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Abstract

Feature Pyramid Network (FPN) has been an essential mod-
ule for object detection models to consider various scales of
an object. However, average precision (AP) on small objects
is relatively lower than AP on medium and large objects. The
reason is why the deeper layer of CNN causes information
loss as feature extraction level. We propose a new scale se-
quence (S2) feature extraction of FPN to strengthen feature
information of small objects. We consider FPN structure as
scale-space and extract scale sequence (S2) feature by 3D
convolution on the level axis of FPN. It is basically a scale-
invariant feature and is built on high-resolution pyramid fea-
ture map for small objects. Furthermore, the proposed S2 fea-
ture can be extended to most object detection models based
on FPN. We demonstrate the proposed S2 feature can im-
prove the performance of both one-stage and two-stage de-
tectors on MS COCO dataset. Based on the proposed S2 fea-
ture, we achieve upto 1.3% and 1.1% of AP improvement
for YOLOv4-P5 and YOLOv4-P6, respectively. For Faster R-
CNN and Mask R-CNN, we observe upto 2.0% and 1.6% of
AP improvement with the suggested S2 feature, respectively.

Introduction
Object detection is an essential one of the fundamental tasks
in computer vision. It has been widely used in applications
such as robot vision, autonomous driving (Liu et al. 2022),
and unmanned aerial vehicle system (UAV) (Huang, Chen,
and Huang 2022). Over the past several years, Convolutional
neural network (CNN) (LeCun et al. 1998) based-object
detection models have significantly improved the perfor-
mance of average precision (AP) detection accuracy. How-
ever, small object detection is still a challenging task (Oksuz
et al. 2020). The state-of-the-art models have been reported
for detecting small objects. Usually, average precision on
small objects (APS) is relatively lower than AP on medium
(APM ) and large objects (APL). As MS COCO definition
(Lin et al. 2014), object is classified as “small” if area of
segmentation mask is lower than 32x32 pixels.

Figure 1 shows the proportion of object scale and the per-
formance gap of AP between small, medium, and large scale
on MS COCO dataset. We can see small objects have the
largest proportion. However, average precision on small ob-
jects (APS) is the lowest among other scales. Also, red line
shows the performance gap from other scales.
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Figure 1: The proportion of object scale on MS COCO
dataset and the gap of average precision (AP) between small,
medium, and large scale objects on MS COCO validation
set.

An object has various scales in natural images, so ob-
ject detection models have to be learned multi-scale fea-
tures. To deal with multi-scale, scale-invariant feature has
been studied in traditional computer vision (Lowe 1999).
The scale-invariant feature is detectable even though ob-
ject scale changes. If a model learns scale-invariant feature,
small object detection problem can be solved efficiently.
Scale-space (Lindeberg 2013), that is a multi-scale repre-
sentation, is parameterized by variance of Gaussian kernel
to extract scale-invariant feature. Multi-scale representation
can be composed of different resolutions of images. On the
other hand, recently deep learning based object detection
models have used feature pyramid network (FPN) (Lin et al.
2017) as neck module to handle multi-scale objects effec-
tively. Before detecting objects in head, they are assigned
to one single pyramid level according to their scale. For ex-
ample, large objects are detected in low-resolution pyramid
feature map and small objects are detected in high-resolution
pyramid feature map.

To improve the performance of FPN, FPN-based models
have been proposed to alleviate a semantic gap between each
level pyramid feature map (Liu et al. 2018). However, most
of the models are simply fusion operations like concatena-
tion. Therefore, they could not consider the correlation of all
pyramid feature maps enough.

FPN is composed of output feature maps through each
convolution layer when input image is fed into CNN. The
resolution of pyramid feature maps becomes smaller in pro-
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cess of convolution. This FPN architecture is similar to
scale-space and level axis of FPN can be considered as scale
axis. Therefore, scale-invariant from FPN can be extracted
as in (Wang et al. 2020). This approach motivates us to pro-
pose a scale sequence (S2) feature of FPN. The higher pyra-
mid level, the smaller image size, but semantic information
is enhanced. We consider level axis of FPN as time axis of
sequence and extract spatio-temporal feature by 3D convo-
lution (Tran et al. 2015). As a result, scale sequence fea-
ture can be a unique feature of scale-space and it is scale-
invariant feature. Furthermore, All of FPN feature maps can
be participated in operation using 3D covnolution. It in-
cludes a scale-correlation between all pyramid feature maps.

In comparison other scale, the reason of small object
problem is that the deeper layer of CNN lead to informa-
tion loss like small object feature and localization informa-
tion for bounding box (Tong, Wu, and Zhou 2020). For small
objects, we design scale sequence (S2) feature built on high-
resolution pyramid feature map. Generally, small objects are
detected in high-resolution pyramid feature map. Therefore,
we resize each pyramid feature to high-resolution feature
map equally. Pyramid feature maps with extended resolution
are similar to Gaussian pyramid. They are concatenated to
4D tensor for 3D convolution. This cube feature can be con-
sidered as general view referenced in Dynamic head (Dai
et al. 2021). After extraction, the designed scale sequence
(S2) feature is concatenated to high-resolution pyramid fea-
ture map for detecting small object in head.

Our contributions are three-fold:

• We propose a new scale sequence (S2) feature which is
extracted by 3D convolution on the level of FPN. It is
scale-invariant feature of FPN regarded as scale-space.
Also, all pyramid feature maps participated in operation
to extract scale sequence feature.

• Scale sequence feature can improve AP on small ob-
jects as well as AP on other scales since built on high-
resolution feature map to strengthen feature of small ob-
jects.

• Scale sequence feature can be extended to most object
detection models based on FPN. We experimented one-
stage and two stage detectors with scale sequence fea-
ture. As a result, we can observe the improved AP.

Related Works
Object detection models
Object detection models have been improved along with the
growth of CNN. Generally, object detection models are di-
vided into one-stage and two-stage detector depending on
the presence of a region proposal phase. Two-stage detec-
tors extract the region of interest (RoI) from image in ad-
vance. Faster R-CNN (Ren et al. 2015) first proposed region
proposal network (RPN). In Mask R-CNN (He et al. 2017),
they added segmentation mask loss to Faster R-CNN. It pro-
posed RoIAlign method to include more exact localization
information. Also, Cascade R-CNN (Cai and Vasconcelos
2018) was reported as a multi-stage detector trained with in-
creasing IoU thresholds.

On the other hand, one-stage detectors conduct classifi-
cation and bounding box regression simultaneously without
RPN. YOLO (Redmon et al. 2016) series are well-known as
one-stage detectors. Scaled-YOLOv4 (Wang, Bochkovskiy,
and Liao 2021) has proposed a scaling method of YOLOv4
(Bochkovskiy, Wang, and Liao 2020). It has various sub-
models such as YOLOv4-P5 and YOLOv4-P6 depending
on the pyramid level. Recently, YOLOR (Wang, Yeh, and
Liao 2021) which is state-of-the-art architecture improved
the performance by unifying implicit knowledge and explicit
knowledge.

The proposed scale sequence (S2) feature can be applied
to most object detection models. We verify the performance
on both one-stage detectors and two-stage detectors with the
proposed scale sequence (S2) feature.

Scale-invariant feature
Scale-invariant feature (Lowe 1999) is defined as an un-
changeable feature even though object scale changes. In tra-
ditional computer vision, scale-invariant feature has been
studied to deal with multi-scale objects. Image pyramid
which is a basic approach can represent various scales
of objects. Also, scale invariant feature transform (SIFT)
(Lowe 2004) extracted scale-invariant feature from scale-
space generated by Gaussian filters.

Meanwhile, some research considered scale correlation in
feature pyramid instead of image pyramid to reduce compu-
tation complexity. Deep scale relationship network (DSRN)
(Wang et al. 2019) fused feature maps by bi-directional con-
volution. Also, pyramid convolution (PConv) (Wang et al.
2020) considered feature pyramid as scale-space and extract
scale-invariant feature. Three convolutional kernels have
been used for each different size feature maps and output
convolutional features were added after resizing the same
size.

However, these approaches compute convolution each
pyramid feature map independently. In this work, we regard
FPN as scale-space and extract a scale-invariant feature by
3D convolution. We defined this feature as a scale sequence
(S2) feature that is a unique feature of FPN. All pyramid
feature maps are computed by 3D convolution. Through this
process, the correlation across all pyramid features can be
considered. Furthermore, the proposed scale sequence (S2)
feature includes sequence information of scale transform.

Feature fusion strategy
Feature Pyramid Network (FPN) (Lin et al. 2017) has been
an essential module for handling multi-scale features. FPN
has different resolutions of feature pyramid to assign objects
according to their scales. These feature pyramids are fused
by a top-down pathway. But there is a discrepancy problem
between each pyramid feature map because they are gener-
ated from different depths of convolution layers. Path aggre-
gation network (PANet) (Liu et al. 2018) has been proposed
for a new fusion method to alleviate the problem by adding
a bottom-up pathway to FPN.

NAS-FPN (Ghiasi, Lin, and Le 2019) found effective fea-
ture fusion strategies by AutoML training. Also, bidirec-
tional feature pyramid network (BiFPN) (Tan, Pang, and
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Figure 2: Comparison of image sequence on each different axes. The source of images is YouTube-8M dataset (Abu-El-Haija
et al. 2016). (a) Scale space using Gaussian filter on the scale axis. (b) General view is concatenated with identical resolution
features on the level axis (Dai et al. 2021). (c) Video frames on the time axis.

Le 2020) pointed out other models considered all pyra-
mid feature map equally regardless of their resolutions and
proposed weighted fusion method for feature pyramid. Re-
cently, Dynamic head (Dai et al. 2021) was introduced by
using scale-aware attention that trained the importance of
pyramid level adaptive to input.

However, most previous researches fused pyramid fea-
tures by simply sum and concatenation. This simple struc-
ture can not consider the correlation between all pyramid
feature maps. In this paper, we concatenate the proposed
scale sequence (S2) feature to pyramid feature maps. It re-
flects correlation across the whole of the feature pyramid.
Therefore, it can enrich FPN for detecting multi-scale ob-
jects.

Proposed Method
Scale Sequence (S2) Feature
In this section, we introduce a new feature: scale sequence
(S2). We aim to find a scale-invariant feature of FPN. The
scale-invariant feature does not change although the size of
image is changed. First, we explain scale-space theory (Lin-
deberg 2013) in traditional computer vision. Scale-space is
constructed along the scale axis of image. It represents not
one scale, but various scale ranges that object can have. The
space is generated by blurring image using Gaussian filter
instead of resizing image directly. Scale-space is illustrated
in Figure 2 (a). The larger scale parameter value, the more
blurred image is generated. In this theory, scale means the
detailness of image. In other words, blurred image loses de-
tail, but structural feature of the image is prominent. It is
computed as follows:

gσ(x, y) =
1

2πσ2
e−(x2+y2)/2σ2

, (1)

fσ(x, y) = gσ(x, y) ∗ f(x, y), (2)
where f(x, y) is 2D image and fσ(x, y) is generated by
smoothing through a series of convolution with 2D Gaussian
filter gσ(x, y). σ is scale parameter as standard deviation of
2D Gaussian filter, used in convolution. As a result, these

images are same resolution but have different scale parame-
ter values.

We consider Feature Pyramid Network (FPN) as scale-
space. FPN is composed of output feature maps through
each convolution layer when input image is fed into CNN.
Low-level pyramid feature map is high-resolution and has
information for localization, especially for small objects.
On the other hand, high-level pyramid feature map is low-
resolution, but it has plenty of semantic features. This prop-
erty is similar to scale-space which has trade-off informa-
tion on the scale axis. For based on this structure, we refer
to general view from Dynamic head (Dai et al. 2021) that
is concatenated with all pyramid features after resizing them
same resolution. General view is illustrated in Figure 2 (b). It
shows feature representations are different as the level axis.
Finally, we extract a unique feature of this general view from
the scale view of FPN.

G = {Pi}Li=3, (3)

where Pi is pyramid feature map from the i − th differ-
ent level. The highest resolution feature pyramid is P3.
General view G is generated by concatenating same reso-
lution feature maps after resizing pyramid feature map to
a specific resolution. General view is made as 4D tensor:
G = (level · width · height · channel).

A unique feature of FPN has to consider all general view
feature maps. We are motivated from 3D convolution (Tran
et al. 2015) in video recognition task. In this area, 3D convo-
lution is used to extract motion in video. Figure 2 (c) shows
video frames on the time axis. Motion is sequence as well
as spatial information of frames. We regard pyramid feature
maps of general view as video frames that is why general
view is a sequence of convolution. The time axis of video
frames can be considered level axis of general view.

We define a unique feature of general view as scale se-
quence (S2) feature. It is extracted by 3D convolution on
the level axis of general view. This scale sequence feature is
a spatio-temporal feature of general view like motion. Fur-
thermore, all pyramid feature maps of FPN contribute 3D
convolution operation.
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Figure 3: Scale sequence module framework: (a) Neck module of FPN for feautre fusion, (b) Process of proposed scale sequence
module using 3D convolution, (c) One-stage detector head, (d) Two-stage detector head.

As a result, it can include scale correlation across feature
pyramids. It is different from other FPN-based feature fusion
methods that simply sum and concatenate between pyramid
feature maps. The definition of scale sequence (S2) feature
is as the following:

S2feature = Θs2(G), (4)

where Θs2 is scale sequence module based on 3D convo-
lution. This module can extract scale sequence feature (S2)
from general view. For applying 3D convolution, we regard
the level axis of general view as time axis of video frames
as G = (time · width · height · channel). As time is the
length of frames, it can be denoted as the number of level of
general view.

Framework Based on Scale Sequence (S2) Module
In this section, we explain Θs2 that is scale sequence mod-
ule. Figure 3 shows the proposed scale sequence module
framework. Generally, object detection model is composed
of backbone network, neck module for featuare fusion, and
detection head. Input image is fed into backbone network.
CNN or Transformer (Liu et al. 2021) are employed as
backbone to extract feature. Convolution features through
each convolution layer are denoted as {C1, C2, C3, C4,
C5}. Next, convolution features are aggregated by top-down
and bottom-up fusion in Neck. We adopt path aggregation
network (PAN) architecture instead of FPN for effective
multi-scale feature fusion. Pyramid features are denoted as
{P3,P4,P5}. Figure 3 (b) shows pyramid features fed into
scale sequence module.

In scale sequence module, scale sequence feature is de-
signed based on P3 because small objects are detected in

high-resolution feature map P3. We resize all pyramid fea-
ture maps to resolution of P3. To construct a general view,
we add level dimension to each feature using unsqueeze
function and concatenate them. This general view is fed into
3D convolution block. 3D convolution block is composed of
3D convolution, 3D batch normalization, and Leaky ReLU
(Xu et al. 2015) activation function. To reduce complexity,
we employ one 3D convolution block. For small object de-
tection, both scale sequence (S2) feature and P3 are com-
bined or used in detection head together. Output features
from 3D convolution block are computed by average pooling
3D on level axis. Finally, scale sequence feature has identi-
cal width, height, and channel of P3. The new detection head
for small objects has the same resolution but twice channel
as:

PS2
3

= CAT (P3, S
2feature), (5)

where PS2
3

is the result of concatenation between scale se-
quence (S2) feature and P3 which is the highest resolution
among pyramid feature maps. As a result, small objects are
detected in this new detection head, PS2

3
.

We used P3 to extract the proposed scale sequence fea-
ture for small objects by default. However, the basis reso-
lution size for the scale sequence feature does not need to
be high-resolution. It can be changed to different resolution
depending on the purpose of application.

Scale sequence module can be applied to both one-stage
and two-stage detectors. Figure 3 (c) shows the process of
one-stage detector head and Figure 3 (d) shows two-stage
detector head. In order to modularize two-stage RoI head
effectively, 1x1 convolution was added to PS2

3
. As a result,



Model Backbone Size AP AP50 AP75 APS APM APL
YOLOv4-P5 CSP-P5 896 51.4 69.9 56.3 33.1 55.4 62.4
YOLOv4-P6 CSP-P6 1280 54.3 72.3 59.5 36.6 58.2 65.5
YOLOR-P6 CSPdarknet53 1280 52.6 70.6 57.6 34.7 56.6 64.2
YOLOR-W6 CSPdarknet53 1280 54.1 72.0 59.2 36.3 57.9 66.1
YOLOR-D6 CSPdarknet53 1280 55.3 73.3 60.6 38.0 59.2 67.1
YOLOv4-P5 + S2 CSP-P5 896 52.3[+0.9] 70.7[+0.8] 57.4[+1.1] 34.2[+1.1] 56.2[+0.8] 63.7[+1.3]
YOLOv4-P6 + S2 CSP-P6 1280 54.8[+0.5] 72.8[+0.5] 60.0[+0.5] 37.7[+1.1] 58.5[+0.3] 65.9[+0.4]
YOLOR-D6 + S2 CSPdarknet53 1280 55.4[+0.1] 73.5[+0.2] 60.0[+0.0] 38.1[+0.1] 58.9[-0.3] 67.2[+0.1]

Table 1: Comparison of the one-stage detectors with scale sequence (S2) feature and baseline models evaluated on COCO
test-dev.

Model Backbone AP AP mask AP50 AP75 APS APM APL
Faster R-CNN ResNet-50 37.9 - 58.1 41.3 22.0 40.9 49.1
Mask R-CNN ResNet-50 38.5 35.1 58.7 42.0 22.4 41.4 49.9
Cascade R-CNN ResNet-50 41.9 36.5 59.6 45.4 24.8 45.2 54.4
Faster R-CNN + S2 ResNet-50 39.1[+1.2] - 59.6[+1.4] 42.5[+1.2] 23.3[+1.2] 43.0[+2.0] 50.9[+1.7]
Mask R-CNN + S2 ResNet-50 39.8[+1.3] 36.2[+1.1] 60.0[+1.3] 43.6[+1.6] 23.5[+1.1] 43.0[+1.6] 51.1[+1.2]
Cascade R-CNN + S2 ResNet-50 43.2[+1.3] 37.5[+1.0] 60.8[+1.3] 47.1[+1.7] 25.8[+1.0] 46.6[+1.4] 56.4[+2.0]

Table 2: Comparison of the two-stage with scale sequence (S2) feature and baseline models evaluated on COCO validation set.
For comparsion, all two-stage detectors are re-trained during 3x training schedule using of 8 bath size.

channel size of PS2
3

of two-stage detector is identical to P3

channel size.

Experiments
Dataset and Evaluation Metrics
All experiments are conducted on MS COCO 2017 dataset
(Lin et al. 2014). This is commonly used as benchmark
dataset for object detection task. It has 80 object categories
and consists of 118k train set, 5k validation set, and 20k test-
dev set. We trained models on train set without extra data.
Evaluation is conducted on the validation set or test-dev set
by uploading our model on the official evaluation server.

All results are evaluated by MS COCO average pre-
cision (AP). We averaged over multiple intersection over
union (IoU) values. The primary challenge metric is AP at
IoU=.50:.05:.95 and others are denoted as AP50 at IoU=.50,
AP75 at IoU=.75. Also, we reported AP on different object
scales. It is split into small APS , medium APM , and large
APL based on area measured by segmentation mask area.

Implementation Details
We conducted experiments to check on the performance im-
provement when scale sequence (S2) feature is built on base-
line models. For comparison, we set same training strategy
and default setting that each baseline model used in their pa-
pers. We implemented all experiments using PyTorch and
pre-trained COCO weights are used for initial weight.

When adding scale sequence (S2) feature, we utilize Neck
modules owned by each baseline model. For example, one-
stage detector, YOLO used path aggregation network (PAN)
as Neck module. We implemented scale sequence (S2) fea-
ture based on PAN. Also, two-stage detectors of detec-
tron2 used feature pyramid network (FPN). Therefore, we

equipped scale sequence (S2) feature with FPN. All training
is performed with by single-scale training without ensemble.

For one-stage detector, we used Scaled-YOLOv4-P5,
Scaled-YOLOv4-P6, and YOLOR-D6 as baseline models.
Hyper-parameters and initial training options follow the set-
ting in (Wang, Bochkovskiy, and Liao 2021). We employed
Stochastic Gradient Decent (SGD) as optimizer and learn-
ing rate scheduler was OneCycleLR (He et al. 2019) with
initial learning rate 0.01. One-stage detectors are trained on
3 Tesla NVIDIA V100 GPUs. Batch sizes of YOLOv4-P5,
YOLOv4-P5 and YOLOR-D6 are 24, 21, and 18 respec-
tively. The performance of one-stage detector is evaluated
on MS COCO test-dev.

On the other hand, we trained two-stage detectors based
on detectron2. Faster R-CNN, Mask R-CNN, and Cascade
R-CNN with ResNet-50 (He et al. 2016) backbone were se-
lected as baseline. Three models uses FPN as Neck mod-
ule. Two-stage detectors are evaluated on MS COCO val-
idation set. For comparison, we re-trained the models us-
ing batch size 8. After built the scale sequence (S2) feature,
we trained two-stage detectors + S2 using same batch size.
Train strategy and hyper-parameters are set by detectron2’s
default configuration. Training epoch is 3x scheduled (270k
iteration) and learning rate is decreased by 0.1 factor at 210k
and 250k iterations. Two-stage detectors were trained on 4
NVIDIA RTX 2080Ti GPUs.

Main Results
Overall performance analysis We evaluated one-stage
detectors built-in scale sequence feature with other YOLO-
based models on MS COCO test-dev. The results are shown
in Table 1. All models with scale sequence features con-
sistently improved the performance. For YOLOv4-P5 with
scale sequence (S2) feature achieved 52.3 AP which was 0.9



Level AP APS APM APL
YOLOv4-P5 51.4 33.1 55.4 62.4
P3 +S2 52.3 34.2[+1.1] 56.2[+0.8] 63.7[+1.3]
P3,P4 +S2 52.2 34.2[+1.1] 56.4[+1.0] 63.3[+0.9]
P3,P4,P5 +S2 52.2 33.7[+0.6] 56.5[+1.1] 63.2[+0.8]

Table 3: Ablation study on different position of pyramid
level for concatenating scale sequence (S2) feature.

Model AP AP50 AP75 APS APM APL
YOLOv4-P5
w PAN 51.4 69.9 56.3 33.1 55.4 62.4
w FPN+S2 47.5 67.6 51.7 35.1 53.0 50.4
w PAN+S2 52.3 70.7 57.4 34.2 56.2 63.7

Table 4: Ablation study on the different Neck module.

of improvement higher than the proposed without feature.
Both AP50 and AP75 are improved by factor of 0.8 and 1.1
AP respectively. Also, the performance of AP is increased
even if the model size is larger. For example, YOLOv4-P6
equipped with scale sequence feature has 0.5 improvement
on all AP, AP50 and AP75. Also, YOLOR-D6 which has
state-of-the-art architecture achieved 55.4 AP by applying
the proposed scale sequence (S2) feature.

Furthermore, we compared our scale sequence feature
with two-stage object detector baselines. These experiments
are evaluated on MS COCO validation set. Unlike one-stage
detectors, scale sequence module for two-stage added 1x1
convolution to modularize RoI head effectively. We evalu-
ated the proposed scheme on Faster R-CNN, Mask R-CNN,
and Cascade R-CNN.

As shown in Table 2, Faster R-CNN with scale sequence
feature achieves 39.1 AP which is 1.2 AP higher than Faster
R-CNN without the proposed feature. Also, AP50 and AP75

have been improved by 1.4 and 1.2 AP respectively.
For Mask R-CNN and Cascade R-CNN, the proposed

scale sequence (S2) feature improved the performance of
AP as well as APmask. Mask R-CNN with scale sequence
feature was improved by factor of 1.3 on AP and 1.1 on
APmask. Also, Cascade R-CNN achieved 43.2 AP and 37.5
APmask which were 1.3 and 1.0 higher than without our
feature. The proposed scheme also improved on AP50 and
AP75, significantly.

Analysis of the performance as object scale We ana-
lyzed AP improvement on object scales: small, medium, and
large. All YOLO-based one-stage detectors with scale se-
quence (S2) feature have increased the performance of AP
on all scales. In particular, APS increased the most than
other scales relatively. This is because the scale sequence
feature was designed based on high-resolution pyramid fea-
ture map for small objects. YOLOv4-P5 which uses the
smallest resolution as input image, there were 1.1 and 1.3
AP improvement in APL as well as APS .

On the other hand, YOLOv4-P6 has more complexity and
uses larger input resolutions than YOLOv4-P5. When the
scale sequence (S2) feature was added to YOLOv4-P6, there
was the highest improvement by 1.1 in APS , followed by 0.3

Model Size Param(M). AP AP50 Speed(ms)
YOLOv4-P5 896 71 51.4 69.9 11.8
YOLOv4-P6 1280 128 54.3 72.3 23.7
YOLOR-D6 1280 152 55.3 73.3 27.3
YOLOv4-P5+S2 896 73 52.3 70.7 13.5
YOLOv4-P6+S2 1280 130 54.8 72.8 28.4
YOLOR-D6+S2 1280 155 55.4 73.5 36.2

Table 5: Comparison of runtime analysis

on APM and 0.4 on APL improvements. Also, YOLOR-D6
with the scale sequence (S2) feature improved primary AP.
It increased APS and APL, but APM was decreased slightly.

Furthermore, two-stage detectors equipped with the scale
sequence (S2) feature can improve the performance of AP on
all scales consistently. But the highest improvement among
AP on scales is different. Because the proposed scale se-
quence (S2) feature is added to P3 through 1x1 convolution
to adjust feature channel in two-stage scale sequence mod-
ule. It caused to lack of information in P3 compared to one-
stage detectors.

Ablation Study
Ablation study on different position of pyramid level
We took ablation experiments on the number of scale se-
quence features and different positions of pyramid level. Ta-
ble 3 shows the result. By default setting, the proposed scale
sequence (S2) feature is generated based on P3 and has same
resolution of P3. We resized this feature to other pyramid
resolutions, P4 and P5. Finally, the scale sequence feature is
concatenated to each P4 or P5 and both.

As a result, models with the scale sequence (S2) feature
improved their performance than those without the proposed
feature. When concatenating scale sequence feature to only
P3, we achieved the best performance. It improved APS as
well as AP of other scales with low complexity.

Ablation study on Neck model To analyze the effect
on different Neck, we changed Neck module of Scaled
YOLOv4 from PAN to FPN. Table 4 shows the result of this
ablation study. We extracted a scale sequence feature from
FPN instead of PAN. As a result, model with scale sequence
(S2) feature which is generated from PAN has better perfor-
mance.

Path aggregation Network (PAN) has two direction aggre-
gation paths of FPN. It connects feature pyramids through
top-down and bottom-up pathways. It makes all feature
pyramids reflect for each other but they only have differ-
ent feature map size on the level axis. This feature pyramid
resembles scale-space. Therefore, it can be easily extracted
scale-invariant feature from scale-space.

Runtime Analysis
As shown in Table 5, we analyzed the number of model
parameters and inference speed when adding the proposed
scale sequence (S2) feature. Models with the scale sequence
feature have increased parameters by approximately 2M.
Also, we tested runtime with batch size 8 on NVIDIA Tesla
V100. The speed of YOLOv4-P5 with the scale sequence



(S2) feature was increased by 1.7ms using 896x896 of in-
put image. When using 1280x1280 of image as input, the
speed is increased by 4.7ms and 8.9ms of YOLOv4-P6 and
YOLOR-D6, respectively with the scale sequence feature.
As a result, the proposed S2 feature does not make large
complexity in runtime.

Conclusion
In this paper, we proposed a new scale sequence (S2) fea-
ture for improved object detection. It is extracted from Neck
module of object detection models like FPN. The proposed
feature can enrich FPN feature by reflecting a sequence
of convolution that has not been considered before. Espe-
cially, the proposed feature was designed based on high-
resolution pyramid feature maps for improving small ob-
ject detection. It achieved improvement of AP on small as
well as other scales. Scale sequence feature can be simply
extended to most object detection models with FPN. Also,
we demonstrated that both one-stage and two-stage detec-
tors with scale sequence feature increased AP on MS COCO
dataset.
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