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Highlights

• Ensemble learning improves the performance of object detection and achieves

the mAP of state-of-the-art detectors.

• The combination of context modeling and dilated convolution ensures the de-

tection speed.

• The proposed multi-scale feature fusion module confers a clear improvement

to the detector.

• The proposed ensemble modes demonstrate the effectiveness of ensemble learn-

ing in the field of object detection.

1

                  



Multi-model ensemble with rich spatial information for object

detection

Jie Xu∗, Wei Wang, Hanyuan Wang, Jinhong Guo∗

School of Information and Communication Engineering, University of Electronic Science and
Technology of China, Chengdu, China

Abstract

Due to the development of deep learning networks and big data dimensionality,

research on ensemble deep learning is receiving an increasing amount of attention.

This paper takes the object detection task as the research domain and proposes an

object detection framework based on ensemble deep learning. To guarantee the accu-

racy as well as real-time detection, the detector uses a Single Shot MultiBox Detector

(SSD) as the backbone and combines ensemble learning with context modeling and

multi-scale feature representation. Two modes were designed in order to achieve

ensemble learning: NMS Ensembling and Feature Ensembling. In addition, to ob-

tain contextual information, we used dilated convolution to expand the receptive

field of the network. Compared with state-of-the-art detectors, our detector achieves

superior performance on the PASCAL VOC set and the MS COCO set.
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1. Introduction

Deep learning has been widely used in recent years to solve a range of problems,

such as computer vision, speech recognition, and natural language processing. As

an important branch task of computer vision, some problems of object detection are

solved by gradual deep learning. At the same time, ensemble learning has become5

popular and has been widely used to improve the performance of a single learner,

especially under the promotion of competition such as ImageNet [1] and Kaggle1. The

combination of ensemble deep learning and computer vision has become a hot and

difficult point of research. In fact, these high-profile competitions also demonstrate

the effectiveness and feasibility of combining ensemble learning with computer vision.10

Ensemble learning is a learning paradigm that combines multiple learners to

improve learner performance and can be divided into two parts: how to get multiple

learners and how to combine multiple learners. For the first problem, the traditional

method is implemented by algorithms such as Boosting [2], Bagging [3], or Random

Forests [4]. The difference between Boosting and Bagging or Random Forests is that15

there is a strong dependency between the individual learners generated by the former;

thus, individual learners basically need to be serially generated. However, there is

no strong dependency between the individual learners generated by the latter two,

so a series of individual learners can be generated in parallel. For the first problem,

the neural network-based approach is related to the ensemble as represented by20

the Snapshot Ensemble [5] and the Fast Geometric Ensembling [6]. The difference

1www.kaggle.com
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between this and the traditional approach is that the former takes the same amount

of time to train the entire ensemble model as the training of a single traditional

model.

The methods used to combine multiple learners in ensemble learning mainly in-25

clude voting, averaging, and learning. For regression problems, the commonly used

ensemble strategy is averaging; that is, the outputs of several weak learners are aver-

aged to obtain the final predicted output, mainly by simple and weighted averaging.

Voting is usually employed for classification problems; that is, voting on the results

of the weak learner to obtain the final result as represented by majority voting,30

plurality voting, and weighted voting. The learning-based ensemble strategy, which

is ensembled through a new learner, is more complicated. The masterpiece of the

learning-based ensemble strategy is stacking [7]. When using the stacking strategy,

instead of doing a simple logical processing of the primary learner’s results, we add

a secondary learner to the primary learners. Specifically, we take the learning result35

of primary learners on the training set as input and train a secondary learner to get

the final result. For the test set, we first use the primary learner to predict the input

data of the secondary learner and then use the secondary learner to predict the final

result.

The state-of-the-art in object detection, which is a branch task of computer vision,40

mainly comprises two research directions: region-based [8, 9, 10] and region-free

[11, 12] proposals detection. The former is mainly used to improve detection accuracy

while the latter is used to improve detection efficiency.
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Region-based proposals detection primarily involves a two-stage framework. The

main work is R-CNN [8] along with its representative updated descendants such45

as Fast R-CNN [9] and Faster R-CNN [10]. R-CNN proposes a backbone network

based on CNN and proposals-generated algorithms, such as Selective Search [13] and

Edge Boxes [14], and becomes a typical pipeline. Fast R-CNN proposes the ROI-

pooling layer based on R-CNN, which greatly alleviates the speed problem caused

by R-CNN due to a large number of unnecessary computations. ROI-pooling is a50

single-layer Spatial Pyramid Pooling Network (SPP-Net) [15] that generates a fixed-

length feature descriptor without regard to input image size. The Faster R-CNN is

based on Fast R-CNN and improves the proposals-generated network. Faster R-CNN

is designed as a Region Proposal Network (RPN) to generate regional proposals by

sharing convoluted layers instead of Selective Search, which reduces computational55

overhead. However, these methods still have heavy computational costs due to the

existence of feature extraction and region-recommendation generation, which will

reduce the inference speed.

To solve the speed problem of the two-stage framework, significant work has

begun to focus on the one-stage framework based on region-free proposals detectors.60

The masterpieces of the one-stage framework are YOLO [11] and SSD [12]. The

proposed generation network is discarded in these methods, which improves the

detection speed. However, YOLO and SSD also prove that the real-time performance

of this one-stage framework is achieved at the expense of accuracy. At the same

time, YOLO will produce relatively coarse features due to multiple downsampling,65

and YOLO and SSD are not sensitive to small objects.
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In response to these problems, some methods based on context modeling and

multi-scale representation have been proposed. Context modeling improves detection

performance through features around the region of interest (RoI) [9] or default box

[12]. Because the information around the RoI or default box may contain more70

important parts of the ground truth boxes, this information also helps deal with

occlusions and local similarities such as in [16] and [17]. Multi-scale representation

is used to obtain multi-scale features by integrating feature maps of different layers

to further acquire semantic information of different spatial resolutions such as MS-

CNN [16], FPN [18], HyperNet [19], and FSSD [20]. In addition, there is some work,75

such as ION [21] and DSSD [22], to combine the two to further improve detection

performance, especially for small objects.

In recent years, ensemble learning and object detection technologies have matured

and both have achieved good performance in their respective fields. However, to the

best of our knowledge, little attention has been paid to the combination of ensemble80

learning and object detection. Most studies have focused on the combination of en-

semble learning and image classification. This is mainly because object detection is

a multi-task operation that needs to implement both classification and localization

tasks. Object classification and object localization belong to classification and regres-

sion problems, respectively. Therefore, there is no better way to combine different85

models than by simply using voting, averaging, and stacking. However, from the

NMS operation and feature level, this paper designs two ensemble learning modes

that can combine different models well and overcome the difficulties of multi-task

detection for network integration. The NMS Ensembling mode integrates the two
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tasks of classification and localization by integrating the inference results, whereas90

the Feature Ensembling mode is a multi-modal ensemble method that can integrate

the features learned by different models so that the learned features of different mod-

els can complement each other and increase the robustness of the model. Hence, the

proposed method can solve the problem of combining ensemble learning with ob-

ject detection so that ensemble learning can efficiently and effectively improve the95

performance of object detection.

Based on the discussion above, in order to construct a detector with higher de-

tection performance and without lowering the detection speed, a feasible idea is to

combine a one-stage framework, context modeling, and multi-scale representation.

The motivation of our work comes from this. In this paper, we adopt a new con-100

text modeling method. We apply dilated convolution, which is commonly used in

the semantic segmentation domain, to object detection and build a context detec-

tion module based on the fact that dilated convolution extends the receptive field

without increasing the number of computations. At the same time, we also capture

fine-grained details through multi-scale representation to enhance the representation105

capability of the model. In addition, we also combined the idea of ensemble learning

to further improve the performance of the detector. Our main contributions are as

follows:

• We propose an efficient framework that combines SSD, context modeling, and

multi-scale representation to improve the performance of object detection.110

• We apply ensemble learning to object detection by using two novel ensemble

modes to improve detector performance and then demonstrate the effectiveness
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of ensemble learning in object detection.

• We conduct a series of experiments and analyses to compare the performance

of different ensemble modes on the object detection model and analyze the115

corresponding results.

• On the PASCAL VOC object detection challenges, we obtain gratifying results:

81.1% mAP on VOC 2007 and 78.1% mAP on VOC 2012.

2. Related work

2.1. Ensemble learning120

Ensemble learning has been widely used in recent years to improve the perfor-

mance of single detectors. Especially in the competition between ImageNet and

Kaggle, ensemble learning has developed rapidly from the ensemble of simple mod-

els, such as Random Forests to ensemble deep learning. Ensemble learning based on

neural networks has been widely studied and applied in the field of machine learn-125

ing. Traditional ensemble learning mainly studies how to improve the generalization

performance of the learner. Its representative works are Boosting [2], Bagging [3],

and Random Forests [4]. Boosting’s variant, vote-boosting [23], builds individual

classifiers in different weighted versions of the training data. Random Forests uses

a decision tree [24] as the base learner to construct Bagging and introduces random130

attribute selection during the training process; a variant of Random Forests [25]

constructs individual ensemble trees by using a random subspace method.

To solve the training time problem of traditional ensemble methods, some new

ensemble approaches have been proposed. Huang et al. [5] proposed a snapshot
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ensemble. This method uses a cosine cyclical learning rate during training to save the135

model snapshot for the ensemble. Timur Garipov et al. [6] proposed Fast Geometric

Ensembling based on the snapshot ensemble, which is an ensemble method using

a cyclical learning rate. This is because they observed that the local optimum of

modern deep neural networks are connected by very simple curves, thus, different

networks can be found through relatively small steps in the weighted space. The140

training time of these methods is equivalent to a single common model, which reduces

the training overhead of the traditional ensemble method.

In recent years, a small number of attempts have been made to combine ensem-

ble learning with object detection. [26] designed a novel binary descriptor Boosted

Local Binary (BLB) for object detection, which combines boosting with object detec-145

tion. [27] introduces multi-modal deep feature learning for RGB-D object detection.

However, this method requires three output branches, and for some categories, the

network’s detection results are not significantly improved. Furthermore, the modal-

specific branches of the method separate the RGB features from the depth features

and then combines the two using modal-correlation branch, resulting in an artificially150

created gap between the features, which is not suitable for general object detection.

In this paper, we design an NMS Ensembling mode and Feature Ensembling

mode. At the same time, we compare the performance of the two ensemble modes

in the field of object detection.

2.2. Context features and dilated convolution155

In recent years, many works have attempted to improve detection performance

through context modeling. Abhinav et al. [28] proposed a contextual priming based
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on a top-down feedback mechanism. Bell et al. [21] adopted the structure of spatial

recurrent neural networks (RNN) to ensemble contextual information. Cai et al. [16]

captured context from multiple regions using context embedding. Chu et al. [17]160

combined the contextual information in terms of relationships among objects and

the global scene-based contextual feature to propose an ensemble object detection

system. Hu et al. [29] used an attention mechanism to model relationships among

objects.

In addition to the above methods, dilated convolution can also be used for con-165

text modeling. The concept of dilated convolution originates from DeepLab [30].

In DeepLab, the dilated convolution layer is also called the “astrous convolution”

layer, which is used in the field of semantic segmentation. Fisher et al. [31] used

dilated convolution to aggregate multi-scale context information in the field of se-

mantic segmentation. Li et al. [32] introduced the dilated convolutional layer to170

increase the receptive field of the high layer in the network. Liu et al. [33] proposed

RFBNet, which uses dilated convolution to extend the receptive field and obtain

context information, thus improving object detection performance.

Similar to [33], our method uses dilated convolution to obtain context informa-

tion. However, the difference is that our method obtains more context information175

through cascading and does not directly use context information for detection.

2.3. Multi-scale representation

Recently, significant work has proved the importance of multi-scale feature repre-

sentation in the field of object detection. ION [21] achieved multi-scale feature fusion

by connecting feature maps at different scales within the ROI region [9]. HON [34]180
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combined high-level semantic features and low-resolution bottom features through

reverse connections. HyperNet [19] aggregated hierarchical feature maps and com-

pressed them into a unified space. To perform detection on multiple scales, SSD

[12] applied a separate detector to multiple feature maps. FSSD [20] fused feature

maps of different scales to the unified scale by upsampling. RON [35] used reverse185

connection to predict objects at different layers. FPN [18] designed an architecture

with a bottom-up path, a top-down path, and multiple lateral connections, combin-

ing low-resolution but powerful semantic features with high-resolution but weakly

semantic features. Cai et al. proposed MS-CNN [16], which relies on multiple scale-

independent output layers to mitigate inconsistencies between the size of the object190

and the receptive field. [36] obtained a multi-scale image by re-sampling the origi-

nal image and then used CNN to obtain the feature pyramid corresponding to each

image level.

Inspired by [18], [19], and [20], we build a deep fusion module to concatenate

the feature exaction network and the feature map of the context module, thereby195

achieving a multi-feature representation.

3. Network architecture

The overall architecture, shown in Fig. 1, consists of a feature exaction network,

context module, feature fusion module, extra layers, detection convolution layers,

and the ensemble module. At the ensemble module, we employ three strategies to200

improve object detection performance.
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Feature Exaction 

Network
Context Module

Feature Fusion 

Module Extra Layers

Detection Conv 

Layers
Ensemble Module

Base Model

Fig 1. Overall architecture of experimental method

In this section, we first introduce three ensemble strategies (Section 3.1) and

present our basic model (Section 3.2). Finally, we describe the context module that

can capture more contextual information (Section 3.3) and the feature fusion module

that fuses multi-scale feature maps (Section 3.4).205

3.1. Ensemble of models

In this section, we introduce a practical ensemble procedure that is applied to

object detection, motivated by the application of ensemble learning in image classifi-

cation tasks. To be specific, first, we concatenate the inference results of two models

at inference time. Suppose a single model can generate N prediction bounding boxes210

(N is set to be 11,620 in our work); thus, we will get 2N bounding boxes after infer-

ence. We then perform non-maximum suppression (NMS) on the 2N bounding boxes

to obtain the final prediction bounding boxes. We apply NMS with Jaccard overlap

of 0.45 per class and keep the top 200 detections per image, just like the operation

in SSD. We call this method “NMS Ensembling”. We divide our ensemble modes215

into three strategies based on the ensemble model as shown in Fig. 2. It should

be pointed out that the first strategy does not use NMS Ensembling but rather a
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feature map ensembling mode.

VGG16

MobileNet 

V1

Feature Map 

Ensembling

Backbone

Context 

Module

Extra 

Layers

Detection 

Conv Layers

(a)

Model 1

NMS Ensembling

Model 2

(b)

Model 1

NMS Ensembling

Model 2

(c)

Fig 2. Ensemble of modules: (a) demonstrates the ensemble of feature maps, (b) shows the ensemble of similar
models, and (c) illustrates the ensemble of different models

The ensemble of feature maps: This method can only be regarded as gener-

alized ensemble learning rather than ensemble learning in the traditional sense. As220

shown in Fig. 2(a), we use different feature exaction networks to extract features and

then integrate the feature maps extracted by the feature exaction networks. Finally,

we feed the integrated feature map to the context module and the extra feature lay-

ers for detection, respectively. Here, we choose VGG16 and MobileNet-V1 as the

feature exaction network. The ensemble method is simply to choose concatenation.225

We choose the layer FC 7 of VGG16 with the layer dw5 5 of MobileNet-V1 and the

layer 4 1 of VGG16 with the layer dw4 1 of MobileNet-V1 for the ensemble. Next,

we feed the ensemble feature map to context module and extra feature layers, re-

spectively. We chose these layers for ensemble separately because the corresponding

feature maps have the same size; after integration, we added the batch normalization230

operation to reduce the noise caused by the different feature exaction networks. Fur-

thermore, we also tried to add some feature maps of context module to participate

in the ensemble.

The ensemble of similar models: As shown in Fig. 2(b), we refer to the

snapshot ensembles [5] that use a cosine cyclical learning rate to save snapshots of235
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the model during training at times when the learning rate achieves its minimum.

However, we use a cyclical learning rate, which is introduced in FGE [6], instead of

the cosine cyclical learning rate to save snapshots of the model. The cyclical learning

rate α(i) is defined as

α(i) =





(1− 2t(i))α1 + 2t(i)α2, 0 < t(i) ≤ 1
2

(2− 2t(i))α2 + (2t(i)− 1)α1,
1
2
< t(i) ≤ 1

(1)

where i = 270, 271, · · · , 300 is the training epoch, α1 = 0.0004, α2 = 0.000004,240

t(i) = 1
e
(mod(i + 1, e) + 1), and e is the cycle of learning rate and set to 4. More

specifically, we use the cyclical learning rate in the last 28 epochs during training

time to save snapshots every 4 epochs and finally select the two models with the

smallest training loss value for the ensemble.

The ensemble of different models: Here, we use the model based on VGG16,245

MobileNet-V1, and the model trained by Feature Ensembling mode to the ensemble

as shown in Fig. 2(c). We choose two of these three models to integrate by NMS

Ensembling.

A comparative analysis of the three ensemble strategies will be detailed in Section

5.1. According to the analysis, the ensemble of different models brings the best250

benefit to the mAP.

3.2. Base model

As is shown in Fig. 3, we adopt SSD as the backbone network and use VGG16

or MobileNet-V1 as the feature exaction network, respectively. A context module is

added after the feature exaction network and a feature fusion module is applied to255
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Fig 3. Framework of base model

fuse multi-scale feature maps. The generated feature map is then fed to the extra

feature layers. Finally, we send feature maps of extra layers (the feature map of the

third layer from the end is replaced by the output feature map of the context module)

to predict the class scores and location offsets for the default bounding boxes.

3.3. Context features with dilated convolution260

Dilated convolution can expand the receptive field without reducing the resolu-

tion. In other words, dilated convolution is able to capture more context features

while maintaining the same number of parameters.

First, inspired by [33], we combine the dilated convolution with Inception-Resnet

to design a context block as detailed in Fig. 4. The context block consists of five265

branches, i.e., one shortcut branch and four dilated branches. At the head of each

branch a bottleneck structure (1 × 1 convolution layer) is employed to reduce the

number of channels in the feature map. Then one 2-dilated convolution layer, two

3-dilated convolution layers, and one 5-dilated convolution layer are added behind

the original convolutional layers in Inception, respectively, to capture more context270
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features. The context block uses 1×3 convolution layer plus 3×1 convolution layer to

take the place of the original 3×3 convolution layer and utilize two 3×3 convolution

layers to replace the original 5 × 5 convolution layer in order to reduce parameters

and increase the nonlinear layer. Furthermore, we concatenate four dilated branches

and use a bottleneck structure to adjust the number of channels in the output feature275

map.

shortcut

3×3 Conv

1×3 Conv 3×1 Conv

1×1 Conv1×1 Conv

Previous layer

3×3 Conv

3×3 Conv

Rate=3

3×3 Conv

Rate=3

3×3 Conv

Rate=2

Concatenation 

1×1 Conv

 Relu activation

1×1 Conv

3×3 Conv

Rate=5

Fig 4. Detailed structure of a context block

Next, we use the three context blocks to build a context module, ensuring that

all context information is completely extracted as shown in Fig. 3. In addition,

the context module can easily distinguish between context and objects because the

context block adds convolutional layers of different kernel sizes before the dilated280

convolutional layers. We send the output of the third context block of the context

module to the detection layer, which improves the performance of the network be-

cause the context information extracted by the context module can assist in network

detection.
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3.4. Multi-scale Feature Fusion285

As mentioned in Section 2, many algorithms have tried to observe and fully utilize

multi-scale features. The most common method is the fusion different scale feature

map, which captures more detailed information. This is because hierarchical feature

maps have different characteristics in the feature extraction network. For example,

the feature map comes from a shallow layer, such as layer 4, and is rich in details,290

whereas the feature map comes from a deep layer, such as layer 6 or more, and is rich

in high-level semantics. Thus, multi-scale feature fusion is a perfect combination of

the two advantages.

Our design method is similar to HyperNet and FSSD, which combine a coarse,

high-level layer with a fine, low-level layer. Suppose Xi, i ∈ C are the source feature295

maps we want to fuse. The feature fusion module can be described as follows:

Xf = ϕf (fi(Xi)) i ∈ C (2)

where fi means the transformation function of each source feature map before being

fused together. ϕf is the feature fusion function. More details can be seen in Fig. 5.

We focus on three dimensions of multi-scale fusion: the range of layers that should

be fused or not (C), how to adapt feature maps of different scales to the same size300

(fi), and how to fuse the selected feature maps (ϕf ).

For C, we consider using the layer conv4 3, conv5 3 in the conventional SSD300

based on VGG16 and the second layer of the context module. The corresponding

feature sizes are 38 × 38, 19 × 19, and 10 × 10. The reason why we choose the

second layer of the context module for merging is because this layer has more context305

17
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Upsampling/

Deconvolution

Upsampling/

Deconvolution

Concatenation /

Summation

C fi φf

Fusion feature

Fig 5. Architecture of multi-scale feature fusion module

information and the layers deeper than this layer have little information to merge.

For fi, we use the size of conv4 3 as the basic feature map size, which means our

feature map size is 1/8 of the input size, both in width and height. As for the

feature maps whose size is smaller than 38 × 38, we apply bilinear interpolation

or deconvolution to resize the feature maps to the same size with conv4 3. In this310

way, all the features have the same size spatial dimension. As for ϕf , we consider

two ways to fuse different feature maps together: concatenation and element-wise

summation. However, according to the analysis in Section 5.3, concatenation brings

better results than element-wise summation. Thus, we choose concatenation for

merging the features.315

4. Experiment

We perform experiments on three benchmark datasets: PASCAL VOC 2007,

PASCAL VOC 2012, and MS COCO. For PASCAL VOC, all models are trained on
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the union of VOC 2007 trainval set and VOC 2012 trainval set (“07+12”), and the

results tested on PASCAL VOC 2007 and PASCAL VOC 2012 test sets, respectively.320

For MS COCO, we trained models on the trainval35k set (train set + val 35k set)

and tested the results on the test-dev 2015 dataset. The measure of object detection

accuracy is the mean Average Precision (mAP).

4.1. Experimental setup

We implement our model based on the framework of Pytorch2 and build on SSD325

architecture. If not specified, the pre-training model uses the same VGG16 pre-

trained on the 1000-way ImageNet classification task [1]. Our training strategy is

similar to SSD, including data augmentation and hard negative mining. The scale

and aspect ratios for default boxes, and loss functions (smooth L1 loss for localization

and softmax loss for classification) are also consistent with the SSD. We used a warm-330

up strategy to gradually increase the learning rate from 10−6 to 4× 10−3 during the

first five epochs and then decreased this rate by a factor of 10 times at 150th, 200th,

and 250th epochs for PASCAL VOC, and the 90th and 120th epochs for MS COCO;

however, for the ensembles of similar models, we used the cyclical learning rate

during the last 30 epochs to save snapshots. We set the weight decay to 0.0005 and335

the momentum to 0.9. All new layers are initialized by the MSRA method.

4.2. Result on PASCAL VOC 2007

We compare our results with the state-of-the-art detectors on the PASCAL VOC

2007 test set (see Table 1). All parameters are set as SSD except for the learning

2https://pytorch.org/
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Table 1. Comparison of different state-of-the-art methods on PASCAL VOC 2007. DSSD321, RON384,
SSD300, and STDN300 indicate the input image dimensions of DSSD, RON, and SSD are 321×321, 384×384
and 300 × 300, respectively. C means context module, M means multi-scale feature fusion module, and E
indicates that the ensemble is used at the inference time. All models are trained with the union training set
from VOC 2007 trainval and 2012 trainval, and tested on the VOC 2007 test set. Ours1 is the ensemble of
similar models. Ours2 is the feature ensemble. Ours3 is the ensemble of different models. * means the test
on Pytorch-0.4.0 and CUDNN V7 for fair comparison.

Method C M E Backbone mAP aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv

ION[21] VGG16 77.6 79.7 83.4 78.1 65.7 62.0 86.5 85.8 88.8 60.2 83.4 75.1 86.5 87.3 82.1 79.7 48.3 77.0 75.3 85.3 82.4

DSSD321[22] Residual-101 78.6 81.9 84.9 80.5 68.4 53.9 85.6 86.2 88.9 61.1 83.5 78.7 86.7 88.7 86.7 79.7 51.7 78.0 80.9 87.2 79.4

HyperNet[19] VGG16 76.3 77.4 83.3 75.0 69.1 62.4 83.1 87.4 87.4 57.1 79.8 71.4 85.1 85.1 80.0 79.1 51.2 79.1 75.7 80.9 76.5

RON384[35] VGG16 77.6 86.0 82.5 76.9 69.1 59.2 86.2 85.5 87.2 59.9 81.4 73.3 85.9 86.8 82.2 79.6 52.4 78.2 76.0 86.2 78.0

MLKP[37] VGG16 78.1 78.7 83.1 78.8 71.3 64.4 86.1 88.0 87.8 64.6 83.2 73.6 85.7 86.4 81.9 79.3 53.1 77.2 76.7 85.0 76.1

STDN300[38] DenseNet-169 78.1 81.1 86.9 76.4 69.2 52.4 87.7 84.2 88.3 60.2 81.3 77.6 86.6 88.9 87.8 76.8 51.8 78.4 81.3 87.5 77.8

SSD300[12] VGG16 77.5 79.5 83.9 76.0 69.6 50.5 87.0 85.7 88.1 60.3 81.5 77.0 86.1 87.5 83.97 79.4 52.3 77.9 79.5 87.6 76.8

FSSD∗[20] VGG16 79.5 82.4 85.8 77.4 73.9 58.9 87.8 87.7 87.1 63.0 86.3 76.3 85.0 88.8 87.0 80.9 56.8 77.4 80.9 87.9 79.3

RFB∗[33] VGG16 80.1 83.1 86.3 78.1 74.0 59.9 88.4 87.7 88.3 64.0 85.2 78.6 85.9 88.1 87.7 82.1 57.3 79.9 81.0 87.9 78.7

Ours X VGG16 79.1 82.2 86.7 77.0 72.8 56.6 88.2 87.5 88.0 64.2 82.6 77.0 85.6 87.5 85.1 81.6 55.2 79.5 79.1 88.3 78.0

Ours X VGG16 80.1 84.8 85.8 79 73.7 61.6 88.3 87.1 87.3 64.3 85.7 77.3 85.4 88.3 87.3 81.4 56.3 78.4 79.2 88.0 81.7

Ours X X VGG16 80.5 84.7 88.4 78.4 73.7 62.5 88.8 87.9 88.2 66.0 86.9 75.8 86.2 88.9 87.6 81.8 57.9 79.5 79.2 88.4 79.2

Ours1 X X X VGG16+VGG16 80.5 83.1 87.1 79.2 72.9 61.1 88.8 87.8 86.4 65.9 86.8 77.3 86.5 89.7 87.6 82.0 57.8 80.8 80.4 88.1 80.0

Ours2 X X X VGG16+MobileNet 80.2 84.6 87.5 79.8 75.1 61.6 87.8 87.6 87.2 65.0 86.7 77.3 85.4 87.6 86.8 81.8 57.0 79.9 78.7 86.9 79.5

Ours3 X X X VGG16+MobileNet 81.1 84.7 87.5 80.3 74.9 63.0 88.1 87.8 87.5 67.0 87.5 79.8 86.6 89.2 87.1 82.6 59.4 81.3 78.7 88.2 80.4

rate. For fair comparison, we re-implement FSSD and RFB with Pytorch-0.4.0 and340

CUDNN V7, the same environment as that of our model, by using the released code

in [20] and [33]. When only the context and fusion modules are added, our method

produces a mAP of 80.5%. When adding the ensemble to our model, the performance

can be improved to 81.1%, which is 3.6 points higher than SSD and 1.6 points higher

than FSSD. In Table 1, the multi-scale feature fusion module uses deconvolution to345

resize feature maps and concatenation to combine feature maps of different scales.

The input image size in our models is 300× 300.

To understand the performance of our models in more detail, we use the detection

analysis tool in [39]. Fig. 6 shows the cumulative fraction of detections that are

correct (Cor) or false positive due to poor localization (Loc), confusion with similar350
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Fig 6. Visualization of the performance of our models on animals, furniture, and vehicles classes in the Pascal VOC
2007 test. Top: without ensemble. Bottom: with ensemble. The dashed red line reflects the change of recall
with weak criteria (0.1 jaccard overlap) as the number of detections increases while the solid red line uses the strong
criteria (0.5 jaccard overlap).

categories (Sim) or with others (Oth), or with background (BG). As shown in Fig.

6, our models can get a higher recall both with the strong and weak criteria as well

as high-quality detection of various object categories, especially the model with the

ensemble. By comparing the top and bottom rows of Fig. 6, we can observe that the

recall of the ensemble model is higher than the model without the ensemble, especially355

in the animal categories. Comparing the two categories of furniture and vehicles in

Fig. 6, we can find that the ratio of the white area to the total area in the bottom row

is larger than the top row, indicating that the ensemble model can detect high-quality

various object categories. Compared with other state-of-the-art detectors, our model

21

                  



animals

25 50 100 200 400 800 1600 3200

total false positives

0

20

40

60

80

100

pe
rc

en
ta

ge
 o

f e
ac

h 
ty

pe

Loc
Sim
Oth
BG

animals

25 50 100 200 400 800 1600 3200

total false positives

0

20

40

60

80

100

pe
rc

en
ta

ge
 o

f e
ac

h 
ty

pe

Loc
Sim
Oth
BG

(a) animals

furniture

25 50 100 200 400 800 1600 3200

total false positives

0

20

40

60

80

100

pe
rc

en
ta

ge
 o

f e
ac

h 
ty

pe

Loc
Sim
Oth
BG

furniture

25 50 100 200 400 800 1600 3200

total false positives

0

20

40

60

80

100

pe
rc

en
ta

ge
 o

f e
ac

h 
ty

pe

Loc
Sim
Oth
BG

(b) furniture

vehicles

25 50 100 200 400 800 1600 3200

total false positives

0

20

40

60

80

100

pe
rc

en
ta

ge
 o

f e
ac

h 
ty

pe

Loc
Sim
Oth
BG

vehicles

25 50 100 200 400 800 1600 3200

total false positives

0

20

40

60

80

100

pe
rc

en
ta

ge
 o

f e
ac

h 
ty

pe

Loc
Sim
Oth
BG

(c) vehicles

Fig 7. Distribution of top-ranked false positive types of our models on animals, furniture, and vehicles classes in
the Pascal VOC 2007 test. Top: without ensemble. Bottom: with ensemble.

has fewer false positive results caused by poor localization, confusion with similar360

categories or with others, or with background due to the context module, ensemble

methods, and the multi-scale feature fusion module. The reason why is that the

context module can provide more accurate localization, whereas the ensemble method

is easier to distinguish the difference between categories; in addition, the multi-scale

feature fusion module can learn more richness from the object’s features.365

Fig. 7 demonstrates that most false positive of our models are due to poor local-

ization and confusion with background. For animals and furniture, confusion with

similar categories is another cause of false positive results. Furthermore, compared

with the model without the ensemble, the ensemble model has fewer false positive
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types caused by confusion with others because the ensemble model makes it easier370

to distinguish the difference between categories.

4.3. Result on PASCAL VOC 2012

Table 2. Comparison of different state-of-the-art methods on PASCAL VOC 2012. DSSD321, RON384,
and SSD300 indicate the input image dimensions of DSSD, RON, and SSD are 321 × 321, 384 × 384 and
300×300, respectively. C means context module, M means multi-scale feature fusion module, and E indicates
that the ensemble is used at the inference time. Ours1 is the ensemble of similar models. Ours2 is the feature
ensemble. Ours3 is the ensemble of different models. * means the test on Pytorch-0.4.0 and CUDNN V7 for
fair comparison.

Method C M E Backbone mAP aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv

ION[21] VGG16 74.7 86.9 84.5 75.2 58.2 57.7 80.5 78.3 90.4 54.4 79.9 60.5 88.4 83.0 83.0 81.2 50.7 77.3 67.6 83.5 72.3

DSSD321[22] Residual-101 76.3 87.3 83.3 75.4 64.6 46.8 82.7 76.5 92.9 59.5 78.3 64.3 91.5 86.6 86.6 82.1 53.3 79.6 75.7 85.2 73.9

HyperNet[19] VGG16 71.4 84.2 78.5 73.6 55.6 53.7 78.7 79.8 87.7 49.6 74.9 52.1 86.0 81.7 83.3 81.8 48.6 73.5 59.4 79.9 65.7

RON384[35] VGG16 73.0 85.4 80.6 71.9 56.3 49.8 80.6 76.8 88.2 53.6 78.1 60.4 86.4 81.5 83.8 79.4 48.6 77.4 67.7 83.4 69.5

MLKP[37] VGG16 75.5 86.4 83.4 78.2 60.5 57.9 80.6 79.5 91.2 56.4 81.0 58.6 91.3 84.4 84.3 83.5 56.5 77.8 67.5 83.9 67.4

SSD300[12] VGG16 75.8 88.1 82.9 74.4 61.9 47.6 82.7 78.8 91.5 58.1 80.0 64.1 89.4 85.7 85.5 82.6 50.2 79.8 73.6 86.6 72.1

FSSD∗[20] VGG16 75.7 88.7 82.7 74.8 62.6 51.9 83.7 79.0 90.2 58.4 80.4 61.7 87.9 84.5 85.1 83.2 49.7 80.8 70.4 86.4 72.6

RFB∗[33] VGG16 76.7 87.9 85.4 74.2 62.7 51.8 83.3 80.0 91.2 60.4 82.0 62.6 88.9 85.9 86.5 83.8 52.9 82.6 73.5 86.6 72.5

Ours X VGG16 75.9 88.1 84.4 72.9 62.4 50.7 83.4 79.0 91.1 58.6 79.6 63.5 89.7 85.5 86.1 83.5 51.0 79.5 71.5 86.0 71.1

Ours X VGG16 76.8 88.3 84.4 75.9 65.5 52.4 84.2 80.0 91.2 59.7 81.8 63.4 89.7 85.2 86.0 84.1 51.8 80.5 72.0 87.2 73.6

Ours X X VGG16 77.0 88.5 85.5 74.5 63.5 51.8 84.6 80.1 91.0 60.5 82.4 64.8 89.9 86.2 86.6 83.8 51.1 82.7 72.2 86.7 72.9

Ours1 X X X VGG16+VGG16 76.9 88.8 85.5 75.1 63.9 52.9 84.6 79.2 91.1 60.4 82.1 63.8 89.3 85.9 86.4 83.9 52.5 80.9 72.1 86.4 72.8

Ours2 X X X VGG16+MobileNet 76.8 87.4 85.0 75.3 63.5 52.0 83.3 80.1 90.4 59.9 82.9 65.2 88.3 86.7 86.5 83.9 52.5 81.8 71.5 87.1 72.0

Ours3 X X X VGG16+MobileNet 78.1 88.8 86.2 76.6 65.6 52.9 84.9 80.9 91.7 62.3 83.1 67.5 89.9 87.5 87.1 84.6 53.6 83.6 73.3 87.5 74.1

We used the same settings as the VOC2007 experiment and submitted the results

to a public evaluation server3 to evaluate our model on the PASCAL VOC 2012 test

set. Our models are also trained on the joint training set of VOC 2007 trainval375

and 2012 trainval, but tested on the VOC 2012 test set. The result of comparisons

between our models and some state-of-the-art networks can be seen in Table 2. Our

method obtains a mAP of 78.1%, which is 1.8 points higher than DSSD. For fair

comparison, we repeated FSSD and RFB in the same environment as our model

3Anonymous URL: http://host.robots.ox.ac.uk:8080/anonymous/GFRBJV.html
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by using the released code in [20] and [33]. The input image size in our models is380

300× 300.

4.4. Result on MS COCO

Table 3. Comparison of different state-of-the-art methods on MS COCO test-dev 2015 dataset.
DSSD321, RON384, SSD300, and STDN300 indicate the input image dimensions of DSSD, RON, and SSD
are 321 × 321, 384 × 384 and 300 × 300, respectively. * indicates that the models use the NMS Ensembling.

Method Train data Backbone
Avg. Precision, IoU Avg. Precision, Area

0.5:0.95 0.5 0.75 S M L

ION[21] train VGG16 23.6 43.2 23.6 6.4 24.1 38.3

DSSD321[22] trainval35k Residual-101 28.0 46.1 29.2 7.4 28.1 47.6

RON384[35] trainval VGG16 25.4 46.5 25.0 - - -

MLKP[37] trainval35k VGG16 26.9 48.4 26.9 8.6 29.2 41.1

STDN300[38] trainval DenseNet-169 28.0 45.6 29.4 7.9 29.7 45.1

SSD300[12] trainval35k VGG16 25.1 43.1 25.8 6.6 25.9 41.4

FSSD[20] trainval35k VGG16 27.1 47.7 27.8 8.7 29.2 42.2

RFB[33] trainval35k VGG16 30.3 49.3 31.8 11.8 31.9 45.9

Ours trainval35k VGG16 30.7 49.8 32.2 12.4 34.4 46.2

Ours∗ trainval35k VGG16 31.4 51.0 32.7 12.6 34.9 48.7

To further validate our model, in addition to the PASCAL VOC, we also test

our model on the MS COCO dataset. The result can be seen in Table 3. We train

our model on trainval135 set and test on test-dev2015 set. Because test-dev2017385

and test-dev2015 contain the same image, the results obtained from them are com-

parable. Our model can improve the SSD over 6.3% at IOU = [0.5 : 0.05 : 0.95]

and is superior to other competing methods. When adopting NMS Ensembling, our

model outperforms state-of-the-art methods MLKP, STDN, and RFB by 4.5%, 3.4%

and 1.1%, respectively. In particular, this demonstrates that our models improve390

competing methods in detecting small or medium-sized objects.

5. Ablation analysis

To study the impact of the ensemble module, context module, and multi-scale

feature fusion module, we implemented some contrast ablation experiments. We use
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SSD as the baseline because our improvements are implemented on SSD. As shown395

in Table 4, our method improved the baseline from 77.5% to 79.1% when adding

the context module. The multi-scale feature fusion module and ensemble further

improve the baseline mAP to 80.1% and 81.1%, respectively. Note that all models

are trained on the joint training sets of VOC 2007 and 2012 trainval, and tested on

the VOC 2007 test set. For a fair comparison, all parameters and image sizes are set400

to the same.

Table 4. Ablation analysis on PASCAL VOC 2007 test set.

Module Our model Baseline(SSD300)

Context module X X X
Multi-scale feature fusion module X X X

Ensemble X
mAP(%) 79.1 80.1 80.5 81.1 77.5

5.1. Analysis for ensemble

5.1.1. Do ensemble strategies help?

We propose three ensemble strategies. Except for Feature Ensembling, the other

two ensemble strategies involve two models, so we use NMS Ensembling to ensemble405

the two models. The summary results of our experiments are given in Table 5. When

we use different models for the ensemble, our detectors reached a competitive result

(81.1% mAP), which is 0.6% higher than without the ensemble method. However,

when we use similar models for the ensemble or the feature ensemble method, the

results are not very competitive, especially the feature ensemble method. From the410

results, we can summarize the key findings: (1) the ensemble of different models

is helpful for object detection because different models can extract a wider range of

features and semantic information, and this effect is more obvious when the difference

between the ensemble models is larger; (2) the impact of the ensemble of similar
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models on object detection task is not obvious. This is because the ensemble models415

come from the same calculation graph and the differences between the models are

small; thus, the extracted features and semantic information are easy to replicate;

and (3) the features ensemble is less effective for the object detection task because

different backbone extraction features introduce more noise information after the

ensemble is implemented. (4)To further illustrate the efficiency of our ensemble420

model, we compare our ensemble results with [40](81.1%), which is the ensemble

Faster RCNN with ResNet-101 and ResNet-152, on the premise of a fair comparison

by ensuring the number of ensemble models and the dataset are consistent. The re-

sults show that our ensemble model can achieve state-of-the-art performance through

two one-stage models. In further experiments, we found that adding ResNet-50 and425

VGG16 to the ensemble produced results 0.14% higher than the result of [40].

Table 5. Detection performance with different ensemble strategies.

Ensemble method Ensemble of similar models Feature ensemble Ensemble of different models

mAP(%) 80.5 80.2 81.1

5.1.2. Which ensemble strategy is better?
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Fig 8. Summary of sensitivity and impact of object characteristics on VOC2007 test set using [39]. We show
the performance of three ensemble strategies within each characteristic (occlusion, truncation, bounding box area,
aspect ratio, viewpoint, and part-visibility). (a) Ensemble of similar models. (b) Feature ensemble. (c) Ensemble
of different models. Both ends of the solid line are the highest performing (top) and lowest performing (bottom)
subsets, respectively, and the difference between max and min indicates sensitivity; the dashed line is the overall
performance and the difference between max and overall indicates the impact.
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From the perspective of the mAP metric, the effect of the ensemble on different

models is positive for object detection tasks. However, if we analyze these three

ensemble strategies for specific tasks, we will find that each method has its own430

advantages and disadvantages. As shown in Fig. 8, among the three ensemble

strategies, the overall performance of the ensemble of different models is highest,

feature ensemble is second, and ensemble of similar models is the worst. The detector

with the ensemble of different models is more sensitive to occlusion than the detector

with the ensemble of similar models; however, the impact of occlusion for the latter is435

smaller than the former. Overall, the detector with the ensemble of similar models is

more robust than the other two detectors to truncation and the detector with feature

ensemble is more robust than the other two detectors to different object sizes. The

detector with the ensemble of different models is robust to aspect ratios, viewpoints,

and part-visibility. In conclusion, the detector with the ensemble of different models440

is better for object detection tasks.

5.2. Analysis for context module

5.2.1. Does context module help?

As shown in Table 6, when the context module is added, the detector outperforms

the detector without the context module. Fig. 9 reveals that the overall performance445

of the detector with the context module exceeds the detector without the context

module. Although the detector with the context module is more sensitive than the

detector without the context module to an occluded object, the impact of occlusion

on overall performance is smaller compared with the latter. The detector with the

context module is more robust to truncation and viewpoint, whereas the detector450
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without the context module is more robust to aspect ratio. Therefore, our model

improves the performance of detection by embedding contextual information and our

context module is helpful for the overall performance.

Table 6. Detection performance with and without feature fusion module.

Context module Yes No

mAP(%) 80.5 80.1
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Fig 9. Summary of sensitivity and impact of object characteristics on VOC2007 test set using [39]. We show the
performance of the context module within each characteristic (occlusion, truncation, bounding box area, aspect ratio,
viewpoint, and part-visibility): (a) without context module and, (b) with context module. Both ends of the solid line
are the highest performing (top) and lowest performing (bottom) subsets, respectively, and the difference between
max and min indicates sensitivity; the dashed line is the overall performance and the difference between max and
overall indicates the impact.

5.2.2. Speed
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Fig 10. Accuracy and speed on PASCAL VOC2007. Speeds are measured on TitanX GPU except for FSSD,
MLKP, and our models, which are measured on Nvidia 1080Ti. For FSSD300, we use the result published in their
own papers.
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As shown in Fig. 10, because we added a complex context module, our detection455

consumes about 25% extra time. However, compared with DSSD and STDN, our

methods are still much faster. The reason why is the use of dilated convolution. It is

precisely because dilated convolution has the feature of increasing the receptive field

without increasing the computational cost that allows us to add complex context

modules without unduly reducing the detector speed. Obviously, the dilated convo-460

lution makes our detectors faster than most object detectors and with competitive

precision. Our model has a certain speed drop after adding the ensemble module.

However, compared with the SSD, our model sacrifices a certain speed, which brings

a great improvement in accuracy. This also proves that ensemble learning improves

accuracy at the expense of speed.465

5.3. Analysis for multi-scale feature fusion module

To illustrate the effectiveness of the multi-scale feature fusion module, we design

a series of experiment and analyze how the feature fusion module affects the final

performance. All results in this section are tested using the PASCAL VOC 2007 test

set.470

5.3.1. Does multi-scale feature fusion module help?

An important property of our method is fusing feature maps with different scales.

To better understand the importance of multi-scale feature fusion, we choose the

layer conv4 3, conv5 3 in the conventional SSD300 based on VGG16 to fuse with

the second layer of the context module in order to ascertain whether the multi-scale475

feature fusion module really helps. Table 7 reports the results of our experiments,
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Fig 11. Summary of sensitivity and impact of object characteristics on the VOC2007 test set using [39]. We
show feature fusion module performance within each characteristic (occlusion, truncation, bounding box area, aspect
ratio, viewpoint, and part-visibility): (a) without the fusion module; (b) with the feature module with deconvolution
and concatenation; (c) the feature module with upsampling and concatenation; and (d) the feature module with
upsampling and element-wise summation. Both ends of the solid line are the highest performing (top) and lowest
performing (bottom) subsets, respectively, and the difference between max and min indicates sensitivity; the dashed
line is the overall performance and the difference between max and overall indicates the impact.

indicating that model performance was significantly better with than without the

fusion module and that even the worst fusion modules can increase mAP by 0.8%. In

addition, we can draw the following conclusion from Fig. 11: the overall performance

of a detector with a fusion module is significantly higher than one without a fusion480

module and the former is more robust to object size than the latter. This proves

that the fusion module is helpful for improving the performance of the detector.

Table 7. Detection performance with different feature fusion modules. The first row is a model without
the fusion module. fi is a method for adapting feature maps of different scales to the same size. ϕf is a way
for fusing the selected feature maps.

fusion
fi ϕf

mAP(%)
deconvolution upsampling concatenation element-wise summation

X 79.1

X X X 80.5

X X X 80.4

X X X 79.9
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5.3.2. Which method of adjusting the feature map is better?

We use deconvolution and upsampling to adjust the feature map size and compare

the performance of both. Table 7 illustrates that the fusion module with deconvo-485

lution has similar competitiveness to upsampling. Furthermore, we can draw the

following conclusions by comparing Figs. 11(b) and 11(c). (1) The overall perfor-

mance of the detector with the deconvolution fusion module is higher than with the

upsampling fusion module. (2) The detector with the deconvolution fusion module

and the detector with the upsampling fusion module are more sensitive to occlusion490

and different object size; however, the impacts of occlusion and object size are smaller

for the detector with the deconvolution fusion module. (3) The detector with the

deconvolution fusion module is more robust than the detector with the upsampling

fusion module to occlusion, object size, and viewpoint. Therefore, deconvolution is

better than upsampling and more suitable for multi-scale feature fusion modules.495

5.3.3. Which fusion method is better?

We fuse feature maps of different scales via concatenation and element-wise sum-

mation, respectively. Table 7 demonstrates that the fusion module with concatena-

tion is more competitive than with element-wise summation. Based on the compar-

ison of Figs. 11(c) and 11(d), we have summarized the following conclusions. The500

detector with element-wise summation is more robust than the detector with concate-

nation to occlusion, object size, and aspect ratios. Moreover, the overall performance

of the detector with element-wise summation is higher than the detector with con-

catenation to occlusion. Therefore, for specific tasks, such as occlusion, object size,

and aspect ratios, element-wise summation is more suitable for the multi-scale fea-505
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ture fusion module than concatenation even if the fusion module with concatenation

has higher mAP.

6. Conclusion

In this paper, we proposed a faster and powerful object detector. The detector

combines ensemble learning and deep learning for object detection. For ensemble510

learning, we proposed two ensemble modes and analyzed their characteristics, re-

spectively. For deep learning, we constructed a new convolutional neural network

framework based on context features and multi-scale feature fusion. Our network

is built on SSD and trained end-to-end by optimizing a multi-task loss. A series

of experiments on PASCAL VOC and MS COCO datasets demonstrated that our515

detector can improve the performance of conventional SSD and outperforms several

state-of-the-art object detectors in terms of accuracy and efficiency. Our studies illus-

trate that ensemble learning can further improve the performance of object detection.

Therefore, how to apply ensemble learning to the field of object detection will be a

problem worth studying. We hope that this paper not only promotes the research of520

object detectors but also facilitates future research activities in the combination of

ensemble learning and object detection.

Although we use MobileNet-V1 for integration and use dilated convolution to

control the amount of computation, which guarantees a good compromise between

efficiency and accuracy, the computational overhead and complexity of the network525

is still unsatisfactory. Therefore, future work will mainly have the following two

directions:
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• Explore more efficient networks for the ensemble to reduce network complexity

without compromising accuracy.

• Feature Ensembling is more robust to object size, which is beneficial for de-530

tecting small objects. In the future, we will explore more reasonable ensem-

ble models and features that reduce the impact of noise caused by Feature

Ensembling and improve the accuracy of detection models based on Feature

Ensembling.
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