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Abstract

Traditional text classification typically cate-
gorizes texts into pre-defined coarse-grained
classes, from which the produced models can-
not handle the real-world scenario where finer
categories emerge periodically for accurate ser-
vices. In this work, we investigate the setting
where fine-grained classification is done only
using the annotation of coarse-grained cate-
gories and the coarse-to-fine mapping. We pro-
pose a lightweight contrastive clustering-based
bootstrapping method to iteratively refine the
labels of passages. During clustering, it pulls
away negative passage-prototype pairs under
the guidance of the mapping from both global
and local perspectives. Experiments on NYT
and 20News show that our method outperforms
the state-of-the-art methods by a large margin.1

1 Introduction

Traditional text classification often categorize into
a set of coarse-grained classes, which falls short in
real-world scenarios where finer categories emerge.
To this end, coarse-to-fine text classification is in-
troduced (Mekala et al., 2021), which performs
fine-grained classification given only annotation
of coarse-grained categories and the coarse-to-fine
mapping. Then, it finetunes a pre-trained language
model for each coarse prototype.2 However, this
two-step method could be sub-optimal. For exam-
ple, it is vulnerable to the noise which is propagated
and accumulated through the pipeline. Besides, it
requires finetuning and saving a pre-trained lan-
guage model for each coarse prototype which is
heavyweight.

To this end, we propose a lightweight bootstrap-
ping method based on contrastive clustering to iter-

1Code is available at https://github.com/recorderh
ou/contrastive_bootstrapping_label_refinement

2We use prototype and category interchangeably.

(a) (c)(b)

Figure 1: Passages with “Arts” coarse prototype on NYT
dataset. Colors are used to denote different fine proto-
types. (a) warm-up. (b) bootstrapping w/o selection
strategy. (c) bootstrapping w/ selection strategy.

atively refine the labels of passages.3 To be more
specific, the method starts with an epoch of warm-
up on the weakly-labeled dataset. During warm-up,
it pulls away negative passage-prototype pairs un-
der the guidance of the mapping from both global
and local perspectives, i.e., coarse inter-cluster and
fine inter-cluster perspectives. After the warm-up,
the distances between clusters are not significant
which causes misclassification. Instead of contin-
uing training on the weakly-labeled dataset which
might greatly increase the noise (Figure 1(b)), we
perform a bootstrapping process which finetunes
the model on the selected dataset and updates the
selected dataset by the finetuned model alternately.
To mitigate the noise, we propose a selection strat-
egy to identify high-quality pairs in terms of simi-
larity and distinction. To further boost our method,
we adopt a modified similarity metric from (Lam-
ple et al., 2018) and use the gloss knowledge to
augment the prototype representation. As shown in
(Figure 1(c)), the resulting clusters are well sepa-
rated with less noise.

Our contributions are summarized as follows:
• We propose a lightweight bootstrapping

method based on contrastive clustering to ad-

3We focus on passage-level classification as it is consistent
with prior studies (Mekala et al., 2021). Though, without loss
of generality, the studied problem as well as the proposed
method can be extended to classifying natural language text
in other granularities.
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dress the problem of coarse-to-fine text classi-
fication.

• Our method outperforms the state-of-the-art
methods on two widely-used datasets. Fur-
ther analysis verifies the effectiveness of our
proposed techniques.

2 Proposed Method

This section describes the technical details of the
proposed method, starting with the task description.

2.1 Task Description

We follow the task definition of coarse-to-fine
text classification in previous work (Mekala et al.,
2021). Given n passages {p1, ..., pn} with their
corresponding coarse-grained labels {c1, ..., cn},
along with the coarse-to-fine mapping T , our goal
is to assign a fine-grained label to each passage.
The key notations used in our paper are defined
as follows: (1) C = {C1, C2, ..., Cm} denotes the
coarse prototypes. (2) F = {F1,F2, ...,Fk} de-
notes the fine prototypes. (3) T : C → F denotes
the coarse-to-fine mapping, a surjective mapping
which separates F into |C| non-overlapping parti-
tions. (4) Spf = T (ci) denotes the fine-grained
candidate prototype of pi, which is also dubbed as
p for simplicity. (5) Snf = F/Spf denotes fine
prototypes not belonging to T (ci). (6) Snc = C/ci
denotes coarse prototypes in C other than ci.

2.2 Our Method

Training Process As illustrated in Figure 2, we
start with an epoch of warm-up, during which we
optimize two contrastive losses Lglobal, Llocal on
the weakly-labeled dataset and only the Lglobal on
the unlabeled dataset. The two contrastive losses
are detailed in the following paragraphs. Then,
we conduct several epochs of bootstrapping with
the above model. At each bootstrapping step, we
first select a small set of passages on which labels
are predicted with high confidence by the model.
Then, we finetune the model on the selected dataset
with the same losses as warm-up. We repeat the
finetuning and the selection alternately.

Initial Weak Supervision Following previous
work, we consider samples that exclusively contain
the label surface name as their respective weak
supervision. More details can be referred to the
prior study.
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passages
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Figure 2: Illustration of our training process.

Passage and Prototype Representation We en-
code passages {p1, ..., pn} and all prototypes C∪F
into the same embedding space with a pretrained
language model. The resulting passage represen-
tation and prototype representation are denoted
as p and l respectively. During the training pro-
cess, the prototype representations are dynamically
updated to fit the current passage representations.
Specifically, we use the last hidden representation
of [CLS] as their representations.

Similarity Metric Cosine similarity is often used
to measure semantic similarity of embedding rep-
resentations. However, in high-dimensional spaces,
some “hub” vectors may be close to many other
vectors while some other vectors are instead being
isolated. For example, a passage’s representation p
may get high cosine with a large number of labels
in Spf due to such hubness issues. In this case, a
high similarity score does not necessarily lead to a
high discrepancy among labels. Selecting a highly-
scored label from the hub as the seed is potentially
detrimental to our pairing-based method. Inspired
by cross-domain similarity local scaling (Lample
et al., 2018), we adopt a modified similarity metric
c(p, l) to prevent passage vectors from becoming
hubs:

c(p, l) = cos(p, l)−KNN(p) (1)

KNN(p) =
1

K

∑
max
l∈F

K{cos(p, l)} (2)

where KNN(.) denotes K nearest neighbors.

Warm-up Viewing a passage as an anchor, we
expect that its semantic similarity to the correct
fine-grained prototype should be closer than any
other fine-grained candidate prototypes. We re-
gard the distance in the representation space as the
similarity. Specifically, we optimize the following



margin ranking loss:

Lglobal =
1

|Spf |
∑

l∈Spf

l′∈Snf

max{c(p, l)− c(p, l′) + γ, 0}

(3)

where γ is a hyper-parameter denoting the mar-
gin. We use all fine candidate prototypes in Spf as
positive examples and randomly sample the same
number of prototypes from Snf as negative exam-
ples. We view this loss as a global loss to cluster
samples according to their coarse labels (Figure 3).

For instances labeled in the initial weak supervi-
sion stage, we adopt another margin ranking loss:

Llocal = max{sec_max− c(p, l) + σ, 0} (4)

sec_max = max
l′∈Spf ,l′!=l

c(p, l′) (5)

We regard this loss as a local loss to cluster samples
according to their fine-grained labels (Figure 1 (a)).

Bootstrapping After the warm-up, representa-
tions show an inclination to form clusters. Yet, the
distances between them are not significant enough
to separate the classes. To further get compact clus-
ters, we perform bootstrapping which finetunes the
model on the selected dataset and updates the se-
lected dataset by the finetuned model alternately.
Instead of using the initial weak supervision which
might greatly increase the noise as observed, we
propose a selection strategy to select high-quality
passage-prototype pairs. Specifically, we assign
a pseudo label to each passage by their similar-
ity (Eq.(6)). Apart from similarity, we assume
high-quality pairs should also be discriminative
(Eq.(7)):

l = arg max
l∈Spf

c(p, l) (6)

c(p, l)− max
l′∈Spf ,l′!=l

c(p, l′) > β (7)

where β is a threshold updated at each epoch. We
construct a confident set CS with top r% pairs sat-
isfying these two conditions. We update β with the
lowest similarity in CS. Then, we optimize Eq.(4)
and Eq.(3) on CS and the rest passages accordingly.

Gloss Knowledge Since the surface names alone
can not well represent the semantics of labels, we
enrich them with external semantic knowledge. To
be more specific, we select the first two sentences
in each surface name’s first Wikipedia webpage to
augment the original surface name with a prede-
fined template (Table 3). We adopt the format of
“template, surface name, gloss” and use the last hid-
den representation of [CLS] as their representation.

Figure 3: Passage representations after warm-up on
20News dataset. Colors are used to denote different
coarse prototypes.

Prediction It is worth noticing that applying our
similarity metric c(p, l) do not change the relative
ranking among labels in Spf compared with the
cosine similarity. For simplicity, we use cosine
similarity for prediction.

l = arg max
l∈Spf

cos(p, l) (8)

3 Experiments

In this section, we describe the experimental evalu-
ation for the proposed method.

3.1 Datasets and Metrics
For a fair comparison with prior work, we use the
same hierarchical datasets used by We report both
Macro-F1 and Micro-F1 for evaluation on the fol-
lowing two datasets.

The 20 Newsgroups (20News) The passages
in 20News was organized into 5 coarse-grained
newsgroups and 20 fine-grained newsgroups cor-
responding to different topics (Table 2). Pas-
sages in 20News were partitioned evenly across
the 20 different fine-grained newsgroups.4 Fol-
lowing (Mekala et al., 2021), we omitted
the 3 miscellaneous newsgroups (“misc.forsale,”
“talk.politics.misc” and “talk.religion.misc”) and
expanded the abbreviation to full words.

The New York Times (NYT) This dataset con-
tains 5 coarse-grained topics and 25 subtopics (Ta-
ble 2). The NYT dataset is highly skewed with the
coarse-grained topic “sports” containing more than
80% passages.

3.2 Main Results
We compare our model with the previous work
(Mekala et al., 2021), as well as several zero-
shot weakly supervised text classification methods

4http://qwone.com/~jason/20Newsgroups/

http://qwone.com/~jason/20Newsgroups/


NYT 20News
Mi-F1(%) Ma-F1(%) Mi-F1(%) Ma-F1(%)

LOT-Class 79.26 63.16 56.38 54.80
X-Class 58.15 60.50 52.95 53.47
C2F 89.23 84.36 75.77 75.24
C2F w/ our select ⋆ 89.64 82.72 77.20 76.41

Ours 92.64 89.90 77.64 77.22
w/o fine 91.15 (↓ 1.49) 84.90 (↓ 5.00) 74.34 (↓ 3.30) 73.78 (↓ 3.44)
w/o bootstrap 89.49 (↓ 3.15) 82.50 (↓ 7.40) 76.01 (↓ 1.63) 75.46 (↓ 3.30)
w/o gloss 89.91 (↓ 2.73) 80.48 (↓ 9.42) 72.68 (↓ 4.86) 70.31 (↓ 6.91)
w/o select 87.56 (↓ 5.08) 81.98 (↓ 8.02) 79.74 (↑ 2.10) 79.21 (↑ 1.99)
w/o similarity 89.25 (↓ 3.39) 82.44 (↓ 7.46) 61.21 (↓ 16.43) 54.76 (↓ 22.46)
w/ Manhattan similarity † 33.45 (↓ 59.19) 39.47 (↓ 50.43) 41.83 (↓ 35.81) 36.50 (↓ 40.72)
w/ Euclidean similarity ‡ 92.46 (↓ 0.18) 89.17 (↓ 0.73) 72.11 (↓ 5.53) 70.65 (↓ 6.57)

Table 1: Results on NYT and 20News. “⋆" equips C2F with our selection strategy. “†” replaces our similarity metric
with Manhattan distance. “‡” replaces our similarity metric with Euclidean distance.

(Wang et al., 2021b; Meng et al., 2020a) following
previous works. We reproduce them using their
implementation.567

As shown in Table 1, our method outperforms
the baselines by 5.67% in Micro-F1 and 5.54% in
Macro-F1 on the NYT dataset, as well as 3.97%
in Micro-F1 and 3.04% in Macro-F1 on 20News
dataset.

3.3 Analysis

To verify the effectiveness of different model com-
ponents , we conduct ablation studies to test each
of those.

Effect of Bootstrapping The “w/o bootstrap”
results in Table 1 report the performance with
warm-up only. These results are consistently lower
than those with bootstrapping. Specifically, boot-
strapping improves the warm-up by 3.15% Micro-
F1, 7.40% Macro-F1 and 1.63% Micro-F1, 3.30%
Macro-F1 on NYT and 20News respectively. Fig-
ure 1(a)(c) shows passage representations are more
separated from each other.

Effect of Selection Strategy We replace the se-
lection strategy in bootstrapping with the initial
weakly-labeled samples. From the “w/o bootstrap”
results in Table 1, we can see that, our selection
strategy brings an improvement of 4.26% Micro-
F1, 7.46% Macro-F1 on NYT. It is better to use
the seed dataset on 20News. We hypothesize that
this observation is because the seed dataset has a
more balanced label distribution than our selected

5https://github.com/yumeng5/LOTClass
6https://github.com/ZihanWangKi/XClass
7https://github.com/dheeraj7596/C2F

high-quality samples on 20News. We also incorpo-
rate our selection strategy to the C2F baseline in the
bootstrapping stage. As shown in Table 1 row “C2F
w/ our select,” this strategy improves the perfor-
mance of C2F by 1.43% Micro-F1, 1.17% Macro-
F1 on 20News and 0.41% Micro-F1 on NYT, ex-
hibiting the effectiveness of our strategy.

Effect of Similarity Metric We replace our sim-
ilarity metric with the cosine similarity. From Ta-
ble 1 “w/o similarity” we can see that, our similar-
ity metric brings along an improvement of 3.39%
in Micro-F1, 7.46% in Macro-F1 on NYT, and
16.43% in Micro-F1 and 22.46% in Macro-F1 on
20News. From Figure 4, we can see that 63%
of samples belonging to the “Law Enforcement”
prototype are misclassified using the cosine simi-
larity. However, 18% are misclassified using our
similarity metric, verifying its effectiveness. Be-
sides, results for “w/ Manhattan similarity” and
“w/ Euclidean similarity” show that alternating co-
sine similarity in c(p, l) causes performance drops
of 35.81% (5.53%) in Micro-F1, 40.72% (6.57%)
in Macro-F1 and 50.19% (0.18%) in Micro-F1,
50.43% (0.73%) in Macro-F1 on 20News and NYT
data, further proving the effectiveness of our simi-
larity metric.

Effect of Gloss Knowledge We remove the gloss
knowledge and use the label surface name only.
Comparing the “w/o gloss” results in Table 1 with
the full-setting ones, we observe that the gloss
knowledge brings an improvement of 2.73% in
Micro-F1, 9.42% in Macro-F1 on NYT and 4.86%
in Micro-F1, 6.91% in Macro-F1 on 20News. Fig-
ure 5 further shows the effect of gloss knowledge
on different prototypes.

https://github.com/yumeng5/LOTClass
https://github.com/ZihanWangKi/XClass
https://github.com/dheeraj7596/C2F
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Figure 4: Confusion matrix on “Politics” coarse prototype. Our similarity metric (right) outperforms cosine
similarity (left) by 12.25% Macro-F1 and 16.68% Micro-F1 under “Politics.”

Extending to the setting without coarse-to-fine
mapping We extend our method to the setting
without the coarse-to-fine mapping. In other words,
the only supervision is the gold coarse labels. We
modify Lglobal as follows:

Lc_global = max{c(p, lc)− c(p, l′c) + γ, 0} (9)

where we use the golden coarse label lc as the posi-
tive example and randomly sample one coarse label
l′c from Snc as the negative example. The “w/o fine”
results in Table 1 show that the performance does
not degrade much when the association between
coarse and fine-grained labels does not exist, show-
ing the feasibility of our method in a more general
setting.

4 Related Work

Previous works in weakly supervised text classifi-
cation have explored different kinds of weak super-
vision. (1) a set of related keywords. (Mekala and
Shang, 2020) augment and disambiguate the initial
seed words with contextualized and highly label-
indicative keywords. (Meng et al., 2020b) identify
keywords for classes by querying replacements for
class names using BERT and pseudo-labels the doc-
uments by heuristics with the selected keywords.
(2) a few labeled documents. (Tang et al., 2015)
represent the labeled documents and different lev-
els of word co-occurrence information as a large-
scale text network. (Meng et al., 2018) propose a
pseudo-document generator that leverages the seed
labeld documents to generate pseudo-labeled doc-
uments for model pre-training. (3) label surface
names. (Wang et al., 2021b) propose an adaptive
representation learning method to obtain label and
document embedding, and cluster them to pseudo-
label the corpus. Our setting is different from theirs

in that we use coarse-grained annotation to improve
the fine-grained text classification.

Contrastive learning (He et al., 2020; Chen et al.,
2020; Khosla et al., 2020) aims at learning rep-
resentations by contrasting the positive pairs and
negative pairs. In NLP, existing works can be pri-
marily categorized into two distinct streams. Un-
supervised contrastive learning seeks to contrast
grouped or perturbed instances to generate more ro-
bust representation of unlabeled textual data (Gao
et al., 2021; Wei et al., 2021; Kim et al., 2021;
Wang et al., 2021a). On the contrary, supervised
contrastive learning (Suresh and Ong, 2021; Zhou
et al., 2021; Yu et al., 2021; Huang et al., 2022)
is label-aware and seeks to create representations
for differently labeled data with more discrepancy.
Our work has shown that supervised contrastive
learning incorporating label names, with minimal
external knowledge, improves the model’s perfor-
mance in label refinement.

5 Conclusion

In this paper, we study the task of coarse-to-fine
text classification. We propose a novel contrastive
clustering-based bootstrapping method to refine the
label in an iterative manner. Experiments on two
real-world datasets for coarse-to-fine text classifica-
tion verify the effectiveness of our method. Future
work could consider extending this method to other
fine-grained decision-making tasks that could po-
tentially benefit from coarse-grained labels, such
as various kinds of lexical semantic typing tasks
(Huang et al., 2022). Another meaningful direc-
tion is to consider incorporating other partial-label
learning techniques (Zhang et al., 2016) that are
relevant to coarse-to-fine prediction tasks.



Limitations

Our paper has the following limitations: (1) In real-
world applications, the label hierarchy may be more
than two levels. It is worth extending our method to
such a setting and empirically verifying it. (2) Our
selection strategy simply takes top r% confident
samples, which might result in class imbalance
problem. Alleviating the imbalance problem may
further improve our performance. We leave them
as future work.
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A Dataset Statistics

We list the statistics of the datasets in Table 2.

B Templates

We list the templates used in Table 3.

C Effect of gloss knowledge on different
prototypes

We show the confusion matrix over all fine proto-
types in Figure 5.

D Implementation Details

We use RoBERETa-base (Liu et al., 2019) as the
encoder. The models are trained on one GeForce
RTX 3090 GPU. We set the batch size as 8. We do
one epoch of warmup and four epochs of bootstrap-
ping. We use the predictions from the last epoch as
the final predictions. We use AdamW (Loshchilov
and Hutter, 2017) as the optimizer. r is set as 15
for NYT and 1 for 20News. γ and σ are set as 0.05
for both NYT and 20News. We run our model 3
times using different random seeds. We used t-SNE
(Pedregosa et al., 2011; Buitinck et al., 2013) for
the visualization in this paper.

E Selection of r

We select the value of r from set {1, 5, 10, 15, 20}.
For each coarse prototype Ci, we calculate the ratio
of initial weak supervision WCi in category Ci to
the total number of instance ICi in Ci, we denote
the ratio as RCi = WCi/ICi . After that, we select
the r closest to min

Ci∈C
{RCi}. As shown in Table 4a

and Table 4b, the minimal RCi in NYT dataset is
13.43%, closest to 15, while the minimal RCi in
20News dataset is 2.05%, closest to 1.

https://doi.org/10.18653/v1/2020.emnlp-main.724
https://doi.org/10.18653/v1/2021.emnlp-main.359
https://doi.org/10.18653/v1/2021.emnlp-main.359
https://doi.org/10.18653/v1/2021.emnlp-main.359
https://doi.org/10.18653/v1/2021.acl-long.181
https://doi.org/10.18653/v1/2021.acl-long.181
https://doi.org/10.18653/v1/2021.acl-long.181
https://doi.org/10.18653/v1/2021.naacl-main.242
https://doi.org/10.18653/v1/2021.naacl-main.242
https://openreview.net/forum?id=Uu1Nw-eeTxJ
https://openreview.net/forum?id=Uu1Nw-eeTxJ
https://doi.org/10.18653/v1/2021.naacl-main.84
https://doi.org/10.18653/v1/2021.naacl-main.84
https://doi.org/10.18653/v1/2021.naacl-main.84
https://doi.org/10.1145/2939672.2939788
https://doi.org/10.1145/2939672.2939788
https://doi.org/10.18653/v1/2021.emnlp-main.84
https://doi.org/10.18653/v1/2021.emnlp-main.84


Dataset Passage |C| |F| Coarse Prototype Fine Prototype

20News 16468 5 17 computer, politics, recreation, graphics, windows, ibm, mac, x window, mideast, guns, autos, motorcycles,
religion, science baseball, hockey, christian, atheism, encryption, electronics, medicine, space

dance, music, movies, television, economy, energy companies, international
NYT 11744 5 26 arts, business, politics, business, stocks and bonds, abortion, federal budget, gay rights, gun control,

science, sports immigration, law enforcement, military, surveillance, the affordable care act,
cosmos, environment, baseball, basketball, football, golf, hockey, soccer, tennis

Table 2: Dataset Statistics.

Dataset Template

NYT 1 : The news is about, 2 : The news is related to, 3 : The topic of this passage is

20News 1 : The topic of this post is , 2 : They are discussing , 3 : This post mainly talks about

Table 3: Three variants of templates used to concatenate the gloss knowledge and the surface name. The first
template is best for NYT and the third template is best for 20News.

Ci WCi ICi RCi (%)

arts 184 1043 17.64

business 132 983 13.43

politics 216 989 21.84

science 42 90 46.67

sports 1890 8639 21.88

(a) Ratio of the initial weak supervision in NYT

Ci WCi ICi RCi (%)

computer 100 4880 2.05

politics 56 1850 3.03

recreation 924 3976 23.24

religion 150 1976 8.35

science 100 3951 2.53

(b) Ratio of the initial weak supervision in 20News

Table 4: Ratio of the initial weak supervision
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Figure 5: Confusion matrix over all fine prototypes without (left) and with (right) the gloss knowledge.


