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Abstract

Recently it has been shown that state-of-the-
art NLP models are vulnerable to adversar-
ial attacks, where the predictions of a model
can be drastically altered by slight modifica-
tions to the input (such as synonym substitu-
tions). While several defense techniques have
been proposed, and adapted, to the discrete
nature of text adversarial attacks, the bene-
fits of general-purpose regularization methods
such as label smoothing for language mod-
els, have not been studied. In this paper, we
study the adversarial robustness provided by
various label smoothing strategies in founda-
tional models for diverse NLP tasks in both in-
domain and out-of-domain settings. Our ex-
periments show that label smoothing signifi-
cantly improves adversarial robustness in pre-
trained models like BERT, against various pop-
ular attacks. We also analyze the relationship
between prediction confidence and robustness,
showing that label smoothing reduces over-
confident errors on adversarial examples.

1 Introduction

Neural networks are vulnerable to adversarial at-
tacks: small perturbations to the input ,which do
not fool humans (Szegedy et al., 2013; Goodfel-
low et al., 2014; Madry et al., 2017). In NLP
tasks, previous studies (Alzantot et al., 2018; Jin
et al., 2019; Li et al., 2020; Garg and Ramakr-
ishnan, 2020) demonstrate that simple word-level
text attacks (synonym substitution, word inser-
tion/deletion) easily fool state-of-the-art models,
including pre-trained transformers like BERT (De-
vlin et al., 2019; Wolf et al., 2020). Further, it has
recently been shown models are overconfident1 on
examples which are easy to attack (Qin et al., 2021)
and indeed, such over-confident predictions plague

∗The first two authors contributed equally to this paper.
Most of the work done while Soham Dan was at the University
of Pennsylvania.

1Confidence on an example is the highest softmax score
of the classifier prediction on that example.

Figure 1: Here we show an example generated by word-
level adversarial attack TextFooler (Jin et al., 2019) on
SST-2 data. By replacing excitement with its synonym
exhilaration, the text classification models changes its
prediction from Negative to Positive, which is incor-
rect.

much of modern deep learning (Kong et al., 2020;
Guo et al., 2017; Nguyen et al., 2015; Rahimi et al.,
2020). Label smoothing is a regularization method
that has been proven effective in a variety of ap-
plications, and modalities (Szegedy et al., 2016;
Chorowski and Jaitly, 2017; Vaswani et al., 2017).
Importantly, it has been shown to reduce overconfi-
dent predictions and implicitly produce better con-
fidence calibrated classifiers (Muller et al., 2019;
Zhang et al., 2021; Dan and Roth, 2021; Desai and
Durrett, 2020; Huang et al., 2021; Liu and JaJa,
2020).

In this work, we focus on the question: does
label smoothing also implicitly help in adversarial
robustness? While there has been some investi-
gation in this direction for adversarial attacks in
computer vision, (Fu et al., 2020; Goibert and
Dohmatob, 2019; Shafahi et al., 2019), there is
a gap in understanding of whether it helps with
discrete, text adversarial attacks used against NLP
systems. With the increasing need for robust NLP
models in safety-critical applications and a lack of
generic robustness strategies,2 there is a need to
understand inherent robustness properties of pop-
ular label smoothing strategies, and the interplay
between confidence and robustness of a model.

2which are flexible, simple and not over-specialized to very
specific kinds of text adversarial attacks.
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In this paper, we extensively study standard label
smoothing and its adversarial variant, covering ro-
bustness, prediction confidence, and domain trans-
fer properties. We observe that label smoothing
provides implicit robustness against adversarial ex-
amples. Particularly, we focus on pre-trained trans-
former models and test robustness under various
kinds of word-level attacks in both in-domain and
out-of-domain scenarios. Our experiments show
that label smoothing (1) improves robustness to text
adversarial attacks, (2) mitigates over-confident er-
rors on adversarial examples, and (3) improves
adversarial accuracy for high-confidence examples.
Analysing the adversarial examples along various
quality dimensions reveals the remarkable efficacy
of label smoothing as a general robustness tool.

2 Background

2.1 Text Adversarial Attacks
Our experiments evaluate the robustness of text
classification models under two state-of-the-art text
adversarial attacks TextFooler and BAE, described
below. For a particular victim NLP model and a raw
text input, the attack produces semantically-similar
adversarial text as output. Importantly, only those
examples are attacked, which are originally cor-
rectly predicted by the victim model. The attacks
considered are word-level, i.e. they replace impor-
tant words in a clean text with their synonyms to
maintain the meaning of the clean text, but change
the prediction of the victim models; and black-box,
i.e., they do not need access to the victim model
gradients.3

• TextFooler: (Jin et al., 2019) proposes an at-
tack which determines the word importances
in a sentence, and then replaces the important
words with qualified synonyms.

• BAE: (Garg and Ramakrishnan, 2020) uses
masked pre-trained language models like
BERT to generate replacements for the impor-
tant words until the victim model’s prediction
is incorrect.

2.2 Label Smoothing
Label Smoothing is a modified fine-tuning proce-
dure to address overconfident predictions. It intro-
duces uncertainty to smoothen the posterior distri-
bution over the target labels. Label smoothing has

3The black-box attacks keep trying multiple adversarial
examples via substitutions until the victim model is fooled, or
a max number of attempts is reached. Further details of the
attacks are in (Jin et al., 2019; Garg and Ramakrishnan, 2020).

been shown to implicitly calibrate neural networks
on out-of-distribution data, where calibration mea-
sures how well the model confidences are aligned
with the empirical likelihoods (Guo et al., 2017).

• Standard Label Smoothing (LS) (Szegedy
et al., 2013; Muller et al., 2019) constructs
a new target vector (yLSi ) from the one-hot
target vector (yi), where yLSi = (1 − α)yi +
α/K for a K class classification problem. α
is a hyperparameter selection and its range is
from 0 to 1.

• Adversarial Label Smoothing (ALS) (Goib-
ert and Dohmatob, 2019) constructs a new tar-
get vector (yALS

i ) with a probability of 1− α
on the target label and α on the label to which
the classification model assigns the minimum
softmax scores, thus introducing uncertainty.

For both LS and ALS, the cross entropy loss is
subsequently minimized between the model predic-
tions and the modified target vectors yLSi , yALS

i .

3 Experiments

In this section, we present a thorough empirical
evaluation on the effect of label smoothing on ad-
versarial robustness for two pre-trained transformer
models: BERT and its distilled variant, distilBERT,
which are the victim models.4 We attack the vic-
tim models using TextFooler and BAE 5. For each
attack, we present results on both the standard
models and the label-smoothed models on various
classification tasks: text classification (sentiment
and topic classification) and natural language infer-
ence. For each dataset we evaluate on a randomly
sampled subset of the test set (1000 examples),
as done in prior work (Li et al., 2021; Jin et al.,
2019; Garg and Ramakrishnan, 2020). We choose
label smoothing factor α = 0.45 for standard label-
smoothed models in our experiments. We evaluate
on the following tasks, and other details about the
training procedure can be found in Appendix A.3:

• Text Classification: We evaluate on movie re-
view classification using Movie Review (MR)
(Pang and Lee, 2005) and Stanford Sentiment
Treebank (SST2) (Socher et al., 2013) (both

4Additional results on more datasets and models are pre-
sented in the Appendix. All pretrained models and fine-tuning
are implemented using Huggingface (Wolf et al., 2020).

5TextFooler attack and BAE attack in our experiments are
implemented using TextAttack (Morris et al., 2020), a Python
framework for NLP adversarial attack.



SST-2 Clean
Acc (↑)

Attack Success
Rate (↓)

Adv
Conf (↓)

BERT (α) 0 0.45 0 0.45 0 0.45
TextFooler 91.97 92.09 96.38 88.92 78.43 63.62

BAE 91.97 92.09 57.11 53.42 86.92 68.35
distilBERT(α) 0 0.45 0 0.45 0 0.45
TextFooler 89.56 89.68 96.29 89.77 76.28 61.6

BAE 89.56 89.68 59.28 57.4 83.55 66.11

AG_news Clean
Acc (↑)

Attack Success
Rate (↓)

Adv
Conf (↓)

BERT (α) 0 0.45 0 0.45 0 0.45
TextFooler 94.83 94.67 88.26 77.45 59.02 42.46

BAE 94.83 94.8 74.83 62.82 61.36 43.98
distilBERT(α) 0 0.45 0 0.45 0 0.45
TextFooler 94.73 94.47 90.11 74.52 57.6 41.4

BAE 94.73 94.47 77.79 63.65 60.01 42.74

Yelp Clean
Acc (↑)

Attack Success
Rate (↓)

Adv
Conf (↓)

BERT (α) 0 0.45 0 0.45 0 0.45
TextFooler 97.7 97.7 99.27 92.90 65.21 55.36

BAE 97.7 97.7 54.72 45.14 68.25 57.38
distilBERT(α) 0 0.45 0 0.45 0 0.45
TextFooler 97.5 97.63 99.59 99.01 61.78 60.32

BAE 97.5 97.4 55.9 50.05 64.03 62.77

SNLI Clean
Acc (↑)

Attack Success
Rate (↓)

Adv
Conf (↓)

BERT (α) 0 0.45 0 0.45 0 0.45
TextFooler 90.0 89.23 96.26 96.15 68.71 52.61

BAE 90.0 89.23 75.15 74.82 75.85 57.42
distilBERT(α) 0 0.45 0 0.45 0 0.45
TextFooler 87.33 87.1 97.56 96.86 65.27 50.84

BAE 87.33 87.1 74.48 72.91 72.65 55.49

Table 1: Comparison of standard models and models fine-tuned with standard label smoothing techniques (LS)
against various attacks for in-domain data. We here reported clean accuracy, attack success rate and average
confidence on successful adversarial texts. For each dataset, the left column are the results for standard model, and
the right column are for LS models where α denotes the label smoothing factor (α=0: no LS). ↑ (↓) denotes higher
(lower) is better respectively.

binary classification datasets), restaurant re-
view classification: Yelp Review (Zhang et al.,
2015a) (binary classification), and news cat-
egory classification: AG News (Zhang et al.,
2015b) (having the following four classes:
World, Sports, Business, Sci/Tech).

• Natural Language Inference: We investi-
gate two datasets for this task: the Stanford
Natural Language Inference Corpus (SNLI)
(Bowman et al., 2015) and the Multi-Genre
Natural Language Inference corpus (MNLI)
(Williams et al., 2018), both having three
classes. For MNLI, our work only evaluates
performance on the matched genre test-set in
the OOD setting presented in subsection 3.2 .

3.1 In-domain Setting

In the in-domain setting, the pre-trained trans-
former models are fine-tuned on the train-set for
each task and evaluated on the corresponding test-
set. For each case, we report the clean accuracy, the
adversarial attack success rate (percentage of mis-
classified examples after an attack) and the average
confidence on successfully attacked examples (on
which the model makes a wrong prediction).6 Table
1 shows the performance of BERT and distilBERT,
with and without label-smoothing.

We see that the label-smoothed models are more
robust for every adversarial attack across different
datasets in terms of the attack success rate, which

6Details of each metric are presented in Appendix A.1.

is a standard metric in this area (Li et al., 2021;
Lee et al., 2022). Additionally, the higher confi-
dence of the standard models on the successfully
attacked examples indicates that label smoothing
helps mitigate overconfident mistakes in the ad-
versarial setting. Importantly, the clean accuracy
remains almost unchanged in all the cases. We
also perform hyperparameter sweeping for label
smoothing factors to investigate their impact to
model accuracy and adversarial robustness. Figure
2 shows that the attack success rate gets lower as we
increase the label smooth factor when fine-tuning
the model while the test accuracy is comparable7.
However, when the label smoothing factor is larger
than 0.5, there is no further improvement on ad-
versarial robustness in terms of attack success rate.
We also observe that label smoothing has much
more positive impact on adversarial robustness for
AG_News (4-class classification tasks) compared
to binary classification tasks like SST-2.

Figure 2: Adversarial success rate versus label smooth-
ing factors (on AG News and SST-2 with BAE attack.)

7More results are in Appendix A.6



Figure 3: Adversarial success rate versus confidence
for in-domain (Yelp) inputs. (Number of buckets: 10
and the number of instances in first 5 buckets [0-0.5]
are 0).

Moreover, we bucket the examples based on the
confidence scores, and plot the bucket-wise attack
success rate (of the BAE attack on the Yelp dataset)
versus confidence in Figure 3. We observe that the
label smoothing technique improves the adversar-
ial robustness for high confidence score samples
significantly. In future work, we plan to investi-
gate the variations of robustness in label-smoothed
models as a function of the model size.

We additionally investigate the impact of adver-
sarial label smoothing and we show that the ad-
versarial label smoothed methods also improves
model’s robustness for TextFooler attack in Table
2, although the gains are similar compared to stan-
dard label smoothing.

SNLI Clean
Acc (↑)

Attack Success
Rate (↓)

Adv
Conf (↓)

BERT (α) 0 0.1 0 0.1 0 0.1
TextFooler 90.2 90.8 95.79 94.93 69.28 67.32

BAE 90.2 90.8 74.83 76.65 76.77 73.83

Table 2: Comparison of standard models versus models
trained with ALS against various attacks on SNLI. ↑ (↓)
denotes higher (lower) is better respectively.

3.2 Out-of-Domain setting
We now evaluate the benefits of label smoothing
for robustness in the out-of-domain (OOD) setting,
where the pre-trained model is fine-tuned on a par-
ticular dataset and is then evaluated directly on a
different dataset, which has a matching label space.
Three examples of these that we evaluate on are
the Movie Reviews to SST-2 transfer, the SST-2 to
Yelp transfer, and the SNLI to MNLI transfer.

In Table 3, we again see that label-smoothing
helps produce more robust models in the OOD set-
ting. This is a challenging setting, as evidenced by
the significant performance drop in the clean accu-
racy as compared to the in-domain setting. We also

MR→SST2 Clean
Acc (↑)

Attack Success
Rate (↓)

Adv
Conf (↓)

BERT (α) 0 0.2 0 0.2 0 0.2
TextFooler 92.89 93.35 93.21 92.01 70.24 66.64

BAE 92.89 93.35 57.28 54.18 77.32 72.03
distilBERT(α) 0 0.2 0 0.2 0 0.2
TextFooler 90.48 90.6 93.92 93.92 65.89 63.66

BAE 90.48 90.6 58.81 58.48 73.08 69.25

SNLI→MNLI Clean
Acc (↑)

Attack Success
Rate (↓)

Adv
Conf (↓)

BERT (α) 0 0.45 0 0.45 0 0.45
TextFooler 73.4 71.9 94.82 92.79 58.04 46.43

BAE 73.4 71.9 82.56 80.72 63 49.45
distilBERT(α) 0 0.45 0 0.45 0 0.45
TextFooler 65.4 62.1 94.5 92.59 54.54 44.81

BAE 65.4 62.1 77.68 75.52 58.88 47.83

SST-2→ Yelp Clean
Acc (↑)

Attack Success
Rate (↓)

Adv
Conf (↓)

BERT (α) 0 0.45 0 0.45 0 0.45
TextFooler 92.5 92.4 99.57 98.27 60.8 54.28

BAE 92.5 92.4 63.68 60.71 64.27 55.66
distilBERT(α) 0 0.45 0 0.45 0 0.45
TextFooler 91.7 91.1 99.78 98.02 59.12 53.3

BAE 91.7 91.1 68.7 63.45 61.37 54.21

Table 3: Comparison of standard models and models
fine-tuned with standard label smoothing techniques
(LS) against various attacks for OOD data where α de-
notes the label smoothing factor (α=0: no LS). ↑ (↓)
denotes higher (lower) is better respectively.

see that the standard models make over-confident
errors on successfully attacked adversarial exam-
ples, when compared to label-smoothed models.

3.3 Qualitative Results
In this section, we try to understand how the gener-
ated adversarial examples differ for label smoothed
and standard models. First we look at some quali-
tative examples and then do a quality-assessment
of adversarial examples along various dimensions.
In Table 4 we show some examples (clean text) for
which the different attack schemes fails to craft an
attack for the label smoothed model but success-
fully attacks the non-label smoothed model.

Victim Attack Text
SST2 BAE clean text at once half-baked and

overheated.
BERT adv text at once warm and over-

heated .
MR TextFooler clean text no surprises .
dBERT adv text no surprise .

Table 4: Examples for which an attack could be found
for the standard model but not for the label smoothed
model. The Victim column shows the dataset and the
pretrained model (dBERT denotes distilBERT).

We also performed automatic evaluation of the



quality of the adversarial examples for standard and
label smoothed models, adopting standard metrics
from previous studies (Jin et al., 2019; Li et al.,
2021). The reported scores for each metric are
computed over only the successful adversarial ex-
amples, for each attack and model type.8

SST-2 Perplexity (↑) Similarity
Score (↓)

Grammar
Error (↑)

BERT (α) 0 0.45 0 0.45 0 0.45
TextFooler 400.31 447.58 0.800 0.779 0.33 0.38

BAE 300.74 305.28 0.867 0.855 −0.05 −0.04

AG_News Perplexity (↑) Similarity
Score (↓)

Grammar
Error (↑)

BERT (α) 0 0.45 0 0.45 0 0.45
TextFooler 342.02 355.87 0.782 0.772 1.37 1.40

BAE 169.37 170.73 0.851 0.845 0.97 1.00

Table 5: Evaluation of adversarial text examples. The
results in bold indicates worse adversarial attack qual-
ity.

Table 5 shows that the quality of generated adver-
sarial examples on label smoothed models is worse
than those on standard models for different metrics,
which further demonstrates that label smoothing
makes it harder to find adversarial vulnerabilities.

4 Conclusion

We presented an empirical study to investigate
the effect of label smoothing techniques on ad-
versarial robustness for various NLP tasks. Our
results demonstrate that label smoothing imparts
implicit robustness to models, even under domain
shifts. This, complemented with prior work on la-
bel smoothing and implicit calibration, can guide
research on developing robust, reliable models.

8Additional details, plots can be found in Appendix A.8.

5 Limitations

One limitation of our work is that we focus on ro-
bustness of pre-trained transformer language mod-
els against word-level adversarial attacks, which
is the most common setting in this area. Future
work could extend this empirical study to other
types of attacks (for example, character-level and
sentence-level attacks) and for diverse types of ar-
chitectures. Further, it will be very interesting to
theoretically understand how label smoothing pro-
vides (1) the implicit robustness to text adversarial
attacks and (2) mitigates over-confident predictions
on the adversarially attacked examples.
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A Appendix

A.1 Evaluation Metrics
The followings are details of evaluation metrics
from previous work (Lee et al., 2022; Li et al.,
2021):
Clean accuracy = # of correctly predicted clean examples

# of clean examples

Attack Succ Rate = # of successful adversarial examples
# of correctly predicted clean examples

where successful adversarial examples are derived
from correctly predicted examples
Adv Conf = sum of confidence of successful adversarial examples

# of successful adversarial examples

A.2 Additional results on Movie Review
Dataset

Here we provide results of movie review datasets
under in-domain setting.

MR Clean
Acc (↑)

Attack Success
Rate (↓)

Adv
Conf (↓)

BERT (α) 0 0.2 0 0.2 0 0.2
TextFooler 83.8 84.2 94.51 92.87 70.01 66.89

BAE 83.8 84.2 58.23 55.46 76.44 71.89
distilBERT(α) 0 0.2 0 0.2 0 0.2
TextFooler 83.0 83.3 95.78 94.72 65.67 63.42

BAE 83.0 83.3 61.45 59.78 71.82 68.81

Table 6: Comparison of standard models and label
smoothed models against various attacks for Movie Re-
view dataset.

A.3 Dataset Overview and Experiments
Details

Dataset No. of classes Train/Test
size

Avg.
Length

MR 2 8530/1066 18.64
SST-2 2 6.7e4/872 17.4
Yelp 2 5.6e5/3.8e4 132.74

AG_news 4 1.2e5 /7600 38.68
SNLI 3 5.5e5 /1e4 22.01
MNLI 3 3.9e5/ 9815 28.96

Table 7: Summary of datasets

All models are fine-tuned for 3 epochs using
AdamW optimizer (Loshchilov and Hutter, 2017)
and the learning rate starts from 5e−6. The training
and attacking are run on an NVIDIA Quadro RTX
6000 GPU (24GB). The reported numbers are the
average performance over 3 random runs of the
experiment

A.4 Additional results of α = 0.1

Table 8 and 9 are the additional results to show
when label smoothing α = 0.1, how the adversarial
robustness of fine-tuned language models changes.
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SST-2 Clean
Acc (↑)

Attack Success
Rate (↓)

Adv
Conf (↓)

BERT (α) 0 0.1 0 0.1 0 0.1
TextFooler 91.97 92.2 96.38 94.4 78.43 74.39

BAE 91.97 92.2 57.11 55.22 86.92 82.29
distilBERT(α) 0 0.1 0 0.1 0 0.1
TextFooler 89.56 89.68 96.29 95.14 76.28 70.77

BAE 89.56 89.68 59.28 58.44 83.55 78.16

AG_news Clean
Acc (↑)

Attack Success
Rate (↓)

Adv
Conf (↓)

BERT (α) 0 0.1 0 0.1 0 0.1
TextFooler 94.9 95.2 88.62 76.68 58.96 55.54

BAE 94.9 95.2 74.39 64.18 61.36 57.18
distilBERT(α) 0 0.1 0 0.1 0 0.1
TextFooler 94.9 94.6 91.15 81.4 57.81 53.31

BAE 94.9 94.6 77.56 67.55 60.26 55.14

Yelp Clean
Acc (↑)

Attack Success
Rate (↓)

Adv
Conf (↓)

BERT (α) 0 0.1 0 0.1 0 0.1
TextFooler 97.7 97.67 99.27 97.92 65.21 62.99

BAE 97.7 97.67 54.72 52.52 68.25 65.82
distilBERT(α) 0 0.1 0 0.1 0 0.1
TextFooler 97.5 97.63 99.59 99.01 61.78 60.32

BAE 97.5 97.4 55.9 50.05 64.03 62.77

SNLI Clean
Acc (↑)

Attack Success
Rate (↓)

Adv
Conf (↓)

BERT (α) 0 0.1 0 0.1 0 0.1
TextFooler 90.0 89.13 96.26 96.9 68.71 64.85

BAE 90.0 89.13 75.15 74.91 75.85 72.38
distilBERT(α) 0 0.1 0 0.1 0 0.1
TextFooler 87.33 87.3 97.56 96.83 65.27 62.5

BAE 87.33 87.3 74.48 74.24 72.65 69.27

Table 8: Comparison of standard models and label
smoothed models against various attacks for in-domain
data where α denotes the label smoothing factor, 0 in-
dicating no LS. 9 ↑ (↓) denotes higher (lower) is better
respectively.

SNLI→MNLI Clean
Acc (↑)

Attack Success
Rate (↓)

Adv
Conf (↓)

BERT (α) 0 0.1 0 0.1 0 0.1
TextFooler 73.4 71.9 94.82 94.85 58.04 48.56

BAE 73.4 71.9 82.56 77.19 63 49.3
distilBERT(α) 0 0.45 0 0.45 0 0.45
TextFooler 65.4 65.2 94.5 94.17 54.54 52.63

BAE 65.4 65.2 77.68 75.15 58.88 56.16

SST-2→ Yelp Clean
Acc (↑)

Attack Success
Rate (↓)

Adv
Conf (↓)

BERT (α) 0 0.1 0 0.1 0 0.1
TextFooler 92.5 92.0 99.57 99.13 60.8 58.13

BAE 92.5 92.0 63.68 63.37 64.27 60.63
distilBERT(α) 0 0.45 0 0.45 0 0.45
TextFooler 91.7 91.4 99.78 99.34 59.12 56.42

BAE 91.7 91.4 68.7 67.07 61.37 57.73

Table 9: Comparison of standard models versus label
smoothed models against various attacks for OOD data
where α denotes the label smoothing factor (α=0: no
LS). ↑ (↓) denotes higher (lower) is better respectively.

A.5 Additional results on ALBERT

In this section, we include experiment results for
standard ALBERT and label smoothed ALBERT
in Table 10. We observe that the label smoothing
technique also improves adversarial robustness of
ALBERT model across different datasets.

MR Clean
Acc (↑)

Attack Success
Rate (↓)

Adv
Conf (↓)

α 0 0.1 0 0.1 0 0.1
TextFooler 86.3 85.9 89.22 90.45 76.78 69.6

BAE 86.0 85.7 58.95 58.46 83.27 76.4

SST-2 Clean
Acc (↑)

Attack Success
Rate (↓)

Adv
Conf (↓)

α 0 0.1 0 0.1 0 0.1
TextFooler 92.2 92.78 93.41 86.9 94.1 84.94

BAE 92.2 92.78 59.33 55.01 96.93 87.32

AG_news Clean
Acc (↑)

Attack Success
Rate (↓)

Adv
Conf (↓)

α 0 0.1 0 0.1 0 0.1
TextFooler 97.4 96.5 68.69 64.87 75.75 71.01

BAE 95.4 94.2 55.03 50.11 77.31 72.63

SNLI Clean
Acc (↑)

Attack Success
Rate (↓)

Adv
Conf (↓)

α 0 0.1 0 0.1 0 0.1
TextFooler 89.9 90.0 95.88 93.89 85.12 79.26

BAE 90.6 89.9 77.26 76.2 88.64 81.86

Table 10: Comparison of standard models and label
smoothed models against TextFooler and BAE attacks
for ALBERT model.

A.6 Attack success rate versus label
smoothing factors

As mentioned in Section 3.1, we plot the attack suc-
cess rate of BAE attack versus the label smoothing
factors. Here, we plot the results for TextFooler
attack and observe the same tendency as we dis-
cussed above.

Figure 4: Adversarial success rate versus label smooth-
ing factors (on AG News and SST-2 with TextFooler
attack.)



A.7 Average number of word change versus
Confidence

Word change rate is defined as the ratio between
the number of word replaced after attack and the
total number of words in the sentence. Here we plot
the bucket-wise word change ratio of adversarial
attack versus confidence, and observe that the word
change rate for high-confident examples are higher
for label smoothed models compared to standard
models in most cases. This indicates that it is more
difficult to attack label smoothed text classification
models. Also note that there is the word change
rate is zero because there is no clean texts fall into
those two bins.

Figure 5: Average word change ratio versus confidence
for in-domain inputs (No. of buckets: 10 and the num-
ber of instances in first 5 buckets [0-0.5] are 0)

Figure 6: Average word change ratio versus confidence
for out-of-domain inputs (No. of buckets: 10 and the
number of instances in first 5 buckets [0-0.5] are 0)

Additionally, we also plot the relationship be-
tween adversarial success rate and confidence for
each bucket in Figure 7, and observe a large drop
for adversarial success rate on high-confidence text
adversarial examples as previously seen in the in-
domain setting.

A.8 Attack evaluation

We performed automatic evaluation of adversarial
attacks against standard models and label smoothed
models following previous studies (Jin et al., 2019;

Figure 7: Adversarial success rate versus confidence
for OOD inputs in the SST-2→ Yelp transfer setting.

Li et al., 2021). Following are the details of the
metrics we used in Table 5:
Perplexity evaluates the fluency of the input using
language models. We use GPT-2 (Radford et al.,
2019) to compute perplexity as in (Li et al., 2021) .
Similarity Score determines the similarity be-
tween two sentences. We use Sentence Transform-
ers (Reimers and Gurevych, 2019) to compute sen-
tence embeddings and then calculate cosine sim-
ilarity score between the clean examples and the
corresponding adversarially modified examples.
Grammar Error The average grammar error in-
crements between clean examples and the corre-
sponding adversarially modified example.10

10we use https://pypi.org/project/
language-tool-python/ to compute grammar error.

https://pypi.org/project/language-tool-python/
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