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Many emerging applications of Visual SLAM running on
resource constrained hardware platforms impose very aggres-
sive pose accuracy requirements and highly demanding la-
tency constraints. To achieve the required pose accuracy un-
der constrained compute budget, real-time SLAM implemen-
tations have to work with few but highly repeatable and in-
variant features. While many state-of-the-art techniques, pro-
posed for selecting good features to track, do address some of
these concerns, they are computationally complex and there-
fore, not suitable for power, latency and cost sensitive edge
devices. On the other hand, simpler feature selection methods
based on detector (corner) score, lack in identifying features
with required invariance and trackability. We present a no-
tion of feature descriptor score as a measure of invariance un-
der distortions. We further propose feature selection method
based on descriptor score requiring very minimal compute
and demonstrate its performance with binary descriptors on
an EKF based visual inertial odometry (VIO). Compared to
detector score based methods, our method provides an im-
provement up to 10% in ATE (Absolute Trajectory Error)
score on EuroC dataset.
Index Terms— Real time SLAM, Low latency, AR/VR

1. INTRODUCTION

Visual SLAM is fundamental to navigation, robotics, immer-
sive experiences, automotive and many such applications.
Emerging use cases like AR/VR, HMDs, pico-drones [32]
running on highly constrained (power, compute, memory,
thermal), low-cost embedded platforms impose challenging
performance requirements for SLAM in terms of real-time
latency and pose accuracy. For example, AR/VR usecase
requires less than 20ms pose latency for immersive experi-
ence without motion sickness [17] and power consumption
needs to be in sub milli-watt range for battery operated mode
[32, 23].

Among many visual SLAM methods, sparse feature based
indirect SLAM methods (Figure 1) are preferred due to their
computational efficiency and robustness to photometric and
geometric distortions [26, 16, 27]. These methods select key
features, establish correspondence with features in previous
frames and solve for joint camera pose and feature locations
with solver methods like bundle adjustment (BA) or extended
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Figure 1: Sparse feature based Visual SLAM. It maintains list of fea-
tures (3D landmarks) to be tracked. The matches for these features
are searched in every subsequent frame

Kalman filter (EKF). To meet challenging performance re-
quirements with highly constrained resources, visual SLAM
methods need to consider following aspects: 1) process in-
put sensor data in single pass 2) maintain a minimal set of
high fidelity features and 3) avoid multiple iterative solver
stages. First one minimizes data-transfers from system mem-
ory for lower power and latency considerations which are es-
sential for SLAM on ultra low-cost, resource constrained sys-
tems. Second and third aim at reducing the compute com-
plexity without compromising on SLAM accuracy. Methods
like ORB-SLAM [26] can afford to ignore these considera-
tions to achieve high SLAM accuracy, as either they cater
to offline mode of operation or run on systems with massive
compute and power budget. But for real-time SLAM methods
maintaining the accuracy becomes quite challenging. Table 1
compares the accuracy (ATE scores) for ORB-SLAM[26] and
RC-SLAM[16] representing two categories of SLAM.

The compute complexity of feature based SLAM grows
in quadratic or cubic order with the number of features used
in feature matching and solver. The feature selection plays
a critical role to strike a balance between compute and accu-
racy requirements. In absence of good features, optimization
techniques like RANSAC [7], geometric consistency [26], re-
localization [26] are adopted, which require iterative search
and solver stages and often not suitable for real-time usages.
Therefore, we argue in favor of choosing feature point wisely.
Recent works such as [15, 11] have been proposed for im-

Streams V1 01 V2 01 V2 02 MH 01 MH 02 MH 02
ORB SLAM
(Mono) 0.015 0.015 0.017 0.070 0.066 0.071

RC-SLAM
(Visual Inertial Mono) 0.032 fail fail 0.32 0.59 1.38

Table 1: ATE for ORB-SLAM mono [25] and RC-SLAM mono. The
tracking part of ORB SLAM mono takes 30-34 ms/frame whereas
RC-SLAM takes 6-7 ms/frame on Intel i7@3.7 Ghz.
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proved feature selection based on machine learning methods.
They promise high fidelity features but require significantly
high compute resources. Also, the training with controlled
environment datasets can restrict their usecases.

To improve accuracy of real-time visual SLAM, we pro-
pose simple feature selection criterion on low-complexity fea-
ture detection description methods such as ORB [29]. In this
paper we make following contributions:
1. We show, through empirical data, that the track-length of

a feature (defined as number of frames for which a feature
can be tracked) directly impacts pose accuracy.

2. We propose descriptor score based method for selecting
features with higher invariance and robustness.

3. We implement descriptor score on ORB [29] in a real-time
visual SLAM application RC-SLAM [16] and show that
our method helps curing many failing scenarios while im-
proves ATE scores by 10% for other scenarios in EuroC
dataset [4].

2. BACKGROUND AND MOTIVATION

2.1. Feature Selection and SLAM Accuracy

Feature detection and tracking are important to visual SLAM.
Over the years, many feature detectors and descriptor meth-
ods have been explored for improving the feature repeatabil-
ity, invariance (to rotation, scale and affine transformations),
discriminability and computing efficiency [14, 21, 28, 29, 21,
2, 5, 20]. While higher repeatability assists in locating same
features in multiple frames captured from different camera
view points, higher invariance is required to find correct fea-
ture matches. Both these attributes are necessary for correct
data association as required in SLAM. When features are no
longer trackable, new features needs to be detected and lo-
calized before they could be used for pose estimation. This
process may take some time and during that period if number
of tracked features are not sufficient, the stability of SLAM
system could be compromised affecting the overall pose ac-
curacy.

To illustrate the correlation between SLAM accuracy and
track-length, we take two sequences from EuroC datasets, one
(V1 01) where RC-SLAM is able to estimate trajectory accu-
rately and other (V2 02) where estimated trajectory deviates
from ground truth by a big margin as shown in Figure 2. Fig-
ure 3 and 4 show frame-wise percentage of correctly tracked
features and histogram of track-lengths in these sequences.
The fraction of correctly tracked features in sequence V2 02
are consistently low compared to sequence V1 01. Conse-
quently, track-lengths for majority of features in the sequence
V2 02 are very short ( 4-5 frames only) compared to the se-
quence V1 01 with accurate trajectory estimates. This shows
a strong correlation between feature track-lengths and accu-
racy of trajectory estimates. In visual SLAM, each feature
serves as measurement for corresponding landmark location
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Figure 2: Accurate (left) vs failed (right) trajectory estimates. In
right plot, ground truth is not even visible because estimated trajec-
tory is way too off the mark compared to ground truth

in 3D world coordinate. Tracking a feature over more num-
ber of frames is equivalent to gathering more measurements
of same state variable. Since SLAM is a iterative Bayesian
estimation, more number of measurements of same state vari-
able help to improve the accuracy of estimate. Therefore, the
features which can be tracked longer contributes to improved
SLAM accuracy.
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Figure 3: Framewise feature match percentage for datasets with ac-
curate and inaccurate pose estimates
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Figure 4: Track lengths (number of frame for which feature is
tracked) for datasets with accurate and inaccurate pose estimates

Based on various studies on feature detection and descrip-
tion methods, we observe that every detected feature is not re-
peatable and invariant [24, 22, 33, 1]. Therefore, to track fea-
tures correctly over more number of frames, features which
repeatable, discriminative and invariant to various geometric,
photometric distortions need to selected.

2.2. Related Works

Feature selection techniques are generally applied at either of
the two stages in the SLAM processing:
Selection before feature matching: Detector scores like
Harris score [14], Shi-Tomasi [31], FAST score [28], which
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quantify the corner strength are the most commonly used
methods to select top few features for SLAM. Selecting fea-
tures based on spatial distribution have shown better results.
These algorithms often use either a uniform spatial grid,
oct-tree based dynamic grid[29], or adaptive non-maximal
suppression methods [3], [12]. Learning based methods like
[15] use classifiers to select descriptors having higher chance
of finding a match to reduce number of search points.
Selection after feature matching: Outlier rejection us-
ing RANSAC [7] has been used many SLAM algorithms
[18, 26, 10] to filter out erroneous, unreliable feature matches
from participating in EKF/BA. Geometric and Structural con-
sistency checks like depths, view points have been used to
reject unreliable feature-matches in [29]. The [11] proposes
a stability classifier based on reprojection error to predict sta-
ble feature points for CNN based feature tracking front-end.
Information theoretic approaches for feature selection using
information gain [9], entropy [30], trace [19], covariance ra-
tio [6] or observability [35, 34] have also been proposed to
reduce uncertainties in estimation.

Majority of the SLAM implementations select features
based on detector scores [14, 31, 28] and spatial distribution.
Other techniques selecting features after matching, though
help in pruning out bad matches, but they do not save on the
computation required in feature detection, description gener-
ation or matching. Though detector scores help to select fea-
tures with good repeatability, they are often not sufficient to
identify features with higher invariance to various distortions.

3. FEATURE DESCRIPTOR SCORE

A feature descriptor is a statistical representation of pixel val-
ues in a region around the feature point using distribution of
gradients [21, 2] or relative intensity differences [29, 5, 20].
A binary descriptor contains a vector of bits, in which each
bit signifies pixel intensity comparison for a pair of sample
points around the detected feature point. The invariance of
descriptor to geometric, photometric distortions depends on
the strength of structure among the pixels around the feature
point. For example, if there are strong, prominent structures
like distinct edges, high contrast regions around feature point,
the descriptor is more likely to survive distortion. Inspiring
from this, we introduce a notion of descriptor score as a mea-
sure of descriptor invariance. Features with higher descriptor
score are more likely to find correct match.

To illustrate the relation between descriptor score and in-
variance of binary descriptor, we show two example scenarios
with image patches around detected features Figure 5, one
with a strong structure and other with a weak structure in
image. The left patch gives high detector score because the
corner (blob) is distinct compared to its neighbouring pixels
though it would not have highly invariant descriptor. With
slight distortion like noise, many descriptor bits could get
flipped because there is hardly any structure around the fea-
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Figure 5: Illustration for Weak and Strong feature

ture point. On the other hand the patch on right has strong
structure. In this case, descriptor will remain invariant be-
cause of large difference in pixel intensities for each pair of
sample points. Based on these observations, we define de-
scriptor score as follows-

desc score =
1
N

N−1∑

i=0

|pi − p′i| (1)

where pi and p′i are the pixel values in ith pair out of total N
pairs used in descriptor generation and N is descriptor length.

���������������
����	�����

�����
�����

��

�����
����������

��������

�	
�������

��

�����
����

������
���	�	�����

�����
�����

���
����������
����	�����

�
����
�

���������
�����

������
����

����	���
�����

�
������
��
������

�������
���������

���	��

Figure 6: Key-point selection with feature descriptor score

The binary descriptor score can be calculated during the
descriptor generation without any significant computational
overhead. Figure 6 depicts the process of feature selection
using descriptor score. For feature point detected by the de-
tector, we calculate the descriptor score using Eq.1. The com-
bined score for feature point is computed using detector and
descriptor score to give importance to regions with high con-
trast and strong structure. The idea of descriptor score could
be easily applied to any feature descriptor by adopting appro-
priate scoring technique based on the description method.

4. EVALUATION

We used RC-SLAM [16] as real time SLAM and modified it
to use ORB features to create an improved baseline. Around
80 features are tracked. We replaced feature selection in the
baseline with the proposed descriptor score based feature se-
lection method. This version is referred as Ours in this sec-
tion. Table 2 compares trajectory estimates with our proposed
method against the baseline using absolute trajectory error
(ATE) on EuroC dataset[8]. The descriptor score based fea-
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ATE rmse (mtrs)
Streams Baseline Ours Streams Baseline Ours
V1 01 0.381 0.268 MH 01 0.325 0.352
V1 02 0.273 0.270 MH 02 0.599 0.579
V1 03 0.347 0.341 MH 03 1.384 1.323
V2 01 fails 2.784 MH 04 0.989 0.911
V2 02 fails 1.146 MH 05 1.199 0.877

Table 2: ATE improvements with descriptor score based feature se-
lection on EuroC dataset
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Figure 7: Improvements in track lengths with descriptor score based
feature selection

ture selection improves ATE results for most of the streams.
Also, by selecting more invariant features our method is able
to overcome the failure cases seen in the baseline for streams
V2 01 and V2 02 due to tracking failures (Section 2.1).

Improved Trackability with descriptor score based
selection: To evaluate the impact of our method on track-
lengths, we build a histogram of track-lengths of each selected
feature in stream V2 02 (Figure 7). With the baseline almost
60% of selected features could not be tracked beyond 3 or 4
frames. Frequent drops in number of tracked features lead
to inaccurate pose estimates and also requires more compute
for detecting and localizing new features. With our method,
larger fraction of features gets tracked over longer duration.
Figure 8 shows feature matches in each frame during tracking
for stream V2 02. Our method provides consistently higher
feature matches compared to baseline.

Distribution of descriptor distances: To validate the ef-
ficacy of the proposed method in selecting more invariant fea-
tures, we look at the distribution of descriptor distances for all
feature matches found during tracking. For each feature (f )
selected for tracking, and its best match (fm) in each subse-
quent frame we calculate the normalized descriptor distance
as nd = hamming distance(f, fm)/desc length. Figure 9
shows the histogram of normalized descriptor distances {nd}
over complete sequence for all tracked features. With the pro-
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Figure 8: Comparison of frame wise feature matches for V2 02
dataset with descriptor and detector score based feature selection
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Figure 9: Distribution of feature matching distances (V2 02 dataset)
with descriptor and detector score based feature selection
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Figure 10: (a) Frame wise comparison of percentage of correctly
matched features for one of the dataset (brick) (b) Average improve-
ments in feature matches for different datasets in [13]

posed method, almost 80% of tracked features found match-
ing descriptors within normalized distance of 0.2 which indi-
cates that the selected features remained relatively invariant.

Improvements in feature tracking: We evaluate the im-
pact of descriptor score based selection on standalone fea-
ture tracking. For this evaluation we use datasets from [13]
where features from the first frame are visible in all subse-
quent frames and there are significant geometric, photo metric
distortions with very high, un-constrained camera movement.
In the first frame we select N features (N = 50) and try to
find matches in all subsequent frames and verify correctness
of match using the ground truth. With descriptor score based
feature selection, we get consistent 8%-10% improvements in
correctly matched features in each frame as shown in Figure
10(a) for Brick dataset. Figure 10(b) shows noticeable aver-
age improvement over entire sequence in other datasets.

5. CONCLUSION

We propose a novel method for feature selection using de-
scriptor score which helps to select more invariant and robust
features as compared to widely used detector score based
selection methods. The real-time SLAM on resource con-
strained devices requires high quality pose estimates at low
complexity and latency. The proposed method is simple to
implement and improves the performance without compro-
mising on computational efficiency as compared to other
state-of-the-art techniques. We demonstrate functioning of
descriptor score with ORB like binary descriptor in an end-
to-end real-time visual SLAM application. As a future work,
the idea of descriptor score can be extended to other types of
feature descriptors and their applications in visual SLAM.
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