization error can also be lower bounded by 𝛼
2 ∥𝒚

𝑡 −𝒚∗∥2 ≤ 𝑓 (𝒚𝑡 ) − 𝑓 (𝒚∗), then we reach

𝛼

2
∥𝒚𝑡 −𝒚∗∥2

2 ≤ ∥𝒙0 −𝒚∗∥2
2 exp

(
− 𝑡√︁

(2 − 𝛼)/𝛼

)
,

as ∥𝒙0 −𝒚∗∥2 = ∥𝒚∗∥2 ≤ ∥𝒚∗∥1 = ∥𝑫−1/2𝒙∗∥1 ≤
√︁

1/𝑑min ≤ 1. Notice 𝒙𝑡+1 = 𝑫1/2𝒚𝑡+1, we then have

∥𝑫−1/2 (𝒙𝑡+1 − 𝒙∗)∥2 ≤
√︂

2
𝛼

exp

(
− 𝑡

2
√︁
(2 − 𝛼)/𝛼

)
Note for any 𝒙 ∈ R𝑛 , we have ∥𝒙 ∥1 ≤

√
𝑛∥𝒙 ∥2. Then we have

∥𝒙𝑡+1 − 𝒙∗∥1 ≤ 𝑑max

√︂
2𝑛
𝛼

exp

(
− 𝑡

2
√︁
(2 − 𝛼)/𝛼

)
Use the fact ∥𝒙𝑡+1 − 𝒙∗∥∞ ≤ ∥𝒙𝑡+1 − 𝒙∗∥1 and apply per-iteration operations𝑚 of each iteration, we have the above operation complexity
bound. □



Accelerating Personalized PageRank Vector Computation KDD ’23, August 6–10, 2023, Long Beach, CA, USA.

D MORE EXPERIMENTAL RESULTS

D.1 Power law distribution of PPVs

As shown in Fig. 7, we present the magnitudes of 𝒙∗ as a function of their ranks. We sort all magnitudes in descending order and label these
magnitudes from rank 1 to rank 𝑛. Evidently, these magnitudes adhere to the power law distribution with a cutoff, as described by Clauset
[29]. More specifically, let 𝑝 (𝑥) represent a magnitude where 𝑥 is the associated ranking ID; this yields the following relation

𝑝 (𝑥) ∝ 𝐿(𝑥)𝑥−𝑎, where 𝐿(𝑥) = 𝑒−𝑏𝑥 . (22)

One can find suitable parameters 𝑎 and 𝑏 to fit these curves using (22).

4 5
log Ranking

9

8

7

6

5

lo
g 

M
ag

ni
tu

de

(A) dblp

5 6
log Ranking

9

8

7

6

(B) orkut

5 6
log Ranking

12

10

8

6

(C) products

4 5
log Ranking

25

20

15

10

5

(D) webs

5 6
log Ranking

12

10

8

6

(E) lj

5 6
log Ranking

10

8

6

(F) pokec

Figure 7: The power law distribution of magnitudes 𝒙∗ of six graphs. We randomly pick one node from a graph and run the

power iteration algorithm to obtain high precision 𝒙∗. It is important to note that in this particular setting, the power law

distribution is characterized by a power law with a cutoff, as discussed in Clauset’s work [29].

D.2 Comparison of empirical bounds

To further validate the effectiveness of our parameterized bound, we carry out a series of experiments on two additional graph datasets,
specifically, livejournal and pokec shown in Fig. 8 and 9, respectively. When the value of 𝛼 is relatively small, our bound is similar to 𝐵1 for
small values of 𝜖 , and it is empirically tighter than 𝐵2, irrespective of whether 𝜖 is small or large. As 𝛼 increases, the comparative tightness of
our bound becomes markedly more pronounced.

10 9 10 7105

106

107

108

109

1010

N
um

be
r o

f O
pe

ra
tio

ns Real
B1
B2
Ours
m
n

10 9 10 7

105

106

107

108

109

1010

10 9 10 7

104

105

106

107

108

109

1010

Figure 8: The bounds of livejournal dataset as a function of 𝜖. The vertical line is where 𝜖 = (2𝑚)−1
. Left: 𝛼 = 0.15, Middle: 𝛼 = 0.5,

and Right: 𝛼 = 0.85.



KDD ’23, August 6–10, 2023, Long Beach, CA, USA. Zhen Chen, Xingzhi Guo, Baojian Zhou, Deqing Yang, and Steven Skiena

10 9 10 8 10 7 10 6

105

106

107

108

109

1010

N
um

be
r o

f O
pe

ra
tio

ns Real
B1
B2
Ours
m
n

10 9 10 8 10 7 10 6
104

105

106

107

108

109

1010

10 9 10 8 10 7 10 6
103

104

105

106

107

108

109

Figure 9: The bounds of pokec dataset as a function of 𝜖.

D.3 More experiments on the run time and the number of operations comparison

A-F of Fig. 10, 11, 12 and 13 present the run time and the number of operations of PPV methods when 𝛼 = 0.05 and 𝛼 = 0.2, respectively.
When compared to the setting where 𝛼 = 0.15, SOR-based methods exhibit a more significant improvement when 𝛼 = 0.05. For example, in
the dataset of products, our PwrPushSOR is more than 5 times faster than FwdPush method.

Observation of superlinear behavior. During the course of our experiments, we discerned that both PwrPushSOR and FwdPushSOR
exhibited the potential for superlinear behavior during the final few iterations. For example, when setting 𝛼 at 0.05, the runtime required by
PwrPushSOR displayed superlinearity in relation to ℓ1 error (see E of Fig. 10 and 11). Interestingly, this phenomenon mirrors the well-known
superlinear convergence behavior observed when employing the conjugate gradient method to solve large symmetric systems of equations.
This intriguing pattern certainly warrants further exploration and study.

0 5 10 15
Time

10 8

10 6

10 4

10 2

1

xt
x

*

(A) dblp

FwdPush PowItr HB NAG PwrPush PwrPushSOR FwdPushSOR

0 500 1000 1500
Time

(B) orkut

0 500 1000
Time

(C) products

0 2 4 6
Time

(D) web-Stanford

0 200 400
Time

(E) livejournal

0 100 200
Time

(F) pokec

Figure 10: Actual 𝑙1-error v.s. execution time (seconds), 𝛼 = 0.05.

0 2 4
#updates 1e8

10 8

10 6

10 4

10 2

1

xt
x

*

(A) dblp

0 2 4
#updates 1e10
(B) orkut

0 1 2
#updates 1e10

(C) products

0.0 0.5 1.0 1.5
#updates 1e9

(D) web-Stanford

0.0 0.5 1.0 1.5
#updates 1e10

(E) livejournal

0 2 4 6
#updates 1e9
(F) pokec

Figure 11: Actual 𝑙1-error v.s. #residue updates, 𝛼 = 0.05



Accelerating Personalized PageRank Vector Computation KDD ’23, August 6–10, 2023, Long Beach, CA, USA.

0 2 4 6
Time

10 8

10 6

10 4

10 2

1

xt
x

*

(A) dblp

FwdPush PowItr HB NAG PwrPush PwrPushSOR FwdPushSOR

0 50 100 150 200
Time

(B) orkut

0 100 200
Time

(C) products

0 1 2 3
Time

(D) web-Stanford

0 25 50 75 100
Time

(E) livejournal

0 20 40 60
Time

(F) pokec

Figure 12: Actual 𝑙1-error v.s. execution time (seconds), 𝛼 = 0.2.

0.0 0.5 1.0
#updates 1e8

10 8

10 6

10 4

10 2

1

xt
x

*

(A) dblp

0.0 0.5 1.0
#updates 1e10
(B) orkut

0.0 2.5 5.0 7.5
#updates 1e9

(C) products

0 2 4
#updates 1e8

(D) web-Stanford

0 2 4
#updates 1e9

(E) livejournal

0 1 2
#updates 1e9
(F) pokec

Figure 13: Actual 𝑙1-error v.s. #residue updates, 𝛼 = 0.2

Significant speedup of local SOR methods even with large 𝛼 . As depicted in Fig. 14 and Fig. 15, it is evident that the local SOR
method still requires fewer runtime operations to reach equivalent approximate solutions, even when 𝛼 is large. This consistently efficient
performance clearly underlines the effectiveness and versatility of our method across a broad spectrum of settings.

0 1 2 3
Time

10 8

10 6

10 4

10 2

1

xt
x

*

(A) dblp

FwdPush PowItr HB NAG PwrPush PwrPushSOR FwdPushSOR

0 50 100 150
Time

(B) orkut

0 50 100
Time

(C) products

0.0 0.5 1.0
Time

(D) web-Stanford

0 25 50 75
Time

(E) livejournal

0 20 40
Time

(F) pokec

Figure 14: Actual 𝑙1-error v.s. execution time (seconds), 𝛼 = 0.25.

0.0 0.5 1.0
#updates 1e8

10 8

10 6

10 4

10 2

1

xt
x

*

(A) dblp

0.0 0.5 1.0
#updates 1e10
(B) orkut

0 2 4 6
#updates 1e9

(C) products

0 2
#updates 1e8

(D) web-Stanford

0 1 2 3
#updates 1e9

(E) livejournal

0.0 0.5 1.0
#updates 1e9
(F) pokec

Figure 15: Actual 𝑙1-error v.s. #residue updates, 𝛼 = 0.25



KDD ’23, August 6–10, 2023, Long Beach, CA, USA. Zhen Chen, Xingzhi Guo, Baojian Zhou, Deqing Yang, and Steven Skiena

E FWDPUSH-MEAN ALGORITHM

We present FwdPush-Mean in Algo. 4. Compared with FwdPush, it computes the statistic of average residuals of active nodes 𝑟 at Line 8.
Residuals of nodes that are less than this average will postpone to the next epoch. Note the run time of computing 𝑟 is not bigger than |𝑆𝑡 |;
hence the total run time complexity will be the same as FwdPush. In practice, we found this strategy could help to reduce the total amount
of push operations as shown in Fig. 3.

Algorithm 4 FwdPush-Mean(G, 𝜖, 𝛼, 𝑠) with a dummy node
1: Initialization: 𝒓 = 𝒆𝑠 , 𝒙 = 0
2: Q = [𝑠, ‡] // Dummy node ‡ at the end of Q
3: 𝑡 = 0, 𝑡 ′ = 0
4: 𝑟 = 0
5: while Q.size() ≠ 1 do

6: 𝑢 = Q.pop()
7: if 𝑢 == ‡ then
8: 𝑟 =

∑
𝑖∈S𝑡

𝑟𝑖/𝑑𝑖
|S𝑡 |

9: Q.push(𝑢)
10: 𝑡 = 𝑡 + 1 // Next epoch time
11: continue

12: if
𝑟𝑢
𝑑𝑢

< 𝑟 then

13: 𝑄 .push(𝑢) // Postpone current active node to next
14: continue

15: 𝑥𝑢 = 𝑥𝑢 + 𝛼 · 𝑟𝑢
16: for 𝑣 ∈ Nei(𝑢) do
17: 𝑟𝑣 = 𝑟𝑣 + (1−𝛼 )𝑟𝑢

𝑑𝑢
18: if 𝑟𝑣 ≥ 𝜖𝑑𝑣 and 𝑣 ∉ 𝑄 then

19: Q.push(𝑣)
20: 𝑟𝑢 = 0
21: 𝑡 ′ = 𝑡 ′ + 1
22: Return 𝒙


	Abstract
	1 Introduction
	2 Related Work
	3 Preliminary
	3.1 Personalized PageRank Vector
	3.2 FwdPush algorithm

	4 Locality analysis of FwdPush
	4.1 FwdPush is a variant of Gauss-Seidel
	4.2 Local linear convergence of FwdPush

	5 Momentum-based Methods for PPVs
	5.1 Quadratic optimization lens
	5.2 Accelerated methods

	6 Experiments
	6.1 Experimental results

	7 Discussion
	8 acknowledgement
	References
	A Stochastic Matrix of G and dangling nodes
	B Strongly-convex and smooth of f and the convergence of NAG method
	C Proof of Theorem 6
	D More experimental results
	D.1 Power law distribution of PPVs
	D.2 Comparison of empirical bounds
	D.3 More experiments on the run time and the number of operations comparison

	E FwdPush-Mean algorithm

