
Optimal Dynamic Subset Sampling: Theory and Applications
Lu Yi

yilu@ruc.edu.cn

Renmin University of China

Beijing, China

Hanzhi Wang

hanzhi_wang@ruc.edu.cn

Renmin University of China

Beijing, China

Zhewei Wei
∗

zhewei@ruc.edu.cn

Renmin University of China

Beijing, China

ABSTRACT
We study the fundamental problem of sampling independent events,

called subset sampling. Specifically, consider a set of𝑛 distinct events

𝑆 = {𝑥1, . . . , 𝑥𝑛}, in which each event 𝑥𝑖 has an associated proba-

bility 𝑝 (𝑥𝑖). The subset sampling problem aims to sample a subset

𝑇 ⊆ 𝑆 , such that every 𝑥𝑖 is independently included in 𝑆 with prob-

ability 𝑝𝑖 . A naive solution is to flip a coin for each event, which

takes𝑂 (𝑛) time. However, the specific goal is to develop data struc-

tures that allow drawing a subset sample in time proportional to

the expected output size 𝜇 =
∑𝑛
𝑖=1

𝑝 (𝑥𝑖), which can be significantly

smaller than 𝑛 in many applications. The subset sampling problem

serves as an important building block in many tasks and has been

the subject of various research for more than a decade.

However, most of the existing subset sampling approaches are

conducted in a static setting, where the events or their associated

probability in set 𝑆 is not allowed to be changed over time. These

algorithms incur either large query time or update time in a dy-

namic setting despite the ubiquitous time-evolving events with

changing probability in real life. Therefore, it is a pressing need, but

still, an open problem, to design efficient dynamic subset sampling

algorithms.

In this paper, we propose ODSS, the first optimal dynamic subset

sampling algorithm. The expected query time and update time of

ODSS are both optimal, matching the lower bounds of the subset

sampling problem. We present a nontrivial theoretical analysis to

demonstrate the superiority of ODSS. We also conduct comprehen-

sive experiments to empirically evaluate the performance of ODSS.

Moreover, we apply ODSS to a concrete application: influence max-

imization. We empirically show that our ODSS can improve the

complexities of existing influence maximization algorithms on large

real-world evolving social networks.

CCS CONCEPTS
• Theory of computation→ Sketching and sampling.

∗
Zhewei Wei is the corresponding author. The work was partially done at Gaoling

School of Artificial Intelligence, Peng Cheng Laboratory, Beijing Key Laboratory of

Big Data Management and Analysis Methods and MOE Key Lab of Data Engineering

and Knowledge Engineering.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

KDD ’23, August 6–10, 2023, Long Beach, CA, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0103-0/23/08. . . $15.00

https://doi.org/10.1145/3580305.3599458

KEYWORDS
subset sampling, dynamic probabilities, optimal time cost

ACM Reference Format:
Lu Yi, Hanzhi Wang, and Zhewei Wei. 2023. Optimal Dynamic Subset Sam-

pling: Theory and Applications. In Proceedings of the 29th ACM SIGKDD

Conference on Knowledge Discovery and Data Mining (KDD ’23), August

6–10, 2023, Long Beach, CA, USA. ACM, New York, NY, USA, 15 pages.

https://doi.org/10.1145/3580305.3599458

1 INTRODUCTION
In the past decade, we have been experiencing a huge “Big Data”

movement fueled by our ever-increasing ability and desire to gather,

store, and share data. Driven by the exponential blowup in data

volumes, efficient algorithms are now in higher demand than ever

before. In particular, sampling is one of the most powerful tech-

niques in algorithm design and analysis, which can effectively re-

duce the problem size and is often a necessary tool for achieving

high scalability. On the other hand, randomly chosen samples also

serve as robust estimators for critical quantities in many cases.

In this paper, we study the fundamental problem of sampling

independent events, called Subset Sampling. Specifically, consider

a set 𝑆 with 𝑛 elements 𝑆 = {𝑥1, . . . , 𝑥𝑛}. All of the 𝑛 elements

represent 𝑛 distinct events, each of which (e.g., the 𝑖-th element

𝑥𝑖) is associated with a probability 𝑝 (𝑥𝑖) ∈ [0, 1]. A query for the

subset sampling problem returns a subset 𝑇 ⊆ 𝑆 , in which the 𝑖-th

event 𝑥𝑖 is independently included with probability 𝑝 (𝑥𝑖). A trivial

bound for the subset sampling problem is𝑂 (𝑛) that we flip a biased
coin for every 𝑝 (𝑥𝑖). However, such complexity can be significantly

larger than the expected output size 𝜇 =
∑𝑛
𝑖=1

𝑝 (𝑥𝑖), leading to

excessive time cost. A well-adopted goal for the subset sampling

problem is to draw a subset sample in time roughly proportional to

the expected output size 𝜇 =
∑𝑛
𝑖=1

𝑝 (𝑥𝑖).
The subset sampling problem has long been a crucial building

block in many tasks. Various applications are in dire need of effi-

cient subset sampling techniques, especially of the implementations

in dynamic settings. To be more specific, in a dynamic setting, the

probability that an event happens can be updated dynamically. And

the elements in set 𝑆 are allowed to be changed over time. Such

dynamic settings are extremely common in real life, as events are

usually time-evolving in practice. Nonetheless, designing dynamic

subset sampling algorithms is a more challenging task due to their

hardness. In the following, we will present three concrete exam-

ples to demonstrate the wide applications of the subset sampling

problem and the dynamic settings of these applications.

1.1 Concrete Applications
Dynamic Influence Maximization. The influence maximization

(IM) problem aims to find a set of 𝑘 users in social networks which

ar
X

iv
:2

30
5.

18
78

5v
1

 [
cs

.D
S]

 3
0

M
ay

 2
02

3

https://orcid.org/1234-5678-9012
https://doi.org/10.1145/3580305.3599458
https://doi.org/10.1145/3580305.3599458

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Lu Yi, Hanzhi Wang, and Zhewei Wei

Table 1: Comparison of subset sampling algorithms.
Algorithm Expected Generation Time Update Time

The Naive Method 𝑂 (𝑛) 𝑂 (1)
HybridSS [25] 𝑂

(
1 + 𝑛

√︁
min {𝑝, 1 − 𝑝}

)
𝑂 (𝑛)

BringmannSS [2] 𝑂 (1 + 𝜇) 𝑂 (log
2 𝑛)

ODSS (Ours) 𝑂 (1 + 𝜇) 𝑂 (1)

can infect the largest number of users in the network. At the heart

of existing influence maximization algorithms is generating ran-

dom reverse reachable (RR) sets efficiently. The state-of-the-art IM

algorithm, SUBSIM [11], reduces the complexity of IM by leverag-

ing a subset sampling approach [2] to accelerate the generation of

RR sets. However, the subset sampling approach can only attain

the optimality in a static setting, presenting a significant drawback

due to its demanding𝑂 (log
2 𝑛) update time when handling update

operations. This complexity poses a substantial obstacle to the prac-

tical application of SUBSIM in real-world scenarios, where social

influence is inherently dynamic. Take, for instance, the rapid surge

in the influence of celebrities resulting from scandals or rumors

within a short span of time. Such fluctuations can swiftly render

the user influence rankings obsolete. Consequently, there exists an

urgent imperative to devise an efficient subset sampling algorithm

specifically tailored for dynamic settings.

Approximate Graph Propagation. In recent Graph Neural Net-

work (GNN) research, an emerging trend is to employ node prox-

imity queries to build scalable GNN models, including prominent

examples such as SGC, APPNP, PPRGo, and GBP. These proximity-

based GNNs, in contrast to the original GCN, decouple prediction

and propagation and thus enable the mini-batch training, leading

to significant enhancements in model scalability. To model various

proximity measures, Wang [26] proposes the unified graph propaga-

tion formulas and introduces a UNIFIED randomized algorithm to

calculate the formulas efficiently. Notably, the algorithm frequently

employs subset sampling techniques to enhance computation effi-

ciency.

Computational Epidemiology. Particle-based simulation models

have become a prevalent choice in the field of computational epi-

demiology [9]. In these models, each infector 𝐼 possesses the ability

to independently infect susceptible individuals who have come into

contact with 𝐼 during a specific time period 𝑇 . Consequently, the

infection process associated with each infector inherently presents

itself as a subset sampling problem.

1.2 Motivations and Contributions
Despite the importance and wide-spread applications of the dy-

namic subset sampling problem, it remains an open problem to

design the optimal dynamic subset sampling algorithm. To be more

specific, it has been established that any subset sampling algorithm

cannot run faster than Ω(1 + 𝜇), where 𝜇 =
∑𝑛
𝑖=1

𝑝 (𝑥𝑖) denotes
the expected output size of the problem. And any algorithm needs

an update time of Ω(1) to handle an update operation (e.g., insert-

ing/deleting an element or modifying a probability). This implies

that in the scenario of subset sampling, Ω(1 + 𝜇) and Ω(1) are the
lower bounds for query and update time complexity, respectively.

Thus, an optimal dynamic subset sampling algorithm is required

to achieve an 𝑂 (1 + 𝜇) expected query time per sample with 𝑂 (1)
update time per update operation. In other words, we look for the

dynamic subset sampling algorithm that is able to derive the sam-

pling result in time roughly proportional to the output size and

only requires a constant number of operations to support real-time

updates.

Motivations. The subset sampling problem has been the subject of

extensive research for more than a decade [2, 11, 25]. However, to

the best of our knowledge, none of them can achieve optimality in a

dynamic setting. More specifically, we summarize the complexities

of existing subset sampling algorithms in Table 1. Notably, the Naive

method supports real-time updates, but its drawback lies in the

excessive query time, making it challenging to handle large-scale

datasets effectively. Conversely, the BringmannSSmethod [2] builds

dedicated index structures to reduce query time. Unfortunately,

such index structures struggle to accommodate dynamic changes,

leading to significant update time. As a consequence, the subset

sampling problem remains open in a dynamic setting despite years

of effort yet.

Our Contributions. Motivated by the need to design efficient

dynamic subset sampling algorithms, we make the following con-

tributions.

• We propose ODSS, the first optimal dynamic subset sampling

algorithm.We theoretically prove that our ODSS only costs𝑂 (1+
𝜇) expected query time and supports𝑂 (1) update time per update

operation. The two complexities are both optimal, matching the

lower bounds of subset sampling.

We conduct comprehensive experiments to empirically evaluate

the performance of our ODSS. The experimental results show that

our ODSS consistently outperforms all existing subset sampling

algorithms on all datasets.

• To further demonstrate the effectiveness of our ODSS, we apply

our ODSS to a concrete application: Influence Maximization. We

empirically show that our ODSS can improve the complexities of

existing influence maximization algorithms on large real-world

evolving social networks.

2 PRELIMINARY
Considering the subset sampling problem, we note that the op-

timality can be trivially achieved when all probabilities in set 𝑆

are identical, i.e., 𝑝 (𝑥1) = 𝑝 (𝑥2) = . . . = 𝑝 . This is because, in

the special case, the index 𝑗1 of the first sampled element follows

the geometric distribution: Pr [𝑗1 = 𝑖] = (1 − 𝑝)𝑖−1 · 𝑝 . Given the

memoryless property of geometric distribution, we can iterate the

process of generating 𝑖 ∼ Geo(p) where Geo(p) is the geomet-

ric distribution with parameter 𝑝 , and return 𝑥 𝑗1+𝑖 as the second
element sampled in set 𝑆 . We repeat the above process until the

index of the sampled element exceeds 𝑛. It is known that the ran-

dom number 𝑖 ∼ (1 − 𝑝)𝑖−1 · 𝑝 can be generated in 𝑂 (1) time by

setting 𝑖 =

⌊
log rand()
log(1−𝑝)

⌋
, where rand() denotes a uniform random

number in [0, 1]. Thus, in this special case, the expected query time

is bounded by𝑂 (𝑛𝑝) = 𝑂 (1 + 𝜇) with𝑂 (1) update time per update

operation [6, 16]. For reference, we call such method the GeoSS

method.

Optimal Dynamic Subset Sampling: Theory and Applications KDD ’23, August 6–10, 2023, Long Beach, CA, USA

In the general case, a trivial bound of query time complexity is

𝑂 (𝑛) since we can flip a biased coin for every 𝑝 (𝑥𝑖). We call such

method the Naive method, which offers an𝑂 (𝑛) query time with an

𝑂 (1) update time per update operation. To further reduce the time

cost, a series of studies have been devoted to this problem over the

past decade. In the following, we will review the state-of-the-art

algorithms and briefly analyze why these methods fall short of

achieving optimality in a dynamic setting.

TheHybridSSMethod. Tsai et al. [25] proposes a subset sampling

method called HybridSS, which achieves 𝑂 (1 + 𝑛
√︁

min{𝑝, 1 − 𝑝})
expected query time with𝑂 (𝑛) update time in the worst case. Here

𝑝 = 1

𝑛

∑𝑛
𝑖=1

𝑝 (𝑥𝑖) denotes the mean of all probabilities. The idea of

the HybridSS method is to divide the original set 𝑆 into two disjoint

sets 𝑋 and 𝑌 , where 𝑋 = {𝑥𝑖 ≤
√
𝑝 | 𝑥𝑖 ∈ 𝑆} and 𝑌 = 𝑆 − 𝑋 . The

HybridSS method invokes the Naive method to sample elements in

set 𝑌 . For the elements in set 𝑋 , the HybridSS method first treats

all probabilities in 𝑋 as

√
𝑝 and applies the GeoSS method in the

special case to sample some candidates. Since 𝑝 (𝑥𝑖) ≤
√
𝑝 for every

𝑥𝑖 ∈ 𝑋 , the HybridSS method then accepts each candidate (e.g., 𝑥𝑖)

with probability
𝑝 (𝑥𝑖)√
𝑝

. By this strategy, every element 𝑥𝑖 in set 𝑋 is

still guaranteed to be included in the final subset𝑇 with probability

√
𝑝 · 𝑝 (𝑥𝑖)√

𝑝
= 𝑝 (𝑥𝑖).

The BringmannSS Method. The BringmannSS method [2] is pro-

posed by Bringmann and Panagiotou, which is the first algorithm

achieving the optimal𝑂 (1+ 𝜇) expected query time complexity in a

static setting. The core of the BringmannSS method is a bucket sort

operation accompanied by the Alias method for weighted sampling.

Here weighted sampling is another crucial sampling schema that

aims to sample an element from a probability distribution. The

Alias method is the state-of-the-art weighted sampling approach

(in a static setting, however), which achieves the optimal𝑂 (1) time

per sample by building a dedicated alias table. The BringmannSS

method revealed an interesting interplay between the subset sam-

pling problem and the weighted sampling problem.

We describe the BringmannSS method in detail here since our

ODSS is partially inspired by the BringmannSS method. Specifi-

cally, the BringmannSS method first partitions all elements in set

𝑆 into (⌈log𝑛⌉ + 1) buckets. The 𝑘-th bucket (𝑘 = 1, 2, . . . , ⌈log𝑛⌉)
consists of the element 𝑥 of which the associated probability 𝑝 (𝑥) ∈
(2−𝑘 , 2−𝑘+1]. And the last bucket (i.e., the (⌈log𝑛⌉ + 1)-th bucket)

consists of all the elements 𝑥 with 𝑝 (𝑥) < 1

𝑛 . For each element 𝑥

in the 𝑘-th bucket, the BringmannSS method sets 𝑝 (𝑥) = 2
−𝑘+1

,

which is actually an upper bound on 𝑝 (𝑥). As a result, after par-
titioning elements into buckets, all elements 𝑥 ∈ 𝑆 have been

sorted in descending order of 𝑝 (𝑥). The BringmannSS method

further considers the elements ranked in [2𝑘 , 2𝑘+1) as a group,

denoted as 𝐵𝑘 . Then the BringmannSS method invokes the SOTA

weighted sampling method, the Alias method, to find the groups

in which at least one element is sampled. Specifically, starting at

the first group 𝐵1, the BringmannSS method invokes the Alias

method to sample the group index 𝑗 from the probability distribu-

tion Pr [𝑋 = 𝑗] = 𝑞 𝑗 ·Π 𝑗−1

𝑘=1
(1−𝑞𝑘). Here 𝑞𝑘 denotes the probability

that at least one potential element (sampled with probability 𝑝 (𝑥))
is sampled in 𝐵𝑘 (i.e., 𝑞𝑘 = 1 − (1 − 𝑝 (𝑥)) |𝐵𝑘 |). The BringmannSS

method iterates the above process starting at 𝐵 𝑗+1 to sample the

next group until 𝑗 > ⌈log𝑛⌉ + 1. In each sampled group, the Bring-

mannSS method adopts the idea given in the HybridSS method.

That is, we can first sample a candidate 𝑥 with probability 𝑝 (𝑥),
then accept 𝑥 with probability

𝑝 (𝑥)
𝑝 (𝑥) .

The BringmannSS method achieves 𝑂 (1 + 𝜇) expected query

time but incurs an 𝑂 (log
2 𝑛) update time per update operation.

Despite the limitations, the BringmannSS method provides two key

insights for reducing complexity: (i) We can partition the elements

in set 𝑆 into groups and sample them at the group level first. By

such a strategy, we can effectively reduce the problem size. (ii)

There is a rich interplay between different sampling schemas. Some

techniques adopted in other sampling problems may also contribute

to the algorithm design for the subset sampling problem.

2.1 Other Related Work
In this subsection, we briefly introduce a useful trick named table

lookup, which is widely adopted in algorithms for weighted sam-

pling [12, 13, 21]. At the heart of the table lookup trick is a table

structure. Each row index refers to a probability distribution, and

cells in a row stores the sampling outcomes corresponding to the

probability distribution. Consider a weighted sampling problem

defined on a finite domain with bounded size of possible probability

distributions. We can first use the given distribution to index into

the table, and uniformly sample a cell in the corresponding row to

derive the sampling outcome. Since all possible outcomes under all

possible probability distributions have been included in the table,

we can thus achieve the optimal𝑂 (1) query time with𝑂 (1) update
time.

3 ALGORITHM
We first propose Basic Dynamic Subset Sampling in Section 3.1. In

Section 3.2, we improve this basic algorithm by the table lookup

method and propose the optimal algorithm Optimal Dynamic Subset

Sampling (ODSS), which achieves the optimal query time and the

optimal update time in the meanwhile.

3.1 Basic ODSS Algorithm
In the basic algorithm, the elements are divided into𝑂 (log𝑛) groups,
ensuring the probabilities of the elements within each group differ

by a factor of at most 2. Rather than querying within each group,

we first perform queries at the group level and subsequently sam-

ple elements within the sampled groups. Note that the group-level

querying itself constitutes a subset sampling problem with only

𝑂 (log𝑛) elements. By repeating this process iteratively, we con-

tinue to reduce the number of elements until it reaches a constant

value, thereby obtaining the basic algorithm.

Group Partition. We divide all the elements into (⌈log𝑛⌉ + 1)
groups. Define the 𝑘-th group 𝐺𝑘 = {𝑥𝑖 |2−𝑘 < 𝑝 (𝑥𝑖) ≤ 2

−𝑘+1} for
𝑘 ∈ {1, . . . , 𝐾 − 1}, and 𝐺𝐾 = {𝑥𝑖 |𝑝 (𝑥𝑖) ≤ 2

−𝐾+1}, 𝐾 = ⌈log𝑛⌉ + 1.

Note that 2
−𝑘+1

is the upper bound on {𝑝 (𝑥𝑖) |𝑥𝑖 ∈ 𝐺𝑘 }. Within

the group 𝐺𝑘 , we first sample elements as candidates with prob-

ability 2
−𝑘+1

and then use rejection for each candidate to yield

a correctly distributed sample. Hence, the probability that there

exists at least one candidate in 𝐺𝑘 can be calculated as 𝑝 (𝐺𝑘) =

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Lu Yi, Hanzhi Wang, and Zhewei Wei

1 − (1 − 2
−𝑘+1) |𝐺𝑘 |

. We first sample each group 𝐺𝑘 with probabil-

ity 𝑝 (𝐺𝑘) and then sample elements within each sampled group.

Take the rightmost part of Figure 1 as an example. We divide seven

elements into 𝐾 groups, where 𝐾 = ⌈log𝑛⌉ + 1 = 4. To distinguish

with other symbols, we denote element 𝑥𝑖 as 𝑥
(0)
𝑖

and group 𝐺𝑖 as

𝐺
(0)
𝑖

. 𝐺
(0)
𝑘

contains elements with probabilities in (2−𝑘 , 2−𝑘+1] for
0 ≤ 𝑘 < 𝐾 . The last group𝐺

(0)
4

contains elements with probabili-

ties less than 2
−3
. After the division, 𝐺

(0)
1
,𝐺
(0)
2
,𝐺
(0)
3
,𝐺
(0)
4

contain

{𝑥 (0)
1
, 𝑥
(0)
4
, 𝑥
(0)
6
}, {𝑥 (0)

7
}, {𝑥 (0)

2
}, {𝑥 (0)

3
, 𝑥
(0)
5
}, respectively.

Sampling within a Group. We first consider the problem of

sampling elements within a group 𝐺𝑘 given that 𝐺𝑘 is sampled.

Let 𝑌𝑘 be an indicator random variable for the event that 𝐺𝑘 is

sampled, that is, Pr [𝑌𝑘 = 1] = 𝑝 (𝐺𝑘). Note that the probability

of each element must be converted to a conditional probability

due to 𝑌𝑘 = 1. We present Algorithm 1 to illustrate the details of

sampling element within a group 𝐺𝑘 conditioned on 𝑌𝑘 = 1. Since

we sample the elements as candidates with probability 2
−𝑘+1

first,

the index𝑋1 of the first candidate in𝐺𝑘 is geometrically distributed.

That is, Pr[𝑋1 = 𝑗] = 2
−𝑘+1 (1 − 2

−𝑘+1) 𝑗−1
. Then the conditional

probability of the first candidate can be calculated as

Pr[𝑋1 = 𝑗 |𝑌𝑘 = 1] = Pr[𝑋1 = 𝑗 ∩ 𝑌𝑘 = 1]
Pr[𝑌𝑘 = 1]

for 𝑗 ∈ {1, . . . , |𝐺𝑘 |}. Note that Pr[𝑋1 = 𝑗 ∩ 𝑌𝑘 = 1] is the same

as Pr[𝑋1 = 𝑗] since 𝑋1 = 𝑗 implies that 𝐺𝑘 contains at least one

candidate. Thus, Pr[𝑋1 = 𝑗 |𝑌𝑘 = 1] = 2
−𝑘+1 (1 − 2

−𝑘+1) 𝑗−1/𝑝 (𝐺𝑘).
We generate a random number 𝑟 , distributed as 𝑋1 conditioned

on 𝑌𝑘 = 1, as the index of the first candidate of 𝐺𝑘 (Algorithm 1

Line 3). Subsequently, we proceed to sample the second candidate

from the remaining group members. Note that the sampling of the

second candidate is contingent upon two conditions: (1) 𝑌𝑘 = 1 and

(2) the 𝑟 -th element is selected as the first candidate. Let 𝑋2 be the

index of the second candidate. Then we have Pr[𝑋2 = 𝑗 + 𝑟 |𝑌𝑘 =

1 ∩ 𝑋1 = 𝑟] = Pr[𝑋2 = 𝑗 + 𝑟 |𝑋1 = 𝑟] = 2
−𝑘+1 (1 − 2

−𝑘+1) 𝑗−1

since 𝑋1 = 𝑟 implies 𝑌𝑘 = 1. Note that 𝑋2 = 𝑗 + 𝑟 is the index

in the whole group, while the index of the second candidate in

the remainder of the group is 𝑗 . Therefore, the index of the second

candidate in the remainder of the group is distributed geometrically.

We generate a new 𝑟 , which is a geometric random variable, and

select the 𝑟 -th element in the remainder of the group as the second

candidate (Algorithm 1 Line 8). Iterate the above process in 𝐺𝑘 to

select the further candidates until the index exceeds𝑛𝑘 = |𝐺𝑘 |. After
sampling candidates, we accept each candidate 𝑥𝑖 with probability

𝑝 (𝑥𝑖)/2−𝑘+1. By this strategy, 𝑥𝑖 is still guaranteed to be sampled

with probability 2
−𝑘+1 · 𝑝 (𝑥𝑖)

2
−𝑘+1 = 𝑝 (𝑥𝑖). The theoretical property

of Algorithm 1 will be shown in Lemma 1 in Section 4. Take the

rightmost part of Figure 1 as an example again. Given that 𝐺
(0)
1

is sampled, we query in 𝐺
(0)
1

and obtain a sample 𝑥
(0)
1
, 𝑥
(0)
6

. Since

𝐺
(0)
2
,𝐺
(0)
3
,𝐺
(0)
4

fail to be sampled, we do not query in these groups

and thus no elements in these groups can be sampled.

The Algorithm Structure. Recall that querying at the group level
is also a subset sampling problem with 𝑂 (log𝑛) elements. Each

group 𝐺𝑘 is associated with probability 𝑝 (𝐺𝑘). Partitioning the

groups again can break down this subset sampling problem into

Algorithm 1: SampleWithinGroup
Input: a group 𝐺𝑘
Output: a drawn sample 𝑇

1 𝑛𝑘 ← |𝐺𝑘 |, 𝑇 ← ∅, ℎ ← 0;

2 Let 𝐺𝑘 [𝑖] be the 𝑖-th element of 𝐺𝑘 ;

3 Generate a random 𝑟 s.t. Pr[𝑟 = 𝑗] = 2
−𝑘+1 (1−2

−𝑘+1) 𝑗−1

𝑝 (𝐺𝑘) ,

𝑗 ∈ {1, . . . , 𝑛𝑘 };
4 while 𝑟 + ℎ ≤ 𝑛𝑘 do
5 ℎ ← 𝑟 + ℎ;
6 if rand() < 𝑝 (𝐺𝑘 [ℎ])/2−𝑘+1 then
7 𝑇 ← 𝑇 ∪ {𝐺𝑘 [ℎ]} ;
8 Generate a random 𝑟 ∼ Geo(2−𝑘+1);
9 return 𝑇

a new subset sampling problem but with 𝑂 (log log𝑛) elements.

Continuing in this manner until the remaining subset sampling

problem is of constant size and hence trivial to solve, we could de-

rive the Basic Dynamic Subset Sampling algorithm as demonstrated

in Algorithm 2. To distinguish the subset sampling problems at

various levels, we denote the set of elements at level ℓ as 𝑆 (ℓ) and
the set of groups at level ℓ as 𝐺 (ℓ) . Let 𝑆 (0) = 𝑆 = {𝑥1, . . . , 𝑥𝑛}.
We first partition 𝑆 (0) into a set of groups𝐺 (0) = {𝐺 (0)

1
, . . . ,𝐺

(0)
𝐾
},

𝐾 = ⌈log𝑛⌉ + 1. The subset sampling problem for𝐺 (0) is defined at

level 1. Let 𝑆 (1) = {𝑥 (1)
1
, . . . , 𝑥

(1)
𝐾
}, 𝑥 (1)

𝑖
with probability 𝑝 (𝐺 (0)

𝑖
).

Thus, a sampled 𝑥
(1)
𝑖

indicates that 𝐺
(0)
𝑖

is sampled. Continuing in

this fashion, we maintain {𝑆ℓ } and {𝐺ℓ }, ℓ ∈ {0, . . . , 𝐿}, until the
size of 𝑆 (𝐿) is a constant, at which 𝐿 = log

∗ 𝑛. For querying, we first

sample each element 𝑥
(𝐿)
𝑘
∈ 𝑆 (𝐿) with probability 𝑝 (𝑥 (𝐿)

𝑘
) using

the Naive method and enqueue the sampled elements into 𝑄 (𝐿)

(Algorithm 2 Line 2). Note that each element at level 𝐿 corresponds

to a group at level 𝐿 − 1, and the sampled element 𝑥
(𝐿)
𝑘

indicates

that the group 𝐺
(𝐿−1)
𝑘

is sampled. Thus, for each sampled 𝑥
(𝐿)
𝑘

in

𝑄 (𝐿) , we sample the elements within 𝐺
(𝐿−1)
𝑘

by Algorithm 1 and

thus draw a sample of 𝑆 (𝐿−1)
. Iterating the above process from

level 𝐿 − 1 down to level 1, we finally obtain 𝑄 (0) , which is exactly

a sample of 𝑆 (0) .
The theoretical property of Algorithm 2 will be shown in Theo-

rem 1 in Section 4.

3.2 Optimal Dynamic Subset Sampling
Although the basic algorithm described above demonstrates com-

petitive query time, it falls short of meeting the lower bound. To

ensure that the number of elements at level 𝐿 is a constant, we

repeat the reduction log
∗ 𝑛 times. It is remarkable that the number

of groups becomes so small after a constant number of reduction

steps. We present the table lookup method for solving the subset

sampling problem with so few elements. Subsequently, we replace

the Naive method with this table lookup method in the basic algo-

rithm and reduce the reduction steps to 2 times, thereby giving rise

to the Optimal Dynamic Subset Sampling algorithm (ODSS).

Optimal Dynamic Subset Sampling: Theory and Applications KDD ’23, August 6–10, 2023, Long Beach, CA, USA

accept
and

..

..

...
...

..

...

Lookup Table

Level 2: Level 1: Level 0:

Group Partition

sample a cell in the -th row

row index

 accept and reject

obtain candidates as indicated by 111

Group Partition

Figure 1: An example of Optimal Dynamic Subset Sampling.

Algorithm 2: BasicDynamicSubsetSampling

Input: the maximum level 𝐿, the set of elements 𝑆 (ℓ) and
the set of groups 𝐺 (ℓ) at level 𝑙 for 0 ≤ ℓ ≤ 𝐿

Output: a drawn sample 𝑇

1 𝑄 (ℓ) ← ∅, 1 ≤ ℓ ≤ 𝐿;
2 Sample each element 𝑥

(𝐿)
𝑘
∈ 𝑆 (𝐿) with the Naive method

and enqueue 𝑥
(𝐿)
𝑘

into 𝑄 (𝐿) if 𝑥 (𝐿)
𝑘

is sampled;

3 for ℓ ← 𝐿 to 1 do
4 while 𝑄 (ℓ) ≠ ∅ do
5 𝑥

(ℓ)
𝑘
← deQueue(𝑄 (ℓ));

6 Enqueue each element in the return of

SampleWithinGroup(𝐺 (ℓ−1)
𝑘

) into 𝑄 (ℓ−1)
;

7 𝑇 ← 𝑄 (0) ;
8 return 𝑇

Table Lookup. We denote the total number of elements as 𝑚

to differentiate it from the original problem size, denoted as 𝑛.

Consider a set 𝑆 with 𝑚 elements, 𝑆 = {𝑥1, . . . , 𝑥𝑚}. The subset

sampling problem returns a subset of 𝑆 as a drawn sample, that

is, each subset of 𝑆 is chosen as the drawn sample with a cer-

tain probability. We encode each subset of 𝑆 as a bit array 𝐵 with

𝑚 bits. 𝐵 [𝑖] is the 𝑖-th (from right to left) bit indicating if 𝑥𝑖 is

included in the subset. For instance, when 𝑚 = 3, 𝐵 = 011 rep-

resents a subset {𝑥2, 𝑥1}. Since the elements are independently

included in 𝐵, the probability of 𝐵 being the drawn sample is given

by 𝑝 (𝐵) = ∏
𝑥𝑖 ∈𝐵 𝑝 (𝑥𝑖) ·

∏
𝑥 𝑗∉𝐵 (1 − 𝑝 (𝑥 𝑗)). Notably, the sum of

𝑝 (𝐵) over all distinct subsets 𝐵 ⊆ 𝑆 is equal to 1. An important

observation is that independently sampling each element 𝑥𝑖 with

𝑝 (𝑥𝑖) and then returning the sampled elements is equivalent to

returning a subset 𝐵 with probability 𝑝 (𝐵). Note that the latter is
a weighted sampling problem that is entirely distinct from subset

sampling. The elements of this weighted sampling problem are

subsets of 𝑆 and only one subset is returned as a sample. Based on

this observation, we apply the table lookup trick to solve the subset

sampling problem for a special case, where 𝑝 (𝑥𝑖) ∈ { 1

𝑚 ,
2

𝑚 , . . . ,
𝑚
𝑚 }.

Note that 𝑝 (𝐵) is a multiple of
1

𝑚𝑚 since 𝑝 (𝑥𝑖) is a multiple of
1

𝑚 ,

that is,𝑚𝑚𝑝 (𝐵) ∈ {1, . . . ,𝑚𝑚} for each subset 𝐵 of 𝑆 . We create

a lookup row with𝑚𝑚 entries and fill𝑚𝑚𝑝 (𝐵) entries with 𝐵 for

each subset 𝐵. The𝑚𝑚 entries in the row are all filled with a sub-

set since 𝑝 (𝐵) for all subsets 𝐵 sum up to 1 as mentioned above.

When querying, we select an entry of the row uniformly and return

the subset in the entry. There are𝑚𝑚𝑝 (𝐵) entries filled with the

subset 𝐵, so the probability of returning 𝐵 as a drawn sample is

𝑚𝑚𝑝 (𝐵)/𝑚𝑚 = 𝑝 (𝐵). For a general case without any limitation on

𝑝 (𝑥𝑖), let 𝑝 (𝑥𝑖) = ⌈𝑚𝑝 (𝑥𝑖)⌉/𝑚 for each element 𝑥𝑖 . We maintain

the lookup row with respect to 𝑝 (𝑥𝑖) instead of 𝑝 (𝑥𝑖). Thus, each
entry in the row contains 𝑥𝑖 with probability 𝑝 (𝑥𝑖). Denote the ele-
ments in the subset as candidates. We accept each candidate with

probability 𝑝 (𝑥𝑖)/𝑝 (𝑥𝑖) to ensure that 𝑥𝑖 is sampled with 𝑝 (𝑥𝑖).
Table Lookup for All Possible Distributions. If the probability

of an element 𝑥𝑖 is altered, so too is 𝑝 (𝑥𝑖). To accommodate the mod-

ification, we also construct such a lookup row for each possible dis-

tribution of (𝑝 (𝑥1), . . . , 𝑝 (𝑥𝑚)). Note that 𝑝 (𝑥𝑖) ∈ { 1

𝑚 , . . . ,
𝑚
𝑚 }, so

there are exactly𝑚𝑚 different distributions of (𝑝 (𝑥1), . . . , 𝑝 (𝑥𝑚)).
To help with indexing into the table, let

𝐴(𝑝 (𝑥1), . . . , 𝑝 (𝑥𝑚)) =
𝑚∑︁
𝑖=1

(𝑚𝑝 (𝑥𝑖) − 1)𝑚𝑖−1 .

Note that 𝐴(𝑝 (𝑥1), . . . , 𝑝 (𝑥𝑚)) ∈ {0, . . . ,𝑚𝑚 − 1}. For each distri-

bution of (𝑝 (𝑥1), . . . , 𝑝 (𝑥𝑚)), we fill in the 𝐴(𝑝 (𝑥1), . . . , 𝑝 (𝑥𝑚))-th
row with the sampling outcomes. When querying, we generate a

random 𝑟 uniformly from {0, . . . ,𝑚𝑚 − 1}, and return the subset in

the entry in the 𝐴(𝑝 (𝑥1), . . . , 𝑝 (𝑥𝑚))-th row and the 𝑟 -th column.

The Optimal Algorithm Structure. Replacing the Naive method

in the basic algorithm with the table lookup trick, we finally derive

the optimal algorithm, Optimal Dynamic Subset Sampling (ODSS).

We provide the pseudocode in Algorithm 3. The subset sampling

problems at level 0 and level 1 are solved by querying within the

sampled groups, while a table is used for querying at level 2. When

querying, we first sample 𝑆 (2) using the table lookupmethod, which

plays a role as the Naive method in the basic algorithm. The remains

of ODSS are the same as Lines 3 to 6 in Algorithm 2, but with 𝐿 = 2.

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Lu Yi, Hanzhi Wang, and Zhewei Wei

Algorithm 3: Optimal Dynamic Subset Sampling

Input: the set of elements 𝑆 (0) , 𝑆 (1) , 𝑆 (2) and the set of

groups 𝐺 (0) ,𝐺 (1) , the table for 𝑆 (2)

Output: a drawn sample 𝑇

1 𝐿 ← 2,𝑇 ← ∅;
2 𝑄 (ℓ) ← ∅, 1 ≤ ℓ ≤ 𝐿;
3 Draw a sample of 𝑆 (2) by the table lookup method and

enqueue the sampled elements into 𝑄 (2) ;
4 The steps are the same as Algorithm 2 Line 3 to 6 with 𝐿 = 2;

5 𝑇 ← 𝑄 (0) ;
6 return 𝑇

Figure 1 provides an example of Optimal Dynamic Subset Sam-

pling. There are seven elements 𝑆 = {𝑥1, . . . , 𝑥7}. Let 𝑆 (0) = 𝑆 .

After the group partitions and maintaining the lookup table, we

obtain the structure with three levels. At level 2, we have𝑚 = 3

and 𝑆 (2) =
{
𝑥
(2)
1
, 𝑥
(2)
2
, 𝑥
(2)
3

}
. When querying, we first index into

the 𝐴
(
𝑝
(
𝑥
(2)
1

)
, 𝑝

(
𝑥
(2)
2

)
, 𝑝

(
𝑥
(2)
3

))
-th row. By selecting an entry uni-

formly from𝑚𝑚 entries in the row, we obtain a subset 𝐵 = 111,

which indicates 𝑥
(2)
3
, 𝑥
(2)
2
, 𝑥
(2)
1

are candidates. Then we accept each

candidate 𝑥
(2)
𝑖

with probability 𝑝
(
𝑥
(2)
𝑖

) /
𝑝
(
𝑥
(2)
𝑖

)
. It comes out that

𝑥
(2)
1
, 𝑥
(2)
2

are accepted, which implies that 𝐺
(1)
1
,𝐺
(1)
2

are sampled.

Thus, we query within 𝐺
(1)
1

and 𝐺
(1)
2

using Algorithm 1 and only

𝑥
(1)
1

in 𝐺
(1)
1

is sampled. Then, by querying within 𝐺
(0)
1

, we ac-

cept 𝑥
(0)
1
, 𝑥
(0)
6

and reject 𝑥
(0)
4

. Therefore, we draw a sample of 𝑆 ,

{𝑥1, 𝑥6}.

3.3 Update Operations
In this subsection, we demonstrate how ODSS handles element

insertion, element deletion, and probability modification. Let’s con-

sider the example of inserting an element 𝑥 with probability 𝑝 (𝑥)
into the set 𝑆 . We start by adding 𝑥 to the corresponding group

𝐺
(0)
𝑘

based on 𝑝 (𝑥). Subsequently, we recalculate the probability
𝑝
(
𝐺
(0)
𝑘

)
for this group. The modification of 𝑝 (𝐺 (0)

𝑘
) may necessi-

tate transferring 𝑥
(1)
𝑘

from one group at level 1 to another, resulting

in a change in the probabilities of two groups at level 1. In other

words, the probabilities of two elements in 𝑆 (2) are altered. Denote
the two elements at level 2 as 𝑥𝑖 and 𝑥 𝑗 . After modifying their prob-

abilities, denoted as 𝑝′ (𝑥𝑖) and 𝑝′ (𝑥 𝑗) respectively, we recalculate
the row index. This involves adding (𝑚𝑝′ (𝑥𝑖) −1)𝑚𝑖−1− (𝑚𝑝 (𝑥𝑖) −
1)𝑚𝑖−1 + (𝑚𝑝′ (𝑥 𝑗) − 1)𝑚 𝑗−1 − (𝑚𝑝 (𝑥 𝑗) − 1)𝑚 𝑗−1

to the previous

value of 𝐴(𝑝 (𝑥0), . . . , 𝑝 (𝑥𝑚)). This step completes the insertion of

𝑥𝑖 . This step completes the insertion of 𝑥𝑖 .

To achieve the update operations above, we maintain an array

for each group so that accessing the element at a specified location

and assigning an element to a specified location can be done in

constant time. We also maintain an array for storing the group

index 𝑘 and the position 𝑗 for each element 𝑥𝑖 , indicating that 𝑥𝑖 is

the 𝑗-th element in 𝐺𝑘 . Let Gidx(𝑥𝑖) be the group index of 𝑥𝑖 and

Gpos(𝑥𝑖) be the position of 𝑥𝑖 in the group.

When inserting an element into a group, we append it to the

end of the array. When it comes to deletion, we remove 𝑥𝑖 from

the Gidx(𝑥𝑖)-th group by replacing the value at position Gpos(𝑥𝑖)
with the value at the last position in the group and then delete the

last cell. That is, we move the last element to the position of 𝑥𝑖 , and

then the array contracts by one cell. Thus, inserting or deleting an

element within a group can be done in constant time.

With the above techniques, each element insertion can be solved

in constant time. Note that each element deletion also involves an

adjustment of one group at level 0. It is convenient to solve element

deletions with a similar solution. A probability modification can

be achieved by an element insertion following an element deletion.

Note that we are left with the problem that the number of groups in

each level can be altered with the increase or decrease of 𝑛 (ℓ) . We

provide a technical trick to maintain the correct number of groups

in constant time. The details of the trick are deferred to the proof

of the update time cost in Appendix A.6.

Take Figure 1 as an example again. We update the set of elements

by inserting 𝑥8 to 𝑆 (0) with 𝑝 (𝑥8) = 0.3. Then, 𝑥8 is assigned to

𝐺
(0)
2

since 2
−2 ≤ 𝑝 (𝑥8) ≤ 2

−1
. The size of 𝐺

(0)
2

is enlarged to two

elements, so 𝑝 (𝐺 (0)
2
) is revised to 1 − (1 − 2

−1)2 = 3/4. Thus, 𝑥 (1)
1

has to be moved from 𝐺
(1)
2

to 𝐺
(1)
1

. As a result, we have to revise

𝑝 (𝐺 (1)
1
), 𝑝 (𝐺 (1)

2
). Subsequently, at level 2, we recalculate 𝑝 (𝑥1) and

𝑝 (𝑥2), and revise 𝐴(𝑝 (𝑥1), 𝑝 (𝑥2), 𝑝 (𝑥3)) accordingly. Then we are

done with the insertion.

4 THEORETICAL ANALYSIS
In this section, we analyze the theoretical properties of our algo-

rithms. Theorem 1 and Theorem 2 illustrate the correctness and

the expected cost of Basic Dynamic Subset Sampling and Optimal

Dynamic Subset Sampling, respectively.

Our theoretical analysis is conducted under the standard word

RAM model proposed by Fredman et al. [8]. The word RAM model

is a commonly adopted computational model which offers a simple

yet accurate abstraction of real-world computers. In particular, we

will assume that any basic arithmetical operations on a single word

of log𝑛 bits take constant time, where 𝑛 matches the problem size.

The basic arithmetical operations include addition, multiplication,

comparison, logical shifts, exp(𝑥), and log(𝑥) (the binary logarithm
of 𝑥). The operation rand() (to generate a random number uniformly

from [0, 1]) takes constant time, too.

Theorem 1 (Basic Dynamic Subset Sampling). Using Algo-

rithm 2, the SubsetSampling problem can be solved in𝑂 (2log
∗ 𝑛 · 𝜇 +

2
log
∗ 𝑛 + log

∗ 𝑛) expected query time, 𝑂 (𝑛 log
∗ 𝑛) preprocessing time,

and 𝑂 (𝑛 log
∗ 𝑛) space.

Theorem 2. Using Algorithm 3, the SubsetSampling problem

can be solved in 𝑂 (1 + 𝜇) query time, constant update time, 𝑂 (𝑛)
preprocessing time, and 𝑂 (𝑛) space.

To prove Theorem 1 and Theorem 2, we need several lemmas.

In particular, we first prove that Algorithm 1 returns an unbiased

sample within 𝐺𝑘 in 𝑂 (𝜇𝑘 + 1) expected query time, where 𝜇𝑘 =∑
𝑥𝑖 ∈𝐺𝑘

𝑝 (𝑥𝑖).

Lemma 1. Given that a group 𝐺𝑘 = {𝑥𝑖 |2−𝑘 < 𝑝 (𝑥𝑖) ≤ 2
−𝑘+1}

for 1 ≤ 𝑘 < 𝐾 is successfully sampled with probability 𝑝 (𝐺𝑘) =

Optimal Dynamic Subset Sampling: Theory and Applications KDD ’23, August 6–10, 2023, Long Beach, CA, USA

1− (1− 2
−𝑘+1)𝑛𝑘 , Algorithm 1 returns a sample𝑇 of𝐺𝑘 in𝑂 (𝜇𝑘 + 1)

expected query time, where𝐾 = ⌈log𝑛⌉ +1, 𝜇𝑘 =
∑
𝑥𝑖 ∈𝐺𝑘

𝑝 (𝑥𝑖), 𝑛𝑘 =

|𝐺𝑘 | ≤ 𝑛. Each element 𝑥𝑖 ∈ 𝐺𝑘 is included in 𝑇 independently with

probability 𝑝 (𝑥𝑖). A similar conclusion holds for 𝐺𝐾 = {𝑥𝑖 |𝑝 (𝑥𝑖) ≤
2
−𝐾+1}.

Next, we bound 𝜇 (ℓ) , the sum of the probabilities for all elements

at level ℓ .

Lemma 2. Let 𝜇 =
∑𝑛
𝑖=1

𝑝 (𝑥𝑖). Denote the sum of the probabilities

for all elements in level ℓ as 𝜇 (ℓ) . We have

𝜇 (ℓ) ≤ 2
ℓ𝜇 + 2

ℓ − 1 (1)

The following lemma analyzes the theoretical property of the

table lookup method.

Lemma 3. With the table lookup method, the subset sampling

problem with 𝑆 = {𝑥1, . . . , 𝑥𝑚} can be solved with 𝑂 (1 + 𝜇) query
time, 𝑂 (2𝑚 ·𝑚 +𝑚𝑚) preprocessing time, and 𝑂 (𝑚2𝑚) space.

With the help of Lemma 1, Lemma 2 and Lemma 3, we are able

to prove Theorem 1 and Theorem 2. For the sake of readability, we

defer all proofs to the appendix.

5 EXPERIMENTS
In this section, we experimentally evaluate the performance of our

ODSS against alternatives.

Experiment Environment. We conduct all experiments on a

machine with an Intel(R) Xeon(R) Silver 4114 CPU @ 2.20GHz CPU

and 1007GBmemory in Linux OS. All the methods are implemented

in C++ compiled by g++ with O3 turned on.

Algorithms. We compared our ODSS against the Naive method,

the HybridSS method, and the BringmannSS method. For each

method, we report the total time of 100 queries as the query time.

And we report the time cost of inserting and deleting elements 1000

times as the update time.

The Distributions Of Probabilities. To examine the effective-

ness of our ODSS, we carefully set the probabilities of elements

distributed with different skewnesses. In particular, we choose the

normal distribution, the half-normal distribution, the exponential

distribution, and the log-normal distribution. The normal distri-

bution is a symmetric distribution with skewness as 0. We set

the mean of the normal distribution as 0 and the variance as 10.

For the half-normal distribution, the probability density (PDF) is

𝑓 (𝑥) =
√

2

𝜎𝜋 exp− 𝑥2

2𝜎2
and the skewness of it is just below 1. We

set the 𝜎2
as 10 for it. For the exponential distribution, the PDF is

𝑓 (𝑥) = 𝜆𝑒−𝜆𝑥 with the skewness as 2, and we set 𝜆 = 1. For the

log-normal distribution, the PDF is 𝑓 (𝑥) = 1

𝑥𝜎
√

2𝜋
exp− (ln𝑥−𝜇)

2

2𝜎2
.

By setting 𝜇 = 0 and 𝜎 =
√

ln 2, the skewness of this log-normal

distribution is 4. To generate the probabilities of elements, we first

sample a value for each element with the distribution settings. To

ensure each value is greater than 0, we subtract min from each

value, where min is the minimum of all the generated values. Then

we scale the range of the values to [0, 1] and scale the sum of them

to a specified 𝜇 according to the needs of various experiments.

Query Time v.s. Update time. In light of the pressing needs for

simultaneously achieving sample and update efficiency in the sub-

set sampling problem, we draw the trade-off plots between query

time and update time of each method in Figure 2. We set the num-

ber of elements 𝑛 = 100, 000, and the sum of the probabilities is

𝜇 = 1. From Figure 2, we observe that ODSS consistently achieves

the best of both query time and update time on all datasets. The

Naive method performs efficient updates, while it requires a large

query time, which is 1000× slower than ODSS. The query time of

the BringmannSS method is significantly smaller than the Naive

method, however, the update time is 1000× larger than our ODSS,

respectively. The HybridSS method performs much better than the

Naive method on querying, however, the update time of the Hy-

bridSS method is 10
5× slower than that of the Naive method. These

results concur with our analysis for query time and update time.

For update time, the Naive method and ODSS are the best with only

𝑂 (1) time per element insertion/deletion, while the BringmannSS

method needs 𝑂 (log𝑛) time and the HybridSS methods need 𝑂 (𝑛)
time. For query time, the BringmannSS method, and our ODSS are

the best with 𝑂 (1 + 𝜇) optimal query time. The HybridSS method

needs 𝑂

(
1 + 𝑛

√︁
min {𝑝, 1 − 𝑝}

)
query time, and the mean of the

probabilities 𝑝 is so small here, and thus the HybridSS performs

better than the Naive method, which needs 𝑂 (𝑛) time in any case.

Effectiveness Of Query. To further examine the query time of

these algorithms, we vary 𝜇, the sum of the probabilities of elements,

and show the query time in Figure 3. We set 𝑛 = 1, 000, 000, and

vary 𝜇 in {1, 10, 10
2, 10

3, 10
4, 10

5, 10
6}. From Figure 3, we observe

that with the increase of 𝜇, the query time of all algorithms except

the Naive method becomes larger. This concurs with the theoretical

analysis that the query time of the BringmannSS method and ODSS

is 𝑂 (1 + 𝜇), and the increase of the mean 𝑝 of the probabilities

incurs the increase of the query time of the HybridSS method.

Additionally, we note that when 𝜇 = 𝑛 = 10
6
, the query time of the

BringmannSS method is larger than that of the Naive method due

to the complicated index structure. In comparison, the HybridSS

method performs well when 𝜇 = 𝑛 since it will degenerate into the

Naive method. ODSS costs the least query time with any 𝜇 in this

experiment.

Effectiveness Of Update. To further examine the update time of

these algorithms, we set 𝜇 = 1 and vary 𝑛 in {10
4, 5 × 10

4, 10
5, 5 ×

10
5, 10

6, 5 × 10
6, 10

7}. Figure 4 shows the update time of the algo-

rithms on the four distributions. We observe that the Naive method

and ODSS consistently outperform other algorithms on all the

distributions with different skewnesses. The update time of the

BringmannSS method is 50× ∼ 100× larger than that of the Naive

method and our ODSS. The update time has little change with

the increase of 𝑛 since the 𝑂 (log𝑛) term increases little when 𝑛

varies from 10
4
to 10

7
. The update of the HybridSS method becomes

slower with the increase of 𝑛, which concurs with its update time

complexity 𝑂 (𝑛).

6 EMPIRICAL STUDY ON INFLUENCE
MAXIMIZATION

This section discusses how our algorithm ODSS improves the in-

fluence maximization (IM) algorithms for evolving graphs. We will

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Lu Yi, Hanzhi Wang, and Zhewei Wei

10−2 10−1 100

query time (s)

10−3

10−2

10−1

100

101

102

up
da

te
 ti

m
e

(s
)

NaiveSS

BringmannSS

HybridSS

ODSS

Normal distribution

10−2 10−1 100

query time (s)

10−3

10−2

10−1

100

101

102

up
da

te
 ti

m
e

(s
)

NaiveSS

BringmannSS

HybridSS

ODSS

Half-normal distribution

10−2 10−1 100

query time (s)

10−3

10−2

10−1

100

101

102

up
da

te
 ti

m
e

(s
)

NaiveSS

BringmannSS

HybridSS

ODSS

Exponential distribution

10−2 10−1 100

query time (s)

10−3

10−2

10−1

100

101

102

up
da

te
 ti

m
e

(s
)

NaiveSS

BringmannSS

HybridSS

ODSS

Log-normal distribution

Figure 2: query time v.s. update time overhead on distributions with different skewnesses. (𝑛 = 10
5, 𝜇 = 1)

1 101 102 103 104 105 106

μ

10−4

10−3

10−2

10−1

100

qu
er

y
tim

e
(s

)

Normal distribution

NaiveSS
BringmannSS
HybridSS
ODSS

1 101 102 103 104 105 106

μ

10−4

10−3

10−2

10−1

100

qu
er

y
tim

e
(s

)

Half-normal distribution

NaiveSS
BringmannSS
HybridSS
ODSS

1 101 102 103 104 105 106

μ

10−4

10−3

10−2

10−1

100

qu
er

y
tim

e
(s

)

Exponential distribution

NaiveSS
BringmannSS
HybridSS
ODSS

1 101 102 103 104 105 106

μ

10−4

10−3

10−2

10−1

100

qu
er

y
tim

e
(s

)

Log-normal distribution

NaiveSS
BringmannSS
HybridSS
ODSS

Figure 3: Varying 𝜇: query time (s) on distributions with different skewnesses. (𝑛 = 10
6)

104 5 × 104 105 5 × 105 106 5 × 106 107

n

10−3

10−1

101

103

up
da

te
 ti

m
e

(s
)

Normal distribution
NaiveSS
BringmannSS
HybridSS
ODSS

104 5 × 104 105 5 × 105 106 5 × 106 107

n

10−3

10−1

101

up
da

te
 ti

m
e

(s
)

Half-normal distribution
NaiveSS
BringmannSS
HybridSS
ODSS

104 5 × 104 105 5 × 105 106 5 × 106 107

n

10−3

10−1

101

103
up

da
te

 ti
m

e
(s

)
Exponential distribution

NaiveSS
BringmannSS
HybridSS
ODSS

104 5 × 104 105 5 × 105 106 5 × 106 107

n

10−3

10−1

101

103

up
da

te
 ti

m
e

(s
)

Log-normal distribution
NaiveSS
BringmannSS
HybridSS
ODSS

Figure 4: Varying 𝑛: update time (s) on distributions with different skewnesses. (𝜇 = 1)

first briefly introduce the IM problem and the dynamic IM problem

as follows.

With the booming of online social networks, information diffu-

sion in networks has attracted extensive research. As a key problem

in information diffusion research, IM finds important applications

in viral marketing [7], network monitoring [17], social recommen-

dation [28]. IM aims to find a set of seed users in the social networks

with the maximum influence spread. Specifically, consider a social

graph G = (V,E), where V is the set of nodes in G and E is the

set of edges in G. Each edge 𝑒 = (𝑢, 𝑣) ∈ E is associated with a

propagation probability 𝑝 (𝑢, 𝑣) ∈ [0, 1]. A specified diffusion model

𝑀 is defined to model the stochastic process of spreading influence

on G. The influence spread of a set of nodes 𝑆 , denoted as 𝜎G,𝑀 (𝑆),
is the expected number of users influenced by 𝑆 under the diffusion

model𝑀 .

Definition 1 (influence maximization [15]). Given a graphG,
a diffusion model𝑀 , and a positive integer 𝑘 , the influence maximiza-

tion problem selects a set 𝑆𝑘 of 𝑘 nodes from G as the seed set to maxi-

mize the influence spread𝜎G,𝑀 (𝑆𝑘), i.e., 𝑆𝑘 = arg max𝑆 : |𝑆 | ≤𝑘 𝜎G,𝑀 (𝑆).

The IC model. In this work, we focus on a widely adopted model,

the Independent Cascade (IC) model. Under the IC model, a seed set

𝑆 ∈ V spreads its influence as follows. At time step 0, all nodes in

𝑆 are activated. Each active node 𝑢 in step 𝑡 activates each of its

outgoing neighbors 𝑣 that is inactive in step 𝑡 − 1 with probability

𝑝 (𝑢, 𝑣). Note that𝑢 has only a chance to activate its outgoing neigh-

bors. After the time step 𝑡 , 𝑢 stays active and do not activate any

nodes again. The spreading process terminates when nomore active

nodes can activate other nodes. We observe that the process that

an active node 𝑢 activates its outgoing neighbors is exactly a subset

sampling problem. Each outgoing neighbor 𝑣 of 𝑢 is independently

sampled with probability 𝑝 (𝑢, 𝑣).
Research for static IM. It has been proved that IM is NP-hard

under the Independent Cascade (IC) model [15]. Computing the

influence spread function 𝜎 (𝑆) of a seed set 𝑆 is #𝑃-hard under the

IC model [3]. Due to the theoretical hardness of IM, extensive re-

search has tried to design efficient IM algorithms for a few decades.

According to [19], the existing algorithms can be classified into

three categories: the sketch based [1, 23, 24] solutions, the sim-

ulation based solutions [10, 15, 17, 27, 29], and the proxy based

solutions [4, 5, 14, 20]. The sketch based solution and the simula-

tion based solution both solve a huge number of subset sampling

problems.

Research for dynamic IM. Considering the highly dynamic na-

ture of social influence, the dynamic IM problem has received much

attention in the past decade. Dynamic IM hopes to support real-time

influential users tracking on evolving social networks. According to

Peng [22], the evolution model of dynamic IM can be classified into

two categories, the incremental model and the fully dynamic model.

Optimal Dynamic Subset Sampling: Theory and Applications KDD ’23, August 6–10, 2023, Long Beach, CA, USA

1 10 50 100 200 500 1000 1500 2000
k

3 × 100

101

5 × 101

ru
nn

in
g

tim
e

(s
)

OL - Exponential distribution

IM_NaiveSS
IM_BringmannSS
IM_HybridSS
IM_ODSS

1 10 50 100 200 500 1000 1500 2000
k

2 × 100

101

5 × 101

ru
nn

in
g

tim
e

(s
)

OL - Weibull distribution
IM_NaiveSS
IM_BringmannSS
IM_HybridSS
IM_ODSS

1 10 50 100 200 500 1000 1500 2000
k

100

101

6 × 101

ru
nn

in
g

tim
e

(s
)

TW - Exponential distribution
IM_NaiveSS
IM_BringmannSS
IM_HybridSS
IM_ODSS

1 10 50 100 200 500 1000 1500 2000
k

5 × 10−1

100

101

5 × 101

ru
nn

in
g

tim
e

(s
)

TW - Weibull distribution
IM_NaiveSS
IM_BringmannSS
IM_HybridSS
IM_ODSS

Figure 5: running time of dynamic IM algorithms based on various subset sampling structures.

IM_NaiveSS
IM_BringmannSS

IM_HybridSS
IM_ODSS2 × 10−6

10−5

up
da

te
 ti

m
e

(s
)

OL - Exponential distribution

IM_NaiveSS
IM_BringmannSS

IM_HybridSS
IM_ODSS2 × 10−6

10−5

up
da

te
 ti

m
e

(s
)

OL - Weibull distribution

IM_NaiveSS
IM_BringmannSS

IM_HybridSS
IM_ODSS10−6

10−5

up
da

te
 ti

m
e

(s
)

TW - Exponential distribution

IM_NaiveSS
IM_BringmannSS

IM_HybridSS
IM_ODSS10−6

10−5

up
da

te
 ti

m
e

(s
)

TW - Weibull distribution

Figure 6: update time of dynamic IM algorithms based on various subset sampling structures.

Table 2: Datasets

Dataset 𝒏 𝒎 𝒎/𝒏
Orkut-Links 3,072,441 117,185,083 38

Twitter 41,652,230 1,468,365,182 35

In the incremental model, the social network only enlarges over

time, while in the fully dynamic model, users can join in or leave the

networks, and the propagation probabilities between users can be

altered over time. Unfortunately, Peng has proven that no algorithm

can achieve any meaningful approximation guarantee in the fully

dynamic model, that is, re-running an IM algorithm upon every

update can achieve the lower bound of the running time. However,

the existing static IM algorithms focus on static social networks

and do not support evolving networks. This motivates us that by

replacing the subset sampling module in the static IM algorithms

with the structure of ODSS, we can obtain a new dynamic IM algo-

rithm for the fully dynamic model. The query time of each subset

sampling problem in the new IM algorithm is reduced to 𝑂 (1 + 𝜇).
In the meanwhile, since our ODSS performs 𝑂 (1) update time, the

new IM algorithms can support the insertion/deletion of user nodes

or the modification of propagation probabilities in 𝑂 (1) time.

In the following, wewill apply our ODSS and alternatives to static

RR-sketch based solutions to obtain new dynamic IM algorithms

for the fully dynamic model in Section 6.1. The experiments show

that the new dynamic IM algorithm based on our ODSS can reduce

the running time of IM and support real-time updates simultane-

ously. We also examine how our ODSS improves the complexities of

simulation based solutions. Due to the simplicity of the simulation

based solutions, we defer the detail in Appendix A.1.

6.1 Applying ODSS to RR-Sketch Solutions
The Reverse Reachable Sketch (RR-Sketch) solutions are the current

mainstream of the sketch based solutions for IM [1, 19, 24]. The

solutions are based on the concept of random Reverse Reachable (RR)

set. Generating a random RR set starts at a uniformly selected node

𝑣 from V, and then reversely samples the nodes that can activate 𝑣 ,

until no more nodes can be sampled. The set of the sampled nodes is

a random RR set, denoted as 𝑅. To reverse sample the nodes that can

activate 𝑣 , we sample each ingoing neighbor 𝑢 of 𝑣 with respect to

𝑝 (𝑢, 𝑣) and then repeat the above process by starting at the sampled

ingoing neighbors. It is also a subset sampling problem, but with

the ingoing neighbors of a node as elements. After generating a

sufficient number of random RR sets, a greedy algorithm is applied

to select a seed set[15]. The error of the RR-Sketch solutions is

bounded due to the submodularity of the influence spread function

𝜎 (·) [15].
We notice that Guo et al. [11] propose a framework called SUB-

SIM (Subset Sampling with influence maximization) based on the

OPIM-C algorithm [23] to accelerate the generation of random RR

sets by modifying the subset sampling module. However, SUBSIM

focuses on static IM problems and can not support the evolving

graphs. We can obtain various dynamic IM algorithms for the fully

dynamic model by replacing the subset sampling module with

various dynamic subset sampling structures (our ODSS and al-

ternatives). We conduct experiments for these IM algorithms to

evaluate the IM running time and the update time for the edge

insertions/deletions.

The experiments are conducted on two real-world graphs, Orkut-

Links (OL) and Twitter (TW). The two graphs are publicly available

at [18]. We give the summary of the two graphs in Table 2. Follow-

ing previous studies [11, 23], we test the case when the possibilities

of edges follow two skewed distributions: exponential distribu-

tion and Weibull distribution. For exponential distribution, We set

𝜆 = 1. For each node, we scale the sum of the probabilities of

its outgoing neighbors to 1. For Weibull distribution, the PDF is

𝑓 (𝑥) = 𝑎
𝑏
· (𝑥
𝑏
) (𝑎−1) · 𝑒−(𝑥/𝑏)𝑎 . The parameters 𝑎 and 𝑏 are drawn

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Lu Yi, Hanzhi Wang, and Zhewei Wei

uniformly from [0, 10] for each edge. For each node, the sum of the

probabilities of its outgoing neighbors is scaled to 1.

To fully explore the efficiency of the algorithms, we vary the

size 𝑘 of the seed set in {1, 10, 50, 100, 200, 500, 1000, 2000} in the

experiments. We repeat each IM algorithm to generate the seed

set 5 times and report the average running time. To simulate the

evolution of social networks, we uniformly choose 10
6
edges from

each graph and report the average time for the insertions and

deletions of these 10
6
edges. Figure 5 presents the running time

of the dynamic IM algorithms based on various subset sampling

structures. The IM_ODSS, the IM algorithm based on our ODSS,

outperforms alternatives in all tested graphs and all seed sizes. In

particular, the running time of IM_ODSS is 10× smaller than the

IM_NaiveSS on the TW graph when 𝑘 ≥ 500. Figure 6 presents the

update time of the algorithms. IM_ODSS performs per update in

less than 4 × 10
−6

s. IM_BringmanSS and IM_HybridSS both suffer

the long update time. In particular, IM_HybridSS is 10× slower than
IM_ODSS on the TW graph.

7 CONCLUSION
Subset sampling is a fundamental problem in both data mining and

theoretical computer science. Its dynamic version finds various ap-

plications in Influence Maximization, Graph Neural Networks, and

Computational Epidemiology. This paper proposes ODSS, the first

optimal dynamic subset sampling algorithm. We present a theoreti-

cal analysis to demonstrate the optimal complexities of ODSS. We

also conduct extensive experiments to evaluate the performance of

ODSS and give an empirical study on the Influence Maximization

problem. For future work, it is interesting to see the applications

of ODSS in Graph Neural Networks (GNN) and Computational

Epidemiology.

ACKNOWLEDGEMENTS
This research was supported in part by National Key R&D Program

of China (2022ZD0114802), by National Natural Science Foundation

of China (No. U2241212, No. 61972401, No. 61932001, No. 61832017),

by the major key project of PCL (PCL2021A12), by Beijing Nat-

ural Science Foundation (No. 4222028), by Beijing Outstanding

Young Scientist Program No.BJJWZYJH012019100020098, by Al-

ibaba Group through Alibaba Innovative Research Program, and by

Huawei-Renmin University joint program on Information Retrieval.

We also wish to acknowledge the support provided by Engineering

Research Center of Next-Generation Intelligent Search and Recom-

mendation, Ministry of Education. Additionally, we acknowledge

the support from Intelligent Social Governance Interdisciplinary

Platform, Major Innovation & Planning Interdisciplinary Platform

for the “Double-First Class” Initiative, Public Policy and Decision-

making Research Lab, Public Computing Cloud, Renmin University

of China.

REFERENCES
[1] Christian Borgs, Michael Brautbar, Jennifer Chayes, and Brendan Lucier. 2014.

Maximizing social influence in nearly optimal time. In Proceedings of the twenty-

fifth annual ACM-SIAM symposium on Discrete algorithms. SIAM, 946–957.

[2] Karl Bringmann and Konstantinos Panagiotou. 2012. Efficient sampling methods

for discrete distributions. In International colloquium on automata, languages, and

programming. Springer, 133–144.

[3] Wei Chen, Chi Wang, and Yajun Wang. 2010. Scalable influence maximization

for prevalent viral marketing in large-scale social networks. In Proceedings of

the 16th ACM SIGKDD international conference on Knowledge discovery and data

mining. 1029–1038.

[4] Wei Chen, Yajun Wang, and Siyu Yang. 2009. Efficient influence maximization in

social networks. In Proceedings of the 15th ACM SIGKDD international conference

on Knowledge discovery and data mining. 199–208.

[5] Suqi Cheng, Huawei Shen, Junming Huang, Wei Chen, and Xueqi Cheng. 2014.

Imrank: influencemaximization via finding self-consistent ranking. In Proceedings

of the 37th international ACM SIGIR conference on Research & development in

information retrieval. 475–484.

[6] Luc Devroye. 2006. Nonuniform random variate generation. Handbooks in

operations research and management science 13 (2006), 83–121.

[7] Pedro Domingos and Matt Richardson. 2001. Mining the network value of

customers. In Proceedings of the seventh ACM SIGKDD international conference on

Knowledge discovery and data mining. 57–66.

[8] Michael L Fredman and Dan EWillard. 1993. Surpassing the information theoretic

bound with fusion trees. Journal of computer and system sciences 47, 3 (1993),

424–436.

[9] Timothy C Germann, Kai Kadau, Ira M Longini Jr, and Catherine A Macken. 2006.

Mitigation strategies for pandemic influenza in the United States. Proceedings of

the National Academy of Sciences 103, 15 (2006), 5935–5940.

[10] Amit Goyal, Wei Lu, and Laks VS Lakshmanan. 2011. Celf++ optimizing the

greedy algorithm for influence maximization in social networks. In Proceedings

of the 20th international conference companion on World wide web. 47–48.

[11] Qintian Guo, Sibo Wang, Zhewei Wei, and Ming Chen. 2020. Influence maximiza-

tion revisited: Efficient reverse reachable set generation with bound tightened.

In Proceedings of the 2020 ACM SIGMOD International Conference on Management

of Data. 2167–2181.

[12] Torben Hagerup, Kurt Mehlhorn, and J Ian Munro. 1993. Maintaining discrete

probability distributions optimally. In International Colloquium on Automata,

Languages, and Programming. Springer, 253–264.

[13] Torben Hagerup, Kurt Mehlhorn, and James Ian Munro. 1993. Optimal algorithms

for generating discrete random variables with changing distributions. Lecture

Notes in Computer Science 700 (1993), 253–264.

[14] Kyomin Jung, Wooram Heo, and Wei Chen. 2012. Irie: Scalable and robust influ-

ence maximization in social networks. In 2012 IEEE 12th international conference

on data mining. IEEE, 918–923.

[15] David Kempe, Jon Kleinberg, and Éva Tardos. 2003. Maximizing the spread of

influence through a social network. In Proceedings of the ninth ACM SIGKDD

international conference on Knowledge discovery and data mining. 137–146.

[16] Donald Knuth. 1981. Seminumerical algorithms. The art of computer programming

2 (1981).

[17] Jure Leskovec, Andreas Krause, Carlos Guestrin, Christos Faloutsos, Jeanne Van-

Briesen, and Natalie Glance. 2007. Cost-effective outbreak detection in networks.

In Proceedings of the 13th ACM SIGKDD international conference on Knowledge

discovery and data mining. 420–429.

[18] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network

Dataset Collection. http://snap.stanford.edu/data.

[19] Yuchen Li, Ju Fan, YanhaoWang, and Kian-Lee Tan. 2018. Influence maximization

on social graphs: A survey. IEEE Transactions on Knowledge and Data Engineering

30, 10 (2018), 1852–1872.

[20] Qi Liu, Biao Xiang, Enhong Chen, Hui Xiong, Fangshuang Tang, and Jeffrey Xu Yu.

2014. Influence maximization over large-scale social networks: A bounded linear

approach. In Proceedings of the 23rd ACM international conference on conference

on information and knowledge management. 171–180.

[21] Yossi Matias, Jeffrey Scott Vitter, and Wen-Chun Ni. 2003. Dynamic generation

of discrete random variates. Theory of Computing Systems 36 (2003), 329–358.

[22] Binghui Peng. 2021. Dynamic influence maximization. Advances in Neural

Information Processing Systems 34 (2021), 10718–10731.

[23] Jing Tang, Xueyan Tang, Xiaokui Xiao, and Junsong Yuan. 2018. Online processing

algorithms for influence maximization. In Proceedings of the 2018 International

Conference on Management of Data. 991–1005.

[24] Youze Tang, Xiaokui Xiao, and Yanchen Shi. 2014. Influence maximization: Near-

optimal time complexity meets practical efficiency. In Proceedings of the 2014

ACM SIGMOD international conference on Management of data. 75–86.

[25] Meng-Tsung Tsai, Da-Wei Wang, Churn-Jung Liau, and Tsan-sheng Hsu. 2010.

Heterogeneous subset sampling. In Computing and Combinatorics: 16th Annual

International Conference, COCOON 2010, Nha Trang, Vietnam, July 19-21, 2010.

Proceedings 16. Springer, 500–509.

[26] Hanzhi Wang, Mingguo He, Zhewei Wei, Sibo Wang, Ye Yuan, Xiaoyong Du, and

Ji-Rong Wen. 2021. Approximate graph propagation. In Proceedings of the 27th

ACM SIGKDD Conference on Knowledge Discovery & Data Mining. 1686–1696.

[27] Yu Wang, Gao Cong, Guojie Song, and Kunqing Xie. 2010. Community-based

greedy algorithm for mining top-k influential nodes in mobile social networks.

In Proceedings of the 16th ACM SIGKDD international conference on Knowledge

discovery and data mining. 1039–1048.

[28] Mao Ye, Xingjie Liu, and Wang-Chien Lee. 2012. Exploring social influence

for recommendation: a generative model approach. In Proceedings of the 35th

http://snap.stanford.edu/data

Optimal Dynamic Subset Sampling: Theory and Applications KDD ’23, August 6–10, 2023, Long Beach, CA, USA

international ACM SIGIR conference on Research and development in information

retrieval. 671–680.

[29] Chuan Zhou, Peng Zhang, Wenyu Zang, and Li Guo. 2015. On the upper bounds

of spread for greedy algorithms in social network influence maximization. IEEE

Transactions on Knowledge and Data Engineering 27, 10 (2015), 2770–2783.

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Lu Yi, Hanzhi Wang, and Zhewei Wei

A APPENDIX
A.1 Applying ODSS to simulation based

solutions
The simulation based solutions apply the Monte Carlo method for

estimating the influence function 𝜎 (·). An MC simulation under

IC model to estimate 𝜎 (𝑆) starts from the set 𝑆 , traverses on a

possible world of G, and returns the number of reachable nodes

as an estimation of 𝜎 (𝑆). To generate a possible world of G, we
remove each edge 𝑒 = (𝑢, 𝑣) with probability 1−𝑝 (𝑢, 𝑣). It is a subset
sampling problem with 𝑆 = E, in which each element 𝑒 = (𝑢, 𝑣) is
associated by a reserving probability 𝑝 (𝑢, 𝑣). When it comes to the

dynamic IM problems, edges are inserted into the graph or removed

from the graph over time, resulting in the element insertion/deletion

of the subset sampling problem.

We conduct experiments on the two real-world graphs (OL and

TW) with exponential distribution and Weibull distribution and

show the query time for possible world generations and the update

time.

For each graph with various skewed distributions, we query for

100 possible worlds and conduct 1000 edge insertions and 1000

edge deletions of the graph. We report the tradeoff between the

query time and the update time for all algorithms in Figure 7. Our

ODSS outperforms alternatives in both query time and update time

on all the tested datasets. The update time of the Naive method

approaches our ODSS while the query time is 3× ∼ 5× larger than

ODSS. Note that the ratio of the query time of the Naive method

to that of ODSS is associated with 𝑚/𝑛 since the query time of

ODSS in this setting is 𝑂 (𝑛). Recall that we scale the sum of the

probabilities of the outgoing neighbors of each node to 1, thus, the

sum of the probabilities 𝜇 here is 𝑛. Therefore, the query time of

ODSS is𝑂 (1+𝜇) = 𝑂 (𝑛), while the query time of the Naive method

is 𝑂 (𝑚). As shown in Table 2, the𝑚/𝑛 term is 38, 35 for OL and

TW, respectively. Therefore, the empirical result indicates that the

constant of the 𝜇 term in the 𝑂 (1 + 𝜇) query time of ODSS is a bit

larger than the constant of the 𝑛 term in the𝑂 (𝑛) query time of the

Naive method. It concurs with the empirical results in Figure 3. The

BringmanSS method performs 2× faster than the Naive method for

query, however, it needs 100× update time larger than the Naive

method in the OL graph.

A.2 Proof of Lemma 1
Proof. We first consider the correctness of the algorithm. De-

fine a set of random variables 𝑋1, . . ., where 𝑋𝑖 is the index of

the 𝑖-th candidate. Since 𝐺𝑘 is sampled, we have 𝑌𝑘 = 1. Note

that 𝑋𝑖 = 𝑗 implies that there is at least one candidate in 𝐺𝑘 , so

Pr[𝑋𝑖 = 𝑗] = Pr[𝑋𝑖 = 𝑗 |𝑌𝑘 = 1] · Pr[𝑌𝑘 = 1]. Let 𝑅𝑖 be the

𝑖-th random number generated in Algorithm 1, that is, Pr[𝑅1 =

𝑗] = 2
−𝑘 (1 − 2

−𝑘) 𝑗−1/𝑝 (𝐺𝑘) and Pr[𝑅𝑖 = 𝑗] = 2
−𝑘 (1 − 2

−𝑘) 𝑗−1
,

1 < 𝑖 ≤ 𝑛𝑘 . For simplicity’s sake, we denote the 𝑗-th element

in 𝐺𝑘 as 𝑒 𝑗 . Note that the algorithm runs on the condition that

𝐺𝑘 is sampled. Pr[𝑋𝑖 = 𝑗 |𝑌𝑘 = 1] = Pr[∑𝑖
ℎ=1

𝑅ℎ = 𝑗]. Thus, the
𝑗-th element 𝑒 𝑗 is sampled as the 𝑖-th candidate with probability

Pr[𝑋𝑖 = 𝑗] = Pr[∑𝑖
ℎ=1

𝑅ℎ = 𝑗] · Pr[𝑌𝑘 = 1], 1 ≤ 𝑖 ≤ 𝑗 . Let

𝑍𝑖 =
∑𝑖
ℎ=1

𝑅ℎ . Note that 𝑒 𝑗 can be sampled as a 𝑖-th candidate,

where 1 ≤ 𝑖 ≤ 𝑗 . Then, the probability that 𝑒 𝑗 is sampled as a

candidate is

𝑗∑︁
𝑖=1

Pr[𝑋𝑖 = 𝑗] = Pr[𝑌𝑘 = 1]
𝑗∑︁
𝑖=1

Pr[𝑍𝑖 = 𝑗]

Let

𝑝 (𝑒 𝑗) =
𝑗∑︁
𝑖=1

Pr[𝑍𝑖 = 𝑗] (2)

We will prove that 𝑝 (𝑒 𝑗) = 2
−𝑘/𝑝 (𝐺𝑘) for all 𝑗 using Mathematical

Induction. For the initial step, we have 𝑝 (𝑒1) = Pr[𝑍1 = 1] =

2
−𝑘/𝑝 (𝐺𝑘) for the first element 𝑒1. For the inductive step, we prove

that 𝑝 (𝑒 𝑗) = 2
−𝑘/𝑝 (𝐺𝑘) if the proposition is true for any 1 ≤ 𝑗 ′ < 𝑗 .

The situation for 𝑍1 = 𝑗 is simple,

Pr[𝑍1 = 𝑗] = 2
−𝑘 (1 − 2

−𝑘) 𝑗−1

𝑝 (𝐺𝑘)
(3)

Consider 𝑍𝑖−1 when 𝑖 > 2 and 𝑍𝑖 = 𝑗 . Firstly, 𝑍𝑖−1 ≤ 𝑗 − 1 if 𝑍𝑖 = 𝑗 .

And the index of the (𝑖−1)-th candidate 𝑍𝑖−1 is at least 𝑖−1. Hence,

Pr[𝑍𝑖 = 𝑗] can be written as

∑𝑗−1

ℎ=𝑖−1
Pr[𝑍𝑖−1 = ℎ ∩ 𝑅𝑖 = 𝑗 − ℎ]

for 𝑖 > 2. Note that the random variables 𝑅1, . . . , 𝑅𝑛𝑘 are mutually

independent. Thus, we have

Pr[𝑍𝑖 = 𝑗] =
𝑗−1∑︁
ℎ=𝑖−1

Pr[𝑍𝑖−1 = ℎ] Pr[𝑅𝑖 = 𝑗 − ℎ] (4)

Applying Equation 4 to Equation 2, we have

𝑝 (𝑒 𝑗) = Pr[𝑍1 = 𝑗] +
𝑗∑︁
𝑖=2

𝑗−1∑︁
ℎ=𝑖−1

Pr[𝑍𝑖−1 = ℎ] · 2−𝑘 (1 − 2
−𝑘) 𝑗−ℎ−1

We interchange the order of the summations and obtain

𝑝 (𝑒 𝑗) = Pr[𝑍1 = 𝑗] +
𝑗−1∑︁
ℎ=1

ℎ∑︁
𝑖=1

Pr[𝑍𝑖 = ℎ] · 2−𝑘 (1 − 2
−𝑘) 𝑗−ℎ−1

Note that

∑ℎ
𝑖=1

Pr[𝑍𝑖 = ℎ] is exactly 𝑝 (𝑒ℎ). Using the inductive

hypothesis, we have 𝑝 (𝑒ℎ) = 2
−𝑘/𝑝 (𝐺𝑘) for ℎ < 𝑗 . Thus,

𝑝 (𝑒 𝑗) = Pr[𝑍1 = 𝑗] +
𝑗−1∑︁
ℎ=1

2
−𝑘

𝑝 (𝐺𝑘)
· 2−𝑘 (1 − 2

−𝑘) 𝑗−ℎ−1

Applying Equation 3, we obtain that 𝑝 (𝑒 𝑗) = 2
−𝑘/𝑝 (𝐺𝑘). This

completes the inductive step. Hence, 𝑒 𝑗 is sampled with probability

𝑗∑︁
𝑖=1

Pr[𝑋𝑖 = 𝑗] = 𝑝 (𝐺𝑘) · 2−𝑘/𝑝 (𝐺𝑘) = 2
−𝑘

We accept each candidate 𝑒 𝑗 with probability 𝑝 (𝑒 𝑗)/2−𝑘 . Thus, the
element 𝑒 𝑗 is sampled with probability 2

−𝑘 ·𝑝 (𝑒 𝑗)/2−𝑘 = 𝑝 (𝑒 𝑗). In a
word, given that𝐺𝑘 is sampled with probability 𝑝 (𝐺𝑘), Algorithm 1

return an unbiasedness sample of 𝐺𝑘 .

Next we consider the expected query time of Algorithm 1. The

expected query time only depends on the number of times we gen-

erate random numbers, which equals the number of candidates plus

one (one time for the index out of the group). For 0 ≤ 𝑘 < 𝐾 , the ex-

pected number of candidates in𝐺𝑘 is

∑𝑛𝑘
𝑖=1

2
−𝑘 ≤ ∑

𝑥𝑖 ∈𝐺𝑘
2𝑝 (𝑥𝑖) =

2𝜇𝑘 since 𝑝 (𝑥𝑖) > 2
−𝑘−1

. For 𝐺𝐾 , the expected number of candi-

dates is 2
−𝐾 ·𝑛𝐾 ≤ 2

−𝐾 ·𝑛 ≤ 1. Therefore, the expected query time

for 𝐺𝑘 is 2𝜇𝑘 + 1 = 𝑂 (𝜇𝑘 + 1) for 0 ≤ 𝑘 < 𝐾 , and 𝑂 (1) for 𝑘 = 𝐾 .

Optimal Dynamic Subset Sampling: Theory and Applications KDD ’23, August 6–10, 2023, Long Beach, CA, USA

1003 × 10−1 4 × 10−1 6 × 10−1

query time (s)
10−7

10−5

10−3

10−1

101

up
da

te
 ti

m
e

(s
)

NaiveSS

BringmannSS

HybridSS

ODSS

OL - Exponential distribution

3 × 10−1 1 × 100

query time (s)
10−7

10−5

10−3

10−1

101

up
da

te
 ti

m
e

(s
)

NaiveSS

BringmannSS

HybridSS

ODSS

OL - Weibull distribution

3 × 100 101 3 × 101

query time (s)

10−5

10−3

10−1

101

up
da

te
 ti

m
e

(s
)

NaiveSS
BringmannSS

HybridSS

ODSS

TW - Exponential distribution

3 × 100 101 3 × 101

query time (s)

10−5

10−3

10−1

101

up
da

te
 ti

m
e

(s
)

NaiveSS
BringmannSS

HybridSS

ODSS

TW - Weibull distribution

Figure 7: query time v.s. update time for generating possible worlds

For simplicity, we use𝑂 (𝜇𝑘 + 1) as the expected time for 0 ≤ 𝑘 ≤ 𝐾
in the later part of the paper. □

A.3 Proof of Lemma 2
Proof. 𝜇 (0) = 𝜇 =

∑𝑛
𝑖=1

𝑝 (𝑥𝑖). Let 𝑛 (ℓ) =

���𝑆 (ℓ) ��� be the num-

ber of elements at level ℓ , 𝑛
(ℓ)
𝑘

=

���𝐺 (ℓ)
𝑘

��� be the number of el-

ements contained in 𝐺
(ℓ)
𝑘

, 𝐾 (ℓ) = ⌈log𝑛 (ℓ) ⌉ be the largest in-

dex of the groups at level ℓ . Note that 𝑝 (𝑥 (ℓ)
𝑘
) = 𝑝 (𝐺 (ℓ−1)

𝑘
), so

𝜇 (ℓ) =
∑𝐾 (ℓ−1)

𝑘=1
𝑝 (𝐺 (ℓ−1)

𝑘
). And 𝑝 (𝐺 (ℓ−1)

𝑘
) = 1 − (1 − 2

−𝑘)𝑛
(ℓ−1)
𝑘 is

the probability that 𝐺
(ℓ−1)
𝑘

contains at least one candidate. Thus,

we have

𝜇 (ℓ) =
𝐾 (ℓ−1)∑︁
𝑘=1

1 − (1 − 2
−𝑘)𝑛

(ℓ−1)
𝑘 ≤

𝐾 (ℓ−1)∑︁
𝑘=1

2
−𝑘𝑛 (ℓ−1)

𝑘

since (1 − 𝑥)𝑦 ≥ 1 − 𝑥𝑦 for any 0 ≤ 𝑥 < 1 and 𝑦 ≥ 1. Note that

𝑝 (𝑥 (ℓ)
𝑖
) > 2

−𝑘−1
if 𝑥
(ℓ)
𝑖
∈ 𝐺 (ℓ)

𝑘
for 0 ≤ 𝑘 < 𝐾 (ℓ) at any level ℓ .

Thus, we have

2
−𝑘𝑛 (ℓ−1)

𝑘
≤

∑︁
𝑥𝑖 ∈𝐺 (ℓ−1)

𝑘

2𝑝 (𝑥 (ℓ−1)
𝑖

)

for 0 ≤ 𝑘 < 𝐾 (ℓ−1)
. For 𝑘 = 𝐾 (ℓ−1)

, 2
−𝑘 = 2

−⌈log𝑛 (ℓ−1) ⌉ ≤
1/𝑛 (ℓ−1)

. Note that 𝑛
(ℓ−1)
𝑘

≤ 𝑛, so 2
−𝑘𝑛 (ℓ−1)

𝑘
≤ 1 for 𝑘 = 𝐾 (ℓ−1)

.

Therefore, we have

𝜇 (ℓ) ≤
∑︁

𝑥
(ℓ−1)
𝑖

∈𝑆 (ℓ−1)

2𝑝 (𝑥 (ℓ−1)
𝑖

) + 1 = 2𝜇 (ℓ−1) + 1

Thus,

𝜇 (ℓ) ≤ 2𝜇 (ℓ−1) + 1 ≤ . . . ≤ 2
ℓ𝜇 + 2

ℓ − 1

□

A.4 Proof of Theorem 1
Proof. Unbiasedness. We first show that Algorithm 2 draw an

unbiased sample of 𝑆 . Firstly, the Naive method gives an unbiased

sample of 𝑆 (𝐿) . Each sampled element 𝑥
(𝐿)
𝑘

indicates that𝐺
(𝐿−1)
𝑘

∈
𝐺 (𝐿−1)

is sampled with 𝑝 (𝐺 (𝐿−1)
𝑘

). According to Lemma 1, given

that a group 𝐺ℓ
𝑘
is sampled with 𝑝 (𝐺ℓ

𝑘
), Algorithm 1 returns a

sample of 𝐺ℓ
𝑘
. Thus, we obtain an unbiased sample of 𝑆 (𝐿−1)

by

combined the outcomes of SamplingWithinGroup(𝐺
(𝐿−1)
𝑘

) for all

sampled groups𝐺
(𝐿−1)
𝑘

. Repeating in this fashion, we finally obtain

an unbiased sample of 𝑆 (0) . Thus, Algorithm 2 returns an unbiased

sample of the subset sampling problem.

Expected Query Time. Note that 𝐿 equals log
∗ 𝑛 to guarantee

that the number of items at level 𝐿 is a constant. Sampling elements

at level 𝐿 (Algorithm 2 Line 2) costs constant time since 𝑛 (𝐿) is a
constant. Then we examine the cost of sampling elements at level

ℓ , denoting as 𝐶 (ℓ) , given that some groups of level ℓ is sampled

(Algorithm 2 Line 3 to line 6) . Note that the expected number

of sampled groups at level ℓ is exactly the expected number of

elements sampled at level ℓ + 1, which equals 𝜇 (ℓ+1) . According
to Lemma 1, sampling with 𝐺

(ℓ)
𝑘

costs 2𝜇𝑘 + 1 expected time for

0 ≤ 𝑘 ≤ 𝐾 (ℓ) , where 𝜇𝑘 is the sum of probabilities for the elements

in 𝐺
(ℓ)
𝑘

. Let 𝑇 be the set of the indexes of the sampled groups. We

have

E[𝐶 (ℓ)] ≤ 𝑂 (1) + 𝜇 (ℓ+1) + E[
∑︁
𝑘∈𝑇
(2𝜇𝑘 + 1)]

in which the𝑂 (1) term for miscellaneous overhead, the 𝜇 (ℓ+1) term
for iterating in the 𝜇 (ℓ+1) sampled groups. According to the linear-

ity of expectation, we have E[∑𝑘∈𝑇 (2𝜇𝑘 + 1)] = E[∑𝑘∈𝑇 2𝜇𝑘] +
E[∑𝑘∈𝑇 1]. The first term E[∑𝑘∈𝑇 2𝜇𝑘] is less than the sum of

2𝜇𝑘 for all 0 ≤ 𝑘 ≤ 𝐾 (ℓ) , which equals 2𝜇 (ℓ) . The second term

E[∑𝑘∈𝑇 1] = 𝜇 (ℓ+1) . Thus, E[𝐶 (ℓ)] ≤ 2𝜇 (ℓ+1) + 2𝜇 (ℓ) +𝑂 (1). The
total query cost

E[𝐶] = E
[
𝐿∑︁
ℓ=0

𝐶 (ℓ)
]
≤ 𝑂 (1) +

𝐿−1∑︁
ℓ=0

(2𝜇 (ℓ+1) + 2𝜇 (ℓ) +𝑂 (1))

Applying Equation (1), we derive the expected query time

𝐸 [𝐶] = 𝑂 (2log
∗ 𝑛𝜇 + 2

log
∗ 𝑛 + log

∗ 𝑛)

Preprocessing Time and Memory space. In the preprocessing

phase, we check the probability of each element and then assign

it to an appropriate group at each level ℓ (except for 𝐿 as 𝐺 (𝐿) is
not necessary). Then, the probabilities of the groups are computed

to obtain the probabilities of elements at the next level. Note that

𝑝 (𝐺 (ℓ)
𝑘
) = 1 − (1 − 2

−𝑘)𝑛
(ℓ)
𝑘 can be calculated in constant time

since 𝑎𝑏 = exp(𝑏 log𝑎). And the number of the groups at level ℓ

is ⌈log𝑛 (ℓ) ⌉ + 1, which equals 𝑛 (ℓ+1) . Thus, the cost of each level

ℓ is 𝑂 (𝑛 (ℓ) + 𝑛 (ℓ+1)) = 𝑂 (𝑛). The total cost of preprocessing is∑𝐿−1

ℓ=0
𝑛 (ℓ) + 𝑛 (ℓ) ≤ 𝑂 (𝑛𝐿) = 𝑂 (𝑛 log

∗ 𝑛). Similary, the cost of

memory space at level ℓ is𝑂 (𝑛 (ℓ) + ⌈log𝑛 (ℓ) ⌉ +1) for 𝑛 (ℓ) elements

and ⌈log𝑛 (ℓ) ⌉ + 1) groups. The total memory space is 𝑂 (𝑛 log
∗ 𝑛).
□

A.5 Proof of Lemma 3
Proof. We first show that the table lookup method gives an

unbiased sample of 𝑆 . Denote the subset as 𝐵 that we obtain by

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Lu Yi, Hanzhi Wang, and Zhewei Wei

indexing into the table with 𝐴(𝑝 (𝑥1), . . . , 𝑝 (𝑥𝑚)) and a uniformly

distributed random 𝑟 . 𝐵 is selected with 𝑝 (𝐵) as we fill in𝑚𝑚𝑝 (𝐵)
entries with𝐵 in the total𝑚𝑚 entries of the row. For each element 𝑥𝑖 ,

it is included in 𝐵 with probability 𝑝 (𝑥𝑖) =
∑
𝑥𝑖 ∈𝐵,𝐵⊆𝑆 𝑝 (𝐵). Note

that {𝐵 |𝑥𝑖 ∈ 𝐵, 𝐵 ⊆ 𝑆} are the subsets containing 𝐵 and no matter

if other subsets are contained or not. Thus, 𝑝 (𝑥𝑖) = 𝑝 (𝑥𝑖). If 𝑥𝑖 is
included in 𝐵, that is, 𝑥𝑖 is sampled as a candidate, we accept it with

𝑝 (𝑥𝑖)/𝑝 (𝑥𝑖). Thus, 𝑥𝑖 is sampled with 𝑝 (𝑥𝑖) · 𝑝 (𝑥𝑖)/𝑝 (𝑥𝑖) = 𝑝 (𝑥𝑖).
The unbiasedness of the table lookup method follows.

Next, we consider the expected query time of the table lookup

method. When querying, we generate a random 𝑟 uniformly from

{0, . . . ,𝑚𝑚 − 1} and obtain the bit array stored in the entry in row

𝐴(𝑝 (𝑥1), . . . , 𝑝 (𝑥𝑚)) and column 𝑟 . To decode the bit array, we first

get the position idx of rightmost 1-bit of𝐵 by idx = log((∼ 𝐵+1)&𝐵).
𝑥𝑖𝑑𝑥 is the sampled candidate with the smallest index. Then, let

𝐵 = 𝐵 − 2
idx

. By repeating the technique above with 𝐵, we will

get all the sampled candidates. For each candidate, we then use

rejection to get the probability of candidate 𝑥𝑖 down to 𝑝 (𝑥𝑖). Thus,
the query time depends on the number of sampled candidates. Note

that 𝑝 (𝑥𝑖) − 𝑝 (𝑥𝑖) ≤ 1

𝑚 since𝑝 (𝑥𝑖) = ⌈𝑚𝑝 (𝑥𝑖)⌉/𝑚. Thus we have

𝑚∑︁
𝑖=1

𝑝 (𝑥𝑖) ≤
𝑚∑︁
𝑖=1

1

𝑚
+ 𝑝 (𝑥𝑖) ≤ 𝜇 + 1

where 𝜇 =
∑𝑚
𝑖=1

𝑝 (𝑥𝑖). Therefore, the expected query time is 𝑂 (𝜇 +
1).

At the preprocessing phase, we maintain the table and calculate

𝐴(𝑝 (𝑥1), . . . , 𝑝 (𝑥𝑚)) for the current (𝑝 (𝑥1), . . . , 𝑝 (𝑥𝑚)). For each
table row, we calculate the probabilities of 2

𝑚
subsets. Note that

each probability of a subset is the product of𝑚 probabilities, which

costs 𝑂 (𝑚) time to calculate. The time for filling in the table is

𝑂 (𝑚𝑚 · 𝑚𝑚). Calculating 𝐴(𝑝 (𝑥1), . . . , 𝑝 (𝑥𝑚)) costs 𝑂 (𝑚) time.

Thus, the total preprocessing time is 𝑂 (2𝑚 ·𝑚 +𝑚2𝑚).
The memory space depends on the size of the table, which is

𝑂 (𝑚2𝑚). Note that the word length is at least log𝑚𝑚 bits to store

the row index in a single memory word. We will show in the proof

of Theorem 2 that the word length under the standard word RAM

model is sufficient since the number of elements𝑚 is so few. □

A.6 Proof of Theorem 2
Proof. Unbiasedness. We derive the optimal algorithm by

replacing the Naive method in Algorithm 2 with the table lookup

method at the maximum level. The table lookup method allows for

a drop in the maximum level 𝐿 from 𝑙𝑜𝑔 ∗ 𝑛 to 2. Since we have

proved the unbiasedness of the table lookup method in Lemma 3

and the unbiasedness of the basic algorithm in Theorem 1, the

unbiasedness of Algorithm 3 follows.

Expected Query Time. As proved in Theorem 1, the expected

cost of sampling elements within the sampled groups at level ℓ

is E[𝐶 (ℓ)] ≤ 2𝜇 (ℓ+1) + 2𝜇 (ℓ) + 𝑂 (1). According to Lemma 3, the

expected cost of table lookup at level 2 is E[𝐶 (2)] = 1 + 𝜇 (2) . Thus,
the expected query time of Algorithm 3 is

E[𝐶] = E[𝐶 (0)] + E[𝐶 (1)] + E[𝐶 (2)] ≤ 3𝜇 (2) + 4𝜇 (1) + 2𝜇 + 3

According to Lemma 2, 𝜇 (ℓ) ≤ 2
ℓ𝜇 + 2

ℓ − 1. Thus, we derive the

expected query time of Algorithm 3 as

E[𝐶] = 𝑂 (1 + 𝜇)

Technical Trick toMaintain Groups. Before we illustrate the up-
date cost, we give a technical trick to maintain the groups correctly.

The number of groups may vary over time with the increasing or de-

creasing number of elements 𝑛. We consider how to maintain 𝑂 (1)
update time in this scenario. First of all, we make an assumption

that the upper bound of 𝑛 is known in advance. With the assump-

tion, we maintain the lookup table with𝑚 = ⌈log(⌈log𝑛⌉ + 1)⌉ + 1

where 𝑛 is the upper bound of the number of elements over time.

Next, we consider how to maintain the correct group partitions if

the number of groups 𝐾 (ℓ) varies. If 𝐾 (ℓ) is reduced to 𝐾 (ℓ) − 1,

we first conceptually combine the two groups into a new 𝐺
(ℓ)
𝐾−1

,

that is, we recalculate 𝑝 (𝐺 (ℓ)
𝐾−1
) with the new group size and set a

flag to indicate the combination. In each of the following query or

update operations, we move two elements in the old𝐺
(ℓ)
𝐾

to the old

𝐺
(ℓ)
𝐾−1

in practice. Before the number of groups is reduced by one

again, all the elements can be moved into 𝐺
(ℓ)
𝑘−1

. To deal with the

increasing of𝐾 , we implicitly maintain the partition in𝐺
(ℓ)
𝐾

, i.e., the

group is implicitly partitioned into two groups: 𝐺 ′ (ℓ)
𝐾

and 𝐺 ′ (ℓ)
𝐾+1.

The implicit group 𝐺 ′ (ℓ)
𝐾+1 contains elements with probabilities no

greater than 2
−(𝐾+1)+1

. When 𝐾 is increased to 𝐾 + 1, the implicit

𝐺 ′ (ℓ)
𝐾

becomes a new group and the implicit 𝐺 ′ (ℓ)
𝐾+1 becomes the

last group. In each of the following query or update operations, we

partition an element in the new𝐺
(ℓ)
𝐾+1 into the new implicit𝐺 ′ (ℓ)

𝐾+1
or into the new implicit 𝐺 ′ (ℓ)

𝐾+1 according to its probability so that

the partition is finished before the number of groups is increased to

𝐾 + 2. In this way, the groups are maintained correctly in constant

time.

Update Cost. As we illustrated in Section 3.3, an insertion of an

element can be updated in constant time. The element deletion is

the same as element insertion since it modifies the probability of

one group at level 0. Note that probability modification brings a

revision of the probabilities of at most two groups. Thus, the cost

of probability modification is twice that of adding or removing an

element but is still constant. Therefore, an update (element inser-

tion/deletion or probability modification) can be done in constant

time.

Preprocessing Time. The preprocessing time for level 1 and level

0 is 𝑂 (𝑛) as proved in Theorem 2. To support efficient updates,

we insertionally maintain an array for storing the position in the

corresponding group for each element 𝑥𝑖 . The total preprocessing

time remains 𝑂 (𝑛) for level 1 and level 0. According to Lemma 3,

the preprocessing time for the table lookup method for level 2 is

𝑂 (2𝑚 ·𝑚 +𝑚𝑚) when there are𝑚 elements at level 2. Note that

𝑚 = ⌈log(⌈log𝑛⌉ +1)⌉ +1, and hence𝑂 (2𝑚 ·𝑚+𝑚𝑚) = 𝑂 (𝑛). Thus,
the preprocessing time for each level 0 ≤ ℓ ≤ 2 is 𝑂 (𝑛), so as the

total preprocessing time.

Memory Space. At level 0 and level 1, we maintain an array for

each group to store the containing elements. To help with locating

the position of the elements in the groups, we also maintain another

Optimal Dynamic Subset Sampling: Theory and Applications KDD ’23, August 6–10, 2023, Long Beach, CA, USA

array at level 0 and level 1 to store the position of each element.

Thus, the total memory space actually in use is 𝑂 (𝑛). Note that
the size of each array will grow and shrink with the insertions

and deletions of elements. To support the changes of the arrays

and bound the total memory in the meantime, we implement the

arrays using the doubling technique. Specifically, for each array 𝐴,

we maintain an insertional arrays 𝐴+. Denote the size of 𝐴 as 𝑐 ,

initially 𝑐 = 2. Let 𝑛′ be the number of elements in𝐴. The size of𝐴+
is initialized as 2𝑐 . At the beginning, 𝐴+ is empty. When 𝑛′ starts
to exceed 𝑐/2, each time we insert a new element into 𝐴, the new

element is inserted into 𝐴+ as well and one element contained in 𝐴

is copied to 𝐴+. Thus, when 𝐴 is full, 𝐴+ contains all elements in 𝐴.

Then, we release the memory space of 𝐴, make 𝐴+ as the new 𝐴,

and create a new 𝐴+ of size 4𝑐 . When 𝑛′ becomes smaller than
𝑐
4
,

we delete 𝐴+ and contract 𝐴 by
𝑐
2
. Then we create a new 𝐴+ of size

𝑐 . Note that the time cost for each insertion/deletion is still bounded

by 𝑂 (1), and the memory space of 𝐴+ is asymptotically the same

as that of 𝐴. Thus, the total memory space of level 0 and level 1

only depends on the number of elements at the level, which is𝑂 (𝑛).
According to Lemma 3, it costs 𝑂 (𝑚2𝑚) space for level 2. Since

𝑚 = ⌈log(⌈log𝑛⌉ + 1)⌉ + 1, we have𝑂 (𝑚2𝑚) = 𝑂 (𝑛). As mentioned

in the proof of Lemma 3, the table lookup method requires the

word length of at least log𝑚𝑚 bits. Since 𝑚 = 𝑂 (log log𝑛), the
word length of 𝑂 (log𝑛) bits in the word RAM model is sufficient.

Therefore, we conclude that the total memory space for the optimal

algorithm is 𝑂 (𝑛).
□

	Abstract
	1 Introduction
	1.1 Concrete Applications
	1.2 Motivations and Contributions

	2 Preliminary
	2.1 Other Related Work

	3 Algorithm
	3.1 Basic ODSS Algorithm
	3.2 Optimal Dynamic Subset Sampling
	3.3 Update Operations

	4 Theoretical Analysis
	5 Experiments
	6 Empirical Study on influence maximization
	6.1 Applying ODSS to RR-Sketch Solutions

	7 Conclusion
	References
	A Appendix
	A.1 Applying ODSS to simulation based solutions
	A.2 Proof of Lemma 1
	A.3 Proof of Lemma 2
	A.4 Proof of Theorem 1
	A.5 Proof of Lemma 3
	A.6 Proof of Theorem 2

