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Abstract
We first propose a decentralized proximal stochas-
tic gradient tracking method (DProxSGT) for non-
convex stochastic composite problems, with data
heterogeneously distributed on multiple workers
in a decentralized connected network. To save
communication cost, we then extend DProxSGT
to a compressed method by compressing the com-
municated information. Both methods need only
O(1) samples per worker for each proximal up-
date, which is important to achieve good gen-
eralization performance on training deep neural
networks. With a smoothness condition on the
expected loss function (but not on each sample
function), the proposed methods can achieve an
optimal sample complexity result to produce a
near-stationary point. Numerical experiments on
training neural networks demonstrate the signif-
icantly better generalization performance of our
methods over large-batch training methods and
momentum variance-reduction methods and also,
the ability of handling heterogeneous data by the
gradient tracking scheme.

1. Introduction
In this paper, we consider to solve nonconvex stochastic
composite problems in a decentralized setting:

min
x∈Rd

φ(x) = f(x) + r(x),

with f(x) =
1

n

n∑
i=1

fi(x), fi(x)=Eξi∼Di [Fi(x, ξi)].
(1)

Here, {Di}ni=1 are possibly non-i.i.d data distributions on
n machines/workers that can be viewed as nodes of a con-
nected graph G, and each Fi(·, ξi) can only be accessed by
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the i-th worker. We are interested in problems that satisfy
the following structural assumption.

Assumption 1 (Problem structure). We assume that
(i) r is closed convex and possibly nondifferentiable.

(ii) Each fi is L-smooth in dom(r), i.e., ‖∇fi(x) −
∇fi(y)‖ ≤ L‖x− y‖, for any x,y ∈ dom(r).

(iii) φ is lower bounded, i.e., φ∗ , minx φ(x) > −∞.

Let N = {1, 2, . . . , n} be the set of nodes of G and E the
set of edges. For each i ∈ N , denoteNi as the neighbors of
worker i and itself, i.e., Ni = {j : (i, j) ∈ E} ∪ {i}. Every
worker can only communicate with its neighbors. To solve
(1) collaboratively, each worker i maintains a copy, denoted
as xi, of the variable x. With these notations, (1) can be
formulated equivalently to

min
X∈Rd×n

1

n

n∑
i=1

φi(xi),with φi(xi) , fi(xi) + r(xi),

s.t. xi = xj ,∀ j ∈ Ni,∀ i = 1, . . . , n.

(2)

Problems with a nonsmooth regularizer, i.e., in the form
of (1), appear in many applications such as `1-regularized
signal recovery (Eldar & Mendelson, 2014; Duchi & Ruan,
2019), online nonnegative matrix factorization (Guan et al.,
2012), and training sparse neural networks (Scardapane
et al., 2017; Yang et al., 2020). When data involved in these
applications are distributed onto (or collected by workers
on) a decentralized network, it necessitates the design of
decentralized algorithms.

Although decentralized optimization has attracted a lot of re-
search interests in recent years, most existing works focus on
strongly convex problems (Scaman et al., 2017; Koloskova
et al., 2019b) or convex problems (Tsianos et al., 2012;
Taheri et al., 2020) or smooth nonconvex problems (Bianchi
& Jakubowicz, 2012; Di Lorenzo & Scutari, 2016; Wai et al.,
2017; Lian et al., 2017; Zeng & Yin, 2018). Few works have
studied nonsmooth nonconvex decentralized stochastic op-
timization like (2) that we consider. (Chen et al., 2021;
Xin et al., 2021a; Mancino-Ball et al., 2022) are among
the exceptions. However, they either require to take many
data samples for each update or assume a so-called mean-
squared smoothness condition, which is stronger than the
smoothness condition in Assumption 1(ii), in order to per-
form momentum-based variance-reduction step. Though
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these methods can have convergence (rate) guarantee, they
often yield poor generalization performance on training
deep neural networks, as demonstrated in (LeCun et al.,
2012; Keskar et al., 2016) for large-batch training methods
and in our numerical experiments for momentum variance-
reduction methods.

On the other side, many distributed optimization methods
(Shamir & Srebro, 2014; Lian et al., 2017; Wang & Joshi,
2018) often assume that the data are i.i.d across the workers.
However, this assumption does not hold in many real-world
scenarios, for instance, due to data privacy issue that local
data has to stay on-premise. Data heterogeneity can result in
significant degradation of the performance by these methods.
Though some papers do not assume i.i.d. data, they require
certain data similarity, such as bounded stochastic gradients
(Koloskova et al., 2019b;a; Taheri et al., 2020) and bounded
gradient dissimilarity (Tang et al., 2018a; Assran et al., 2019;
Tang et al., 2019a; Vogels et al., 2020).

To address the critical practical issues mentioned above, we
propose a decentralized proximal stochastic gradient track-
ing method that needs only a single or O(1) data samples
(per worker) for each update. With no assumption on data
similarity, it can still achieve the optimal convergence rate
on solving problems satisfying conditions in Assumption 1
and yield good generalization performance. In addition, to
reduce communication cost, we give a compressed version
of the proposed algorithm, by performing compression on
the communicated information. The compressed algorithm
can inherit the benefits of its non-compressed counterpart.

1.1. Our Contributions

Our contributions are three-fold. First, we propose two de-
centralized algorithms, one without compression (named
DProxSGT) and the other with compression (named CD-
ProxSGT), for solving decentralized nonconvex nonsmooth
stochastic problems. Different from existing methods, e.g.,
(Xin et al., 2021a; Wang et al., 2021b; Mancino-Ball et al.,
2022), which need a very large batchsize and/or perform
momentum-based variance reduction to handle the challenge
from the nonsmooth term, DProxSGT needs onlyO(1) data
samples for each update, without performing variance re-
duction. The use of a small batch and a standard proximal
gradient update enables our method to achieve significantly
better generalization performance over the existing methods,
as we demonstrate on training neural networks. To the best
of our knowledge, CDProxSGT is the first decentralized
algorithm that applies a compression scheme for solving
nonconvex nonsmooth stochastic problems, and it inherits
the advantages of the non-compressed method DProxSGT.
Even applied to the special class of smooth nonconvex prob-
lems, CDProxSGT can perform significantly better over
state-of-the-art methods, in terms of generalization and han-

dling data heterogeneity.

Second, we establish an optimal sample complexity result
of DProxSGT, which matches the lower bound result in (Ar-
jevani et al., 2022) in terms of the dependence on a target
tolerance ε, to produce an ε-stationary solution. Due to the
coexistence of nonconvexity, nonsmoothness, big stochas-
ticity variance (due to the small batch and no use of variance
reduction for better generalization), and decentralization, the
analysis is highly non-trivial. We employ the tool of Moreau
envelope and construct a decreasing Lyapunov function by
carefully controlling the errors introduced by stochasticity
and decentralization.

Third, we establish the iteration complexity result of the
proposed compressed method CDProxSGT, which is in the
same order as that for DProxSGT and thus also optimal in
terms of the dependence on a target tolerance. The analysis
builds on that of DProxSGT but is more challenging due
to the additional compression error and the use of gradient
tracking. Nevertheless, we obtain our results by making
the same (or even weaker) assumptions as those assumed
by state-of-the-art methods (Koloskova et al., 2019a; Zhao
et al., 2022).

1.2. Notation

For any vector x ∈ Rd, we use ‖x‖ for the `2 norm. For any
matrix A, ‖A‖ denotes the Frobenius norm and ‖A‖2 the
spectral norm. X = [x1,x2, . . . ,xn] ∈ Rd×n concatinates
all local variables. The superscript t will be used for iteration
or communication. ∇Fi(xti, ξti) denotes a local stochastic
gradient of Fi at xti with a random sample ξti . The column
concatenation of {∇Fi(xti, ξti)} is denoted as

∇Ft = ∇F(Xt,Ξt) = [∇F1(xt1, ξ
t
1), . . . ,∇Fn(xtn, ξ

t
n)],

where Ξt = [ξt1, ξ
t
2, . . . , ξ

t
n]. Similarly, we denote

∇f t = [∇f1(xt1), . . . ,∇fn(xtn)].

For any X ∈ Rd×n, we define

x̄ = 1
nX1, X = XJ = x̄1>, X⊥ = X(I− J),

where 1 is the all-one vector, and J = 11>

n is the averaging
matrix. Similarly, we define the mean vectors

∇Ft = 1
nF

t1, ∇f t = 1
n f

t1.

We will use Et for the expectation about the random samples
Ξt at the tth iteration and E for the full expectation. EQ
denotes the expectation about a stochastic compressor Q.

2. Related Works
The literature of decentralized optimization has been grow-
ing vastly. To exhaust the literature is impossible. Below
we review existing works on decentralized algorithms for
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solving nonconvex problems, with or without using a com-
pression technique. For ease of understanding the difference
of our methods from existing ones, we compare to a few
relevant methods in Table 2.

2.1. Non-compressed Decentralized Methods

For nonconvex decentralized problems with a nonsmooth
regularizer, a lot of deterministic decentralized methods
have been studied, e.g., (Di Lorenzo & Scutari, 2016; Wai
et al., 2017; Zeng & Yin, 2018; Chen et al., 2021; Scutari
& Sun, 2019). When only stochastic gradient is available,
a majority of existing works focus on smooth cases with-
out a regularizer or a hard constraint, such as (Lian et al.,
2017; Assran et al., 2019; Tang et al., 2018b), gradient track-
ing based methods (Lu et al., 2019; Zhang & You, 2019;
Koloskova et al., 2021), and momentum-based variance re-
duction methods (Xin et al., 2021b; Zhang et al., 2021).
Several works such as (Bianchi & Jakubowicz, 2012; Wang
et al., 2021b; Xin et al., 2021a; Mancino-Ball et al., 2022)
have studied stochastic decentralized methods for problems
with a nonsmooth term r. However, they either consider
some special r or require a large batch size. (Bianchi &
Jakubowicz, 2012) considers the case where r is an indi-
cator function of a compact convex set. Also, it requires
bounded stochastic gradients. (Wang et al., 2021b) focuses
on problems with a polyhedral r, and it requires a large
batch size of O( 1

ε ) to produce an (expected) ε-stationary
point. (Xin et al., 2021a; Mancino-Ball et al., 2022) are the
most closely related to our methods. To produce an (ex-
pected) ε-stationary point, the methods in (Xin et al., 2021a)
require a large batch size, either O( 1

ε2 ) or O( 1
ε ) if variance

reduction is applied. The method in (Mancino-Ball et al.,
2022) requires onlyO(1) samples for each update by taking
a momentum-type variance reduction scheme. However, in
order to reduce variance, it needs a stronger mean-squared
smoothness assumption. In addition, the momentum vari-
ance reduction step can often hurt the generalization per-
formance on training complex neural networks, as we will
demonstrate in our numerical experiments.

2.2. Compressed Distributed Methods

Communication efficiency is a crucial factor when design-
ing a distributed optimization strategy. The current machine
learning paradigm oftentimes resorts to models with a large
number of parameters, which indicates a high communica-
tion cost when the models or gradients are transferred from
workers to the parameter server or among workers. This may
incur significant latency in training. Hence, communication-
efficient algorithms by model or gradient compression have
been actively sought.

Two major groups of compression operators are quantiza-
tion and sparsification. The quantization approaches include

1-bit SGD (Seide et al., 2014), SignSGD (Bernstein et al.,
2018), QSGD (Alistarh et al., 2017), TernGrad (Wen et al.,
2017). The sparsification approaches include Random-k
(Stich et al., 2018), Top-k (Aji & Heafield, 2017), Threshold-
v (Dutta et al., 2019) and ScaleCom (Chen et al., 2020).
Direct compression may slow down the convergence espe-
cially when compression ratio is high. Error compensation
or error-feedback can mitigate the effect by saving the com-
pression error in one communication step and compensating
it in the next communication step before another compres-
sion (Seide et al., 2014). These compression operators are
first designed to compress the gradients in the centralized
setting (Tang et al., 2019b; Karimireddy et al., 2019).

The compression can also be applied to the decentralized set-
ting for smooth problems, i.e., (2) with r = 0. (Tang et al.,
2019a) applies the compression with error compensation to
the communication of model parameters in the decentralized
seeting. Choco-Gossip (Koloskova et al., 2019b) is another
communication way to mitigate the slow down effect from
compression. It does not compress the model parameters
but a residue between model parameters and its estimation.
Choco-SGD uses Choco-Gossip to solve (2). BEER (Zhao
et al., 2022) includes gradient tracking and compresses both
tracked stochastic gradients and model parameters in each
iteration by the Choco-Gossip. BEER needs a large batch-
size of O( 1

ε2 ) in order to produce an ε-stationary solution.
DoCoM-SGT(Yau & Wai, 2022) does similar updates as
BEER but with a momentum term for the update of the
tracked gradients, and it only needs an O(1) batchsize.

Our proposed CDProxSGT is for solving decentralized prob-
lems in the form of (2) with a nonsmooth r(x). To the
best of our knowledge, CDProxSGT is the first compressed
decentralized method for nonsmooth nonconvex problems
without the use of a large batchsize, and it can achieve an
optimal sample complexity without the assumption of data
similarity or gradient boundedness.

3. Decentralized Algorithms
In this section, we give our decentralized algorithms for
solving (2) or equivalently (1). To perform neighbor com-
munications, we introduce a mixing (or gossip) matrix W
that satisfies the following standard assumption.

Assumption 2 (Mixing matrix). We choose a mixing matrix
W such that

(i) W is doubly stochastic: W1 = 1 and 1>W = 1>;
(ii) Wij = 0 if i and j are not neighbors to each other;

(iii) Null(W − I) = span{1} and ρ , ‖W − J‖2 < 1.

The condition in (ii) above is enforced so that direct com-
munications can be made only if two nodes (or workers) are
immediate (or 1-hop) neighbors of each other. The condition
in (iii) can hold if the graph G is connected. The assumption
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Table 1. Comparison between our methods and some relevant methods: ProxGT-SA and ProxGT-SR-O in (Xin et al., 2021a), DEEP-
STORM (Mancino-Ball et al., 2022), ChocoSGD (Koloskova et al., 2019a), and BEER (Zhao et al., 2022). We use “CMP” to
represent whether compression is performed by a method. GRADIENTS represents additional assumptions on the stochastic gradients
in addition to those made in Assumption 3. SMOOTHNESS represents the smoothness condition, where “mean-squared” means
Eξi [‖∇Fi(x; ξi)−∇Fi(y; ξi)‖

2] ≤ L2‖x− y‖2 that is stronger than the L-smoothness of fi. BS is the required batchsize to get an
ε-stationary solution. VR and MMT represent whether the variance reduction or momentum are used. Large batchsize and/or momentum
variance reduction can degrade the generalization performance, as we demonstrate in numerical experiments.

METHODS CMP r 6≡ 0 GRADIENTS SMOOTHNESS (BS, VR, MMT)

PROXGT-SA NO YES NO fi IS SMOOTH
(
O( 1

ε2
), NO , NO

)
PROXGT-SR-O NO YES NO MEAN-SQUARED

(
O( 1

ε
), YES, NO

)
DEEPSTORM NO YES NO MEAN-SQUARED (O(1), YES, YES)
DPROXSGT (THIS PAPER) NO YES NO fi IS SMOOTH (O(1), NO, NO)

CHOCOSGD YES NO Eξ[‖∇Fi(x, ξi)‖2] ≤ G2 fi IS SMOOTH (O(1), NO, NO)
BEER YES NO NO f IS SMOOTH

(
O( 1

ε2
), NO, NO

)
CDPROXSGT (THIS PAPER) YES YES NO fi IS SMOOTH (O(1), NO, NO)

ρ < 1 is critical to ensure contraction of consensus error.

The value of ρ depends on the graph topology. (Koloskova
et al., 2019b) gives three commonly used examples: when
uniform weights are used between nodes, W = J and ρ = 0
for a fully-connected graph (in which case, our algorithms
will reduce to centralized methods), 1 − ρ = Θ( 1

n ) for a
2d torus grid graph where every node has 4 neighbors, and
1− ρ = Θ( 1

n2 ) for a ring-structured graph. More examples
can be found in (Nedić et al., 2018).

3.1. Non-compreseed Method

With the mixing matrix W, we propose a decentralized
proximal stochastic gradient method with gradient tracking
(DProxSGT) for (2). The pseudocode is shown in Algo-
rithm 1. In every iteration t, each node i first computes a
local stochastic gradient∇Fi(xti, ξti) by taking a sample ξti
from its local data distribution Di, then performs gradient
tracking in (3) and neighbor communications of the tracked
gradient in (4), and finally takes a proximal gradient step in
(5) and mixes the model parameter with its neighbors in (6).

Note that for simplicity, we take only one random sample
ξti in Algorithm 1 but in general, a mini-batch of random
samples can be taken, and all theoretical results that we
will establish in the next section still hold. We emphasize
that we need only O(1) samples for each update. This is
different from ProxGT-SA in (Xin et al., 2021a), which
shares a similar update formula as our algorithm but needs
a very big batch of samples, as many as O( 1

ε2 ), where ε
is a target tolerance. A small-batch training can usually
generalize better than a big-batch one (LeCun et al., 2012;
Keskar et al., 2016) on training large-scale deep learning
models. Throughout the paper, we make the following
standard assumption on the stochastic gradients.

Assumption 3 (Stochastic gradients). We assume that

Algorithm 1 DProxSGT
Initialize x0

i and set y−1
i = 0,∇Fi(x−1

i , ξ−1
i ) = 0, ∀i ∈ N .

for t = 0, 1, 2, . . . , T − 1 do
all nodes i = 1, 2, . . . , n do the updates in parallel:
obtain one random sample ξti , compute a stochastic gradient
∇Fi(xti, ξti), and perform

y
t− 1

2
i = yt−1

i +∇Fi(xti, ξti)−∇Fi(xt−1
i , ξt−1

i ), (3)

yti =
∑n
j=1 Wjiy

t− 1
2

j , (4)

x
t+ 1

2
i = Proxηr

(
xti − ηyti

)
, (5)

xt+1
i =

∑n
j=1 Wjix

t+ 1
2

j . (6)

end for

(i) The random samples {ξti}i∈N ,t≥0 are independent.
(ii) There exists a finite number σ ≥ 0 such that for any

i ∈ N and xi ∈ dom(r),

Eξi [∇Fi(xi, ξi)] = ∇fi(xi),
Eξi [‖∇Fi(xi, ξi)−∇fi(xi)‖2] ≤ σ2.

The gradient tracking step in (3) is critical to handle het-
erogeneous data (Di Lorenzo & Scutari, 2016; Nedic et al.,
2017; Lu et al., 2019; Pu & Nedić, 2020; Sun et al., 2020;
Xin et al., 2021a; Song et al., 2021; Mancino-Ball et al.,
2022; Zhao et al., 2022; Yau & Wai, 2022; Song et al., 2022).
In a deterministic scenario where∇fi(·) is used instead of
∇Fi(·, ξ), for each i, the tracked gradient yti can converge
to the gradient of the global function 1

n

∑n
i=1 fi(·) at x̄t,

and thus all local updates move towards a direction to min-
imize the global objective. When stochastic gradients are
used, the gradient tracking can play a similar role and make
yti approach to the stochastic gradient of the global function.
With this nice property of gradient tracking, we can guaran-
tee convergence without strong assumptions that are made
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Algorithm 2 CDProxSGT
Initialize x0

i ; set y−1
i = y−1

i
= ∇Fi(x−1

i , ξ−1
i ) = x0

i = 0,
∀i ∈ N .
for t = 0, 1, 2, . . . , T − 1 do

all nodes i = 1, 2, . . . , n do the updates in parallel:

y
t− 1

2
i = yt−1

i +∇Fi(xti, ξti)−∇Fi(xt−1
i , ξt−1

i ), (7)

yt
i
= yt−1

i
+Qy

[
y
t− 1

2
i − yt−1

i

]
, (8)

yti = y
t− 1

2
i + γy

(∑n
j=1 Wjiy

t

j
− yt

i

)
, (9)

x
t+ 1

2
i = Proxηr

(
xti − ηyti

)
, (10)

xt+1
i = xti +Qx

[
x
t+ 1

2
i − xti

]
, (11)

xt+1
i = x

t+ 1
2

i + γx
( n∑
j=1

Wjix
t+1
j − xt+1

i

)
. (12)

end for

in existing works, such as bounded gradients (Koloskova
et al., 2019b;a; Taheri et al., 2020; Singh et al., 2021) and
bounded data similarity over nodes (Lian et al., 2017; Tang
et al., 2018a; 2019a; Vogels et al., 2020; Wang et al., 2021a).

3.2. Compressed Method

In DProxSGT, each worker needs to communicate both the
model parameter and tracked stochastic gradient with its
neighbors at every iteration. Communications have become
a bottleneck for distributed training on GPUs. In order to
save the communication cost, we further propose a com-
pressed version of DProxSGT, named CDProxSGT. The
pseudocode is shown in Algorithm 2, where Qx and Qy are
two compression operators.

In Algorithm 2, each node communicates the non-
compressed vectors yt

i
and xt+1

i with its neighbors in (9)
and (12). We write it in this way for ease of read and anal-
ysis. For efficient and equivalent implementation, we do
not communicate yt

i
and xt+1

i directly but the compressed

residues Qy

[
y
t− 1

2
i −yt−1

i

]
and Qx

[
x
t+ 1

2
i −xti

]
, explained

as follows. Besides yt−1
i , xti, yt−1

i
and xti, each node

also stores zt−1
i and sti which record

∑n
j=1 Wjiy

t−1
i

and∑n
j=1 Wjix

t
i. For the gradient communication, each node

i initializes z−1
i = 0, and then at each iteration t, after re-

ceiving Qy

[
y
t− 1

2
j − yt−1

j

]
from its neighbors, it updates yt

i

by (8), and zti and yti by

zti = zt−1
i +

∑n
j=1 WjiQy

[
y
t− 1

2
j − yt−1

j

]
,

yti = y
t− 1

2
i + γy

(
zti − yt

i

)
.

From the initialization and the updates of yt
i

and zti, it al-
ways holds that zti =

∑n
j=1 Wjiy

t
i
. The model communi-

cation can be done efficiently in the same way.

The compression operators Qx and Qy in Algorithm 2 can
be different, but we assume that they both satisfy the follow-
ing assumption.

Assumption 4. There exists α ∈ [0, 1) such that

E[‖x−Q[x]‖2] ≤ α2‖x‖2,∀x ∈ Rd,

for both Q = Qx and Q = Qy.

The assumption on compression operators is standard and
also made in (Koloskova et al., 2019a;b; Zhao et al., 2022).
It is satisfied by the sparsification, such as Random-k (Stich
et al., 2018) and Top-k (Aji & Heafield, 2017). It can also
be satisfied by rescaled quantizations. For example, QSGD
(Alistarh et al., 2017) compresses x ∈ Rd by Qsqgd(x) =
sign(x)‖x‖

s bs |x|‖x‖ + ξc where ξ is uniformly distributed on
[0, 1]d, s is the parameter about compression level. Then
Q(x) = 1

τQsqgd(x) with τ = (1 + min{d/s2,
√
d/s})

satisfies Assumption 4 with α2 = 1 − 1
τ . More examples

can be found in (Koloskova et al., 2019b).

Below, we make a couple of remarks to discuss the relations
between Algorithm 1 and Algorithm 2.
Remark 1. WhenQx andQy are both identity operators, i.e.,
Qx[x] = x, Qy[y] = y, and γx = γy = 1, in Algorithm 2,
CDProxSGT will reduce to DProxSGT. Hence, the latter can
be viewed as a special case of the former. However, we will
analyze them separately. Although the big-batch training
method ProxGT-SA in (Xin et al., 2021a) shares a similar
update as the proposed DProxSGT, our analysis will be
completely different and new, as we need onlyO(1) samples
in each iteration in order to achieve better generalization
performance. The analysis of CDProxSGT will be built
on that of DProxSGT by carefully controlling the variance
error of stochastic gradients and the consensus error, as well
as the additional compression error.
Remark 2. When Qy and Qx are identity operators, yt

i
=

y
t− 1

2
i and xt+1

i = x
t+ 1

2
i for each i ∈ N . Hence, in the

compression case, yt
i

and xt+1
i can be viewed as estimates

of yt−
1
2

i and x
t+ 1

2
i . In addition, in a matrix format, we have

from (9) and (12) that

Yt+1 = Yt+ 1
2Ŵy + γy

(
Yt+1 −Yt+ 1

2

)
(W − I), (13)

Xt+1 = Xt+ 1
2Ŵx + γx(Xt+1 −Xt+ 1

2 )(W − I), (14)

where Ŵy = γyW+(1−γy)I, Ŵx = γxW+(1−γx)I.
When W satisfies the conditions (i)-(iii) in Assumption 2, it
can be easily shown that Ŵy and Ŵx also satisfy all three
conditions. Indeed, we have

ρ̂x , ‖Ŵx − J‖2 < 1, ρ̂y , ‖Ŵy − J‖2 < 1.

Thus we can view Yt+1 and Xt+1 as the results of Yt+ 1
2

and Xt+ 1
2 by one round of neighbor communication with
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mixing matrices Ŵy and Ŵx, and the addition of the es-
timation error Yt+1 −Yt+ 1

2 and Xt+1 −Xt+ 1
2 after one

round of neighbor communication.

4. Convergence Analysis
In this section, we analyze the convergence of the algo-
rithms proposed in section 3. Nonconvexity of the problem
and stochasticity of the algorithms both raise difficulty on
the analysis. In addition, the coexistence of the nonsmooth
regularizer r(·) causes more significant challenges. To ad-
dress these challenges, we employ a tool of the so-called
Moreau envelope (Moreau, 1965), which has been com-
monly used for analyzing methods on solving nonsmooth
weakly-convex problems.
Definition 1 (Moreau envelope). Let ψ be an L-weakly
convex function, i.e., ψ(·) + L

2 ‖ · ‖
2 is convex. For λ ∈

(0, 1
L ), the Moreau envelope of ψ is defined as

ψλ(x) = min
y

{
ψ(y) + 1

2λ‖y − x‖2
}
,

and the unique minimizer is denoted as
Proxλψ(x) = arg min

y

{
ψ(y) + 1

2λ‖y − x‖2
}
.

The Moreau envelope ψλ has nice properties. The result
below can be found in (Davis & Drusvyatskiy, 2019; Nazari
et al., 2020; Xu et al., 2022).
Lemma 2. For any function ψ, if it is L-weakly convex,
then for any λ ∈ (0, 1

L ), the Moreau envelope ψλ is smooth
with gradient given by∇ψλ(x) = λ−1(x− x̂), where x̂ =
Proxλψ(x). Moreover,
‖x− x̂‖ = λ‖∇ψλ(x)‖, dist(0, ∂ψ(x̂)) ≤ ‖∇ψλ(x)‖.

Lemma 2 implies that if ‖∇ψλ(x)‖ is small, then x̂ is a near-
stationary point of ψ and x is close to x̂. Hence, ‖∇ψλ(x)‖
can be used as a valid measure of stationarity violation at x
for ψ. Based on this observation, we define the ε-stationary
solution below for the decentralized problem (2).
Definition 3 (Expected ε-stationary solution). Let ε > 0. A
point X = [x1, . . . ,xn] is called an expected ε-stationary
solution of (2) if for a constant λ ∈ (0, 1

L ),
1
nE
[∑n

i=1 ‖∇φλ(xi)‖2 + L2‖X⊥‖2
]
≤ ε2.

In the definition above, L2 before the consensus error term
‖X⊥‖2 is to balance the two terms. This scaling scheme
has also been used in existing works such as (Xin et al.,
2021a; Mancino-Ball et al., 2022; Yau & Wai, 2022) . From
the definition, we see that if X is an expected ε-stationary
solution of (2), then each local solution xi will be a near-
stationary solution of φ and in addition, these local solutions
are all close to each other, namely, they are near consensus.

Below we first state the convergence results of the non-
compressed method DProxSGT and then the compressed
one CDProxSGT. All the proofs are given in the appendix.

Theorem 4 (Convergence rate of DProxSGT). Under As-
sumptions 1 – 3, let {Xt} be generated from DProxSGT
in Algorithm 1 with x0

i = x0,∀ i ∈ N . Let λ =

min
{

1
4L ,

1
96ρL

}
and η ≤ min

{
1

4L ,
(1−ρ2)4

96ρL

}
. Select τ

from {0, 1, . . . , T − 1} uniformly at random. Then

1
nE
[∑n

i=1 ‖∇φλ(xτi )‖2 + 4
λη‖X

τ
⊥‖2

]
≤ 8(φλ(x0)−φ∗λ)

ηT + 4616η
λ(1−ρ2)3σ

2 +
768ηE[‖∇F0(I−J)‖2]

nλT (1−ρ2)3 ,

where φ∗λ = minx φλ(x) > −∞.

By Theorem 4, we obtain a complexity result as follows.

Corollary 5 (Iteration complexity). Under the assump-
tions of Theorem 4, for a given ε > 0, take η =

min{ 1
4L ,

(1−ρ2)4

96ρL , λ(1−ρ2)3ε2

9232σ2 }. Then DProxSGT can find
an expected ε-stationary point of (2) when T ≥ Tε =⌈

16(φλ(x0)−φ∗λ)
ηε2 +

1536ηE[‖∇F0(I−J)‖2]
nλ(1−ρ2)3ε2

⌉
.

Remark 3. When ε is small enough, η will take λ(1−ρ2)3ε2

9232σ2 ,
and Tε will be dominated by the first term. In this case,
DProxSGT can find an expected ε-stationary solution of

(2) in O
(
σ2(φλ(x0)−φ∗λ)
λ(1−ρ2)3ε4

)
iterations, leading to the same

number of stochastic gradient samples and communication
rounds. Our sample complexity is optimal in terms of the
dependence on ε under the smoothness condition in As-
sumption 1, as it matches with the lower bound in (Arjevani
et al., 2022). However, the dependence on 1− ρ may not be
optimal because of our possibly loose analysis, as the deter-
ministic method with single communication per update in
(Scutari & Sun, 2019) for nonconvex nonsmooth problems
has a dependence (1− ρ)2 on the graph topology.

Theorem 6 (Convergence rate of CDProxSGT). Under
Assumptions 1 through 4, let {Xt} be generated from
CDProxSGT in Algorithm 2 with x0

i = x0,∀ i ∈ N . Let
λ = min

{
1

4L ,
(1−α2)2

9L+41280

}
, and suppose

η ≤ min
{
λ,

(1−α2)2(1−ρ̂2x)2(1−ρ̂2y)2

18830 max{1,L}

}
,

γx ≤ min
{

1−α2

25 , ηα

}
, γy ≤

(1−α2)(1−ρ̂2x)(1−ρ̂2y)

317 .

Select τ from {0, 1, . . . , T − 1} uniformly at random. Then

1
nE
[∑n

i=1 ‖∇φλ(xτi )‖2 + 4
λη‖X

τ
⊥‖2

]
≤ 8(φλ(x0)−φ∗λ)

ηT + (50096n+48)ησ2

nλ(1−ρ̂2x)2(1−ρ̂2y) +
4176ηE[‖∇F0‖2]
nλT (1−ρ̂2x)2(1−ρ̂2y) ,

where φ∗λ = minx φλ(x) > −∞.

By Theorem 6, we have the complexity result as follows.

Corollary 7 (Iteration complexity). Under the assumptions
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of Theorem 6, for a given ε > 0, take

η = min
{

1
4L ,

(1−α2)2

9L+41280 ,
(1−α2)2(1−ρ̂2x)2(1−ρ̂2y)2

18830 max{1,L} ,

nλ(1−ρ̂2x)2(1−ρ̂2y)ε2

2(50096n+48)σ2

}
,

γx = min
{

1−α2

25 , ηα

}
, γy =

(1−α2)(1−ρ̂2x)(1−ρ̂2y)

317 .

Then CDProxSGT can find an expected ε-stationary point
of (2) when T ≥ T cε where

T cε =

⌈
16(φλ(x0)−φ∗λ)

ηε2 +
8352ηE[‖∇F0‖2]

nλ(1−ρ̂2x)2(1−ρ̂2y)ε2

⌉
.

Remark 4. When the given tolerance ε is small enough, η

will take
nλ(1−ρ̂2x)2(1−ρ̂2y)ε2

2(50096n+48)σ2 and T cε will be dominated by
the first term. In this case, similar to DProxSGT in Remark
3, CDProxSGT can find an expected ε-stationary solution

of (2) in O
(

σ2(φλ(x0)−φ∗λ)
λ(1−ρ̂2x)2(1−ρ̂2y)ε4

)
iterations.

5. Numerical Experiments
In this section, we test the proposed algorithms on training
two neural network models, in order to demonstrate their
better generalization over momentum variance-reduction
methods and large-batch training methods and to demon-
strate the success of handling heterogeneous data even when
only compressed model parameter and gradient information
are communicated among workers. One neural network that
we test is LeNet5 (LeCun et al., 1989) on the FashionMNIST
dataset (Xiao et al., 2017), and the other is FixupResNet20
(Zhang et al., 2019) on Cifar10 (Krizhevsky et al., 2009).

Our experiments are representative to show the practical
performance of our methods. Among several closely-related
works, (Xin et al., 2021a) includes no experiments, and
(Mancino-Ball et al., 2022; Zhao et al., 2022) only tests on
tabular data and MNIST. (Koloskova et al., 2019a) tests its
method on Cifar10 but needs similar data distribution on all
workers for good performance. FashionMNIST has a similar
scale as MNIST but poses a more challenging classification
task (Xiao et al., 2017). Cifar10 is more complex, and
FixupResNet20 has more layers than LeNet5.

All the compared algorithms are implemented in Python
with Pytorch and MPI4PY (for distributed computing). They
run on a Dell workstation with two Quadro RTX 5000 GPUs.
We use the 2 GPUs as 5 workers, which communicate over
a ring-structured network (so each worker can only com-
municate with two neighbors). Uniform weight is used,
i.e., Wji = 1

3 for each pair of connected workers i and
j. Both FashionMNIST and Cifar10 have 10 classes. We
distribute each data onto the 5 workers based on the class
labels, namely, each worker holds 2 classes of data points,
and thus the data are heterogeneous across the workers.

For all methods, we report their objective values on training
data, prediction accuracy on testing data, and consensus
errors at each epoch. To save time, the objective values are
computed as the average of the losses that are evaluated
during the training process (i.e., on the sampled data instead
of the whole training data) plus the regularizer per epoch.
For the testing accuracy, we first compute the accuracy on
the whole testing data for each worker by using its own
model parameter and then take the average. The consensus
error is simply ‖X⊥‖2.

5.1. Sparse Neural Network Training

In this subsection, we test the non-compressed method
DProxSGT and compare it with AllReduce (that is a central-
ized method and used as a baseline), DEEPSTORM1 and
ProxGT-SA (Xin et al., 2021a) on solving (2), where f is the
loss on the whole training data and r(x) = µ‖x‖1 serves as
a sparse regularizer that encourages a sparse model.

For training LeNet5 on FashionMNIST, we set µ = 10−4

and run each method to 100 epochs. The learning rate
η and batchsize are set to 0.01 and 8 for AllReduce and
DProxSGT. DEEPSTORM uses the same η and batchsize
but with a larger initial batchsize 200, and its momentum
parameter is tuned to β = 0.8 in order to yield the best
performance. ProxGT-SA is a large-batch training method.
We set its batchsize to 256 and accordingly apply a larger
step size η = 0.3 that is the best among {0.1, 0.2, 0.3, 0.4}.

For training FixupResnet20 on Cifar10, we set µ = 5×10−5

and run each method to 500 epochs. The learning rate
and batchsize are set to η = 0.02 and 64 for AllReduce,
DProxSGT, and DEEPSTORM. The initial batchsize is set
to 1600 for DEEPSTORM and the momentum parameter
set to β = 0.8. ProxGT-SA uses a larger batchsize 512 and
a larger stepsize η = 0.1 that gives the best performance
among {0.05, 0.1, 0.2, 0.3}.

The results for all methods are plotted in Figure 1. For
LeNet5, DProxSGT produces almost the same curves as
the centralized training method AllReduce, while on Fix-
upResnet20, DProxSGT even outperforms AllReduce in
terms of testing accuracy. This could be because AllRe-
duce aggregates stochastic gradients from all the workers
for each update and thus equivalently, it actually uses a
larger batchsize. DEEPSTORM performs equally well as
our method DProxSGT on training LeNet5. However, it
gives lower testing accuracy than DProxSGT and also os-
cillates significantly more seriously on training the more
complex neural network FixupResnet20. This appears to
be caused by the momentum variance reduction scheme
used in DEEPSTORM. In addition, we see that the large-

1For DEEPSTORM, we implement DEEPSTORM v2 in
(Mancino-Ball et al., 2022).
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Figure 1. Results of training sparse neural networks by non-
compressed methods with r(x) = µ‖x‖1 for the same number of
epochs. Left: LeNet5 on FashionMNIST with µ = 10−4. Right:
FixupResnet20 on Cifar10 with µ = 5× 10−5.

batch training method ProxGT-SA performs much worse
than DProxSGT within the same number of epochs (i.e.,
data pass), especially on training FixupResnet20.

5.2. Neural Network Training by Compressed Methods

In this subsection, we compare CDProxSGT with two
state-of-the-art compressed training methods: Choco-SGD
(Koloskova et al., 2019b;a) and BEER (Zhao et al., 2022).
As Choco-SGD and BEER are studied only for problems
without a regularizer, we set r(x) = 0 in (2) for the tests.
Again, we compare their performance on training LeNet5
and FixupResnet20. The two non-compressed methods
AllReduce and DProxSGT are included as baselines. The
same compressors are used for CDProxSGT, Choco-SGD,
and BEER, when compression is applied.

We run each method to 100 epochs for training LeNet5 on
FashionMNIST. The compressors Qy and Qx are set to top-
k(0.3) (Aji & Heafield, 2017), i.e., taking the largest 30%
elements of an input vector in absolute values and zeroing
out all others. We set batchsize to 8 and tune the learning
rate η to 0.01 for AllReduce, DProxSGT, CDProxSGT and
Choco-SGD, and for CDProxSGT, we set γx = γy = 0.5.
BEER is a large-batch training method. It uses a larger
batchsize 256 and accordingly a larger learning rate η = 0.3,
which appears to be the best among {0.1, 0.2, 0.3, 0.4}.

For training FixupResnet20 on the Cifar10 dataset, we run
each method to 500 epochs. We take top-k(0.4) (Aji &
Heafield, 2017) as the compressors Qy and Qx and set
γx = γy = 0.8. For AllReduce, DProxSGT, CDProxSGT
and Choco-SGD, we set their batchsize to 64 and tune the
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Figure 2. Results of training neural network models by compressed
methods for the same number of epochs. Left: LeNet5 on Fashion-
MNIST. Right: FixupResnet20 on Cifar10.

learning rate η to 0.02. For BEER, we use a larger batchsize
512 and a larger learning rate η = 0.1, which is the best
among {0.05, 0.1, 0.2, 0.3}.

The results are shown in Figure 2. For both models, CDProx-
SGT yields almost the same curves of objective values and
testing accuracy as its non-compressed counterpart DProx-
SGT and the centralized non-compressed method AllRe-
duce. This indicates about 70% saving of communication
for the training of LeNet5 and 60% saving for FixupRes-
net20 without sacrifying the testing accuracy. In compari-
son, BEER performs significantly worse than the proposed
method CDProxSGT within the same number of epochs in
terms of all the three measures, especially on training the
more complex neural network FixupResnet20, which should
be attributed to the use of a larger batch by BEER. Choco-
SGD can produce comparable objective values. However,
its testing accuracy is much lower than that produced by
our method CDProxSGT. This should be because of the
data heterogeneity that ChocoSGD cannot handle, while
CDProxSGT applies the gradient tracking to successfully
address the challenges of data heterogeneity.

6. Conclusion
We have proposed two decentralized proximal stochastic gra-
dient methods, DProxSGT and CDProxSGT, for nonconvex
composite problems with data heterogeneously distributed
on the computing nodes of a connected graph. CDProxSGT
is an extension of DProxSGT by applying compressions on
the communicated model parameter and gradient informa-
tion. Both methods need only a single or O(1) samples for
each update, which is important to yield good generaliza-
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tion performance on training deep neural networks. The
gradient tracking is used in both methods to address data
heterogeneity. AnO

(
1
ε4

)
sample complexity and communi-

cation complexity is established to both methods to produce
an expected ε-stationary solution. Numerical experiments
on training neural networks demonstrate the good general-
ization performance and the ability of the proposed methods
on handling heterogeneous data.
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Fast O(1/T ) rate for decentralized nonconvex optimiza-
tion with communication compression. arXiv preprint
arXiv:2201.13320, 2022.

https://arxiv.org/abs/2202.00255
https://arxiv.org/abs/2202.00255


Decentralized Proximal Stochastic Gradient Method for Nonconvex Composite Problems

A. Some Key Existing Lemmas
For L-smoothness function fi, it holds for any x,y ∈ dom(r),∣∣fi(y)− fi(x)− 〈∇fi(x),y − x〉

∣∣ ≤ L
2 ‖y − x‖2. (15)

From the smoothness of fi in Assumption 1, it follows that f = 1
nfi is also L-smooth in dom(r).

When fi is L-smooth in dom(r), we have that fi(·) + L
2 ‖ · ‖

2 is convex. Since r(·) is convex, φi(·) + L
2 ‖ · ‖

2 is convex,
i.e., φi is L-weakly convex for each i. So is φ. In the following, we give some lemmas about weakly convex functions.

The following result is from Lemma II.1 in (Chen et al., 2021).

Lemma 8. For any function ψ on Rd, if it isL-weakly convex, i.e., ψ(·)+L
2 ‖·‖

2 is convex, then for any x1,x2, . . . ,xm ∈ Rd,
it holds that

ψ

(
m∑
i=1

aixi

)
≤

m∑
i=1

aiψ(xi) +
L

2

m−1∑
i=1

m∑
j=i+1

aiaj‖xi − xj‖2,

where ai ≥ 0 for all i and
∑m
i=1 ai = 1.

The first result below is from Lemma II.8 in (Chen et al., 2021), and the nonexpansiveness of the proximal mapping of a
closed convex function is well known.

Lemma 9. For any function ψ on Rd, if it is L-weakly convex, i.e., ψ(·) + L
2 ‖ · ‖

2 is convex, then the proximal mapping
with λ < 1

L satisfies

‖Proxλψ(x1)−Proxλψ(x2)‖ ≤ 1

1− λL
‖x1 − x2‖.

For a closed convex function r(·), its proximal mapping is nonexpansive, i.e.,

‖Proxr(x1)−Proxr(x2)‖ ≤ ‖x1 − x2‖.

Lemma 10. For DProxSGT in Algorithm 1 and CDProxSGT in Algorithm 2, we both have

ȳt = ∇Ft, x̄t = x̄t+
1
2 =

1

n

n∑
i=1

Proxηr
(
xti − ηyti

)
. (16)

Proof. For DProxSGT in Algorithm 1, taking the average among the workers on (3) to (6) gives

ȳt−
1
2 = ȳt−1 +∇Ft −∇Ft−1, ȳt = ȳt−

1
2 , x̄t+

1
2 =

1

n

n∑
i=1

Proxηr
(
xti − ηyti

)
, x̄t = x̄t+

1
2 , (17)

where 1>W = 1> follows from Assumption 2. With ȳ−1 = ∇F−1, we have (16).

Similarly, for CDProxSGT in Algorithm 2, taking the average on (44) to (49) will also give (17) and (16).

In the rest of the analysis, we define the Moreau envelope of φ for λ ∈ (0, 1
L ) as

φλ(x) = min
y

{
φ(y) +

1

2λ
‖y − x‖2

}
.

Denote the minimizer as

Proxλφ(x) := arg min
y

φ(y) +
1

2λ
‖y − x‖2.

In addition, we will use the notation x̂ti and x̂
t+ 1

2
i that are defined by

x̂ti = Proxλφ(xti), x̂
t+ 1

2
i = Proxλφ(x

t+ 1
2

i ), ∀ i ∈ N , (18)

where λ ∈ (0, 1
L ).
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B. Convergence Analysis for DProxSGT
In this section, we analyze the convergence rate of DProxSGT in Algorithm 1. For better readability, we use the matrix form
of Algorithm 1. By the notation introduced in section 1.2, we can write (3)-(6) in the more compact matrix form:

Yt− 1
2 = Yt−1 +∇Ft −∇Ft−1, (19)

Yt = Yt− 1
2W, (20)

Xt+ 1
2 = Proxηr

(
Xt − ηYt

)
, [Proxηr

(
xt1 − ηyt1

)
, . . . ,Proxηr

(
xtn − ηytn

)
], (21)

Xt+1 = Xt+ 1
2W. (22)

Below, we first bound ‖X̂t −Xt+ 1
2 ‖2 in Lemma 11. Then we give the bounds of the consensus error ‖Xt

⊥‖ and ‖Yt
⊥‖ and

φλ(xt+1
i ) after one step in Lemmas 12, 13, and 14. Finally, we prove Theorem 4 by constructing a Lyapunov function that

involves ‖Xt
⊥‖, ‖Yt

⊥‖, and φλ(xt+1
i ).

Lemma 11. Let η ≤ λ ≤ 1
4L . Then

E
[
‖X̂t −Xt+ 1

2 ‖2
]
≤ 4E

[
‖Xt
⊥‖2

]
+
(

1− η

2λ

)
E
[
‖X̂t −Xt‖2

]
+ 4η2E

[
‖Yt
⊥‖2

]
+ 2η2σ2. (23)

Proof. By the definition of x̂ti in (18), we have 0 ∈ ∇f(x̂ti) + ∂r(x̂ti) + 1
λ (x̂ti − xti), i.e.,

0 ∈ ∂r(x̂ti) + 1
η

(
η
λ x̂

t
i −

η
λx

t
i + η∇f(x̂ti)

)
= ∂r(x̂ti) + 1

η

(
x̂ti −

(
η
λx

t
i − η∇f(x̂ti) +

(
1− η

λ

)
x̂ti
))
.

Thus we have x̂ti = Proxηr
(
η
λx

t
i − η∇f(x̂ti) +

(
1− η

λ

)
x̂ti
)
. Then by (5), the convexity of r, and Lemma 9,

‖x̂ti − x
t+ 1

2
i ‖2 =

∥∥Proxηr
(
η
λx

t
i − η∇f(x̂ti) +

(
1− η

λ

)
x̂ti
)
−Proxηr (xti − ηyti)

∥∥2

≤
∥∥ η
λx

t
i − η∇f(x̂ti) +

(
1− η

λ

)
x̂ti − (xti − ηyti)

∥∥2
=
∥∥(1− η

λ

)
(x̂ti − xti)− η(∇f(x̂ti)− yti)

∥∥2

=
(
1− η

λ

)2 ‖x̂ti − xti‖
2

+ η2 ‖yti −∇f(x̂ti)‖
2

+ 2
(
1− η

λ

)
η 〈x̂ti − xti,y

t
i −∇f(xti) +∇f(xti)−∇f(x̂ti)〉

≤
((

1− η
λ

)2
+ 2

(
1− η

λ

)
ηL
)
‖x̂ti − xti‖

2
+ η2 ‖yti −∇f(x̂ti)‖

2
+ 2

(
1− η

λ

)
η 〈x̂ti − xti,y

t
i −∇f(xti)〉 , (24)

where the second inequality holds by 〈x̂ti − xti,∇f(xti)−∇f(x̂ti)〉 ≤ L ‖x̂ti − xti‖
2. The second term in the right hand

side of (24) can be bounded by

Et[‖yti −∇f(x̂ti)‖2
] (16)

= Et
[
‖yti − ȳt +∇Ft −∇f(x̂ti)‖2

]
≤ 2Et

[
‖yti − ȳt‖2

]
+ 2Et

[∥∥∇Ft −∇f(x̂ti)
∥∥2]

= 2Et
[
‖yti − ȳt‖2

]
+ 2Et

[
‖∇Ft −∇f t‖2

]
+ 2‖∇f t −∇f(x̂ti)‖2

≤ 2Et[‖yti − ȳt‖2
]

+
2

n2

n∑
j=1

Et
[
‖∇Fj(xtj , ξtj)−∇fj(xtj)‖2

]
+ 4‖∇f t −∇f(xti)‖2 + 4‖∇f(xti)−∇f(x̂ti)‖2

≤ 2Et[‖yti − ȳt‖2
]

+ 2
σ2

n
+ 4‖∇f t −∇f(xti)‖2 + 4L2‖xti − x̂ti‖2,

where the second equality holds by the unbiasedness of stochastic gradients, and the second inequality holds also by the
independence between ξti ’s. In the last inequality, we use the bound of the variance of stochastic gradients, and the L-smooth
assumption. Taking the full expectation over the above inequality and summing for all i give

n∑
i=1

E
[
‖yti −∇f(x̂ti)‖2] ≤ 2E

[
‖Yt
⊥‖2] + 2σ2 + 8L2E

[
‖Xt
⊥‖2] + 4L2E

[
‖Xt − X̂t‖2]. (25)

To have the inequality above, we have used
n∑
i=1

∥∥∇f t −∇f(xti)
∥∥2 ≤ 1

n

n∑
i=1

n∑
j=1

∥∥∇fj(xtj)−∇fj(xti)∥∥2 ≤ L2

n

n∑
i=1

n∑
j=1

∥∥xtj − xti
∥∥2

=
L2

n

n∑
i=1

n∑
j=1

(∥∥xtj − x̄t
∥∥2

+
∥∥x̄t − xti

∥∥2
+ 2

〈
xtj − x̄t, x̄t − xti

〉)
= 2L2

∥∥Xt
⊥
∥∥2
, (26)
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where the last equality holds by 1
n

∑n
i=1

∑n
j=1

〈
xtj − x̄t, x̄t − xti

〉
=

∑n
i=1

〈
1
n

∑n
j=1(xtj − x̄t), x̄t − xti

〉
=∑n

i=1 〈x̄t − x̄t, x̄t − xti〉 = 0 from the definition of x̄.

About the third term in the right hand side of (24), we have
n∑
i=1

E
[〈
x̂ti − xti,y

t
i −∇f(xti)

〉] (16)
=

n∑
i=1

E
[〈
x̂ti − xti,y

t
i − ȳt +∇Ft −∇f(xti)

〉]
=
∑n
i=1 E

[
〈x̂ti − ¯̂x

t
,yti − ȳt〉

]
+
∑n
i=1 E

[
〈x̄t − xti,y

t
i − ȳt〉

]
+
∑n
i=1 E

[〈
x̂ti − xti,Et

[
∇Ft

]
−∇f(xti)

〉]
≤ 1

2η

(
E
[
‖X̂t
⊥‖2

]
+ E

[
‖Xt
⊥‖2

])
+ ηE

[
‖Yt
⊥‖2

]
+ LE

[
‖X̂t −Xt‖2

]
+ 1

4L

∑n
i=1 E

[
‖∇f t −∇f(xti)‖2

]
≤
(

1
2η(1−λL)2 + 1

2η + L
2

)
E
[
‖Xt
⊥‖2

]
+ ηE

[
‖Yt
⊥‖2

]
+ LE

[
‖X̂t −Xt‖2

]
, (27)

where
∑n
i=1

〈
¯̂x
t
,yti − ȳt

〉
= 0 and

∑n
i=1 〈x̄t,yti − ȳt〉 = 0 is used in the second equality, Et

[
∇Ft

]
= ∇f t is used in the

first inequality, and ‖X̂t
⊥‖2 =

∥∥(Proxλφ(Xt)−Proxλφ(x̄t)1>
)

(I− J)
∥∥2 ≤ 1

(1−λL)2 ‖X
t − X̄t‖2 and (26) are used in

the last inequality.

Now we can bound the summation of (24) by using (25) and (27):

E
[
‖X̂t −Xt+ 1

2 ‖2
]

≤
((

1− η
λ

)2
+ 2

(
1− η

λ

)
ηL
)
E
[
‖X̂t −Xt‖2

]
+ η2

(
2E[‖Yt

⊥‖2
]

+ 2σ2 + 8L2E
[
‖Xt
⊥‖2

]
+ 4L2E

[
‖Xt − X̂t‖2

])
+ 2

(
1− η

λ

)
η
((

1
2η(1−λL)2 + 1

2η + L
2

)
E
[
‖Xt
⊥‖2

]
+ ηE

[
‖Yt
⊥‖2

]
+ LE

[
‖X̂t −Xt‖2

])
=
(

1− 2η( 1
λ − 2L) + η2

λ ( 1
λ − 2L) + 2Lη2(− 1

λ + 2L)
)
E
[
‖X̂t −Xt‖2

]
+ 2η2σ2

+
((

1− η
λ

)
(1 + 1

(1−λL)2 + ηL) + 8η2L2
)
E
[
‖Xt
⊥‖2

]
+ 2(2− η

λ )η2E
[
‖Yt
⊥‖2

]
.

With η ≤ λ ≤ 1
4L , we have 1

(1−λL)2 ≤ 2 and (23) follows from the inequality above.

Lemma 12. The consensus error of X satisfies the following inequality

E
[
‖Xt
⊥‖2

]
≤ 1 + ρ2

2
E
[
‖Xt−1
⊥ ‖

2
]

+
2ρ2η2

1− ρ2
E
[
‖Yt−1
⊥ ‖

2
]
. (28)

Proof. With the updates (5) and (6), we have

E
[
‖Xt
⊥‖2

]
= E

[
‖Xt− 1

2W(I− J)‖2
]

= E
[
‖Xt− 1

2 (W − J)‖2
]

= E
[
‖Proxηr

(
Xt−1 − ηYt−1

)
(W − J)‖2

]
= E

[
‖
(
Proxηr

(
Xt−1 − ηYt−1

)
−Proxηr

(
x̄t−1 − ηȳt−1

)
1>
)

(W − J)‖2
]

≤ E
[
‖Proxηr

(
Xt−1 − ηYt−1

)
−Proxηr

(
x̄t−1 − ηȳt−1

)
1>‖2‖(W − J)‖22]

≤ ρ2E
[∑n

i=1 ‖Proxηr
(
xt−1
i − ηyt−1

i

)
−Proxηr

(
x̄t−1 − ηȳt−1

)
‖2
]

≤ ρ2E
[∑n

i=1 ‖
(
xt−1
i − ηyt−1

i

)
−
(
x̄t−1 − ηȳt−1

)
‖2
]

= ρ2E
[
‖Xt−1
⊥ − ηYt−1

⊥ ‖
2
]

≤
(
ρ2 + 1−ρ2

2

)
E
[
‖Xt−1
⊥ ‖2

]
+
(
ρ2 + 2ρ4

1−ρ2
)
η2E

[
‖Yt−1
⊥ ‖2

]
= 1+ρ2

2 E
[
‖Xt−1
⊥ ‖2

]
+ 1+ρ2

1−ρ2 ρ
2η2E

[
‖Yt−1
⊥ ‖2

]
≤ 1+ρ2

2 E
[
‖Xt−1
⊥ ‖2

]
+ 2ρ2η2

1−ρ2 E
[
‖Yt−1
⊥ ‖2

]
,

where we have used 1>(W − J) = 0 in the third equality, ‖W − J‖2 ≤ ρ in the second inequality, and Lemma 9 in the
third inequality, and ρ ≤ 1 is used in the last inequality.
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Lemma 13. Let η ≤ min{λ, 1−ρ2

4
√

6ρL
} and λ ≤ 1

4L . The consensus error of Y satisfies

E
[
‖Yt
⊥‖2

]
≤ 48ρ2L2

1− ρ2
E
[
‖Xt−1
⊥ ‖

2
]
+

3+ρ2

4
E
[
‖Yt−1
⊥ ‖

2
]
+

12ρ2L2

1− ρ2
E
[
‖X̂t−1 −Xt−1‖2

]
+6nσ2. (29)

Proof. By the updates (3) and (4), we have

E
[
‖Yt
⊥‖2

]
= E

[
‖Yt− 1

2 (W − J)‖2
]

= E
[
‖Yt−1(W − J) + (∇Ft −∇Ft−1)(W − J)‖2

]
= E

[
‖Yt−1(I− J)(W − J)‖2

]
+ E

[
‖(∇Ft −∇Ft−1)(W − J)‖2

]
+ 2E

[
〈Yt−1(W − J), (∇Ft −∇Ft−1)(W − J)〉

]
≤ ρ2E

[
‖Yt−1
⊥ ‖

2
]

+ ρ2E
[
‖∇Ft −∇Ft−1‖2

]
+ 2E

[
〈Yt−1(W − J), (∇f t −∇Ft−1)(W − J)〉

]
, (30)

where we have used JW = JJ = J, ‖W − J‖2 ≤ ρ and Et[∇Ft] = ∇f t. For the second term on the right hand side of
(30), we have

E
[
‖∇Ft −∇Ft−1‖2

]
= E

[
‖∇Ft −∇f t +∇f t −∇Ft−1‖2

]
Et[∇Ft]=∇f t

= E
[
‖∇Ft −∇f t‖2

]
+ E

[
‖∇f t −∇f t−1 +∇f t−1 −∇Ft−1‖2

]
≤ E

[
‖∇Ft −∇f t‖2

]
+ 2E

[
‖∇f t −∇f t−1‖2

]
+ 2E

[
‖∇f t−1 −∇Ft−1‖2

]
≤ 3nσ2 + 2L2E

[
‖Xt −Xt−1‖2

]
. (31)

For the third term on the right hand side of (30), we have

2E
[
〈Yt−1(W − J), (∇f t −∇Ft−1)(W − J)〉

]
= 2E

[
〈Yt−1(W − J), (∇f t −∇f t−1)(W − J)〉

]
+ 2E

[
〈Yt−1(W − J), (∇f t−1 −∇Ft−1)(W − J)〉

]
= 2E

[
〈Yt−1(I− J)(W − J), (∇f t −∇f t−1)(W − J)〉

]
+ 2E

[
〈(Yt−2 +∇Ft−1 −∇Ft−2)W(W − J), (∇f t−1 −∇Ft−1)(W − J)〉

]
= 2E

[
〈Yt−1(I− J)(W − J), (∇f t −∇f t−1)(W − J)〉

]
+ 2E

[
〈(∇Ft−1 −∇f t−1)W(W − J), (∇f t−1 −∇Ft−1)(W − J)〉

]
≤ 2E

[
‖Yt−1(I− J)(W − J)‖ · ‖(∇f t −∇f t−1)(W − J)‖

]
+ 2E

[
‖(∇Ft−1 −∇f t−1)W(W − J)‖ · ‖(∇f t−1 −∇Ft−1)(W − J)‖

]
≤ 2ρ2E

[
‖Yt−1
⊥ ‖ · ‖∇f

t −∇f t−1‖
]

+ 2ρ2E
[
‖∇Ft−1 −∇f t−1‖2

]
≤ 1−ρ2

2 E
[
‖Yt−1
⊥ ‖2

]
+ 2ρ4

1−ρ2E
[
‖∇f t −∇f t−1‖2

]
+ 2ρ2nσ2

≤ 1−ρ2
2 E

[
‖Yt−1
⊥ ‖2

]
+ 2ρ4L2

1−ρ2 E
[
‖Xt −Xt−1‖2

]
+ 2ρ2nσ2, (32)

where the second equality holds by W − J = (I − J)(W − J), (3) and (4), the third equality holds because Yt−2 −
∇Ft−2 − ∇f t−1 does not depend on ξt−1

i ’s, and the second inequality holds because ‖W − J‖2 ≤ ρ and ‖W‖2 ≤ 1.
Plugging (31) and (32) into (30), we have

E
[
‖Yt
⊥‖2

]
≤ 1+ρ2

2 E
[
‖Yt−1
⊥ ‖2

]
+ 2ρ2L2

1−ρ2 E
[
‖Xt −Xt−1‖2

]
+ 5ρ2nσ2, (33)

where we have used 1 + ρ2

1−ρ2 = 1
1−ρ2 . For the second term in the right hand side of (33), we have

‖Xt+1 −Xt‖2 = ‖Xt+ 1
2W −Xt‖2 = ‖(Xt+ 1

2 − X̂t)W + (X̂t −Xt)W + Xt(W − I)‖2

≤ 3‖(Xt+ 1
2 − X̂t)W‖2 + 3‖(X̂t −Xt)W‖2 + 3‖Xt(I− J)(W − I)‖2

≤ 3‖Xt+ 1
2 − X̂t‖2 + 3‖X̂t −Xt‖2 + 12‖Xt

⊥‖2, (34)

where in the first inequality we have used Xt(W − I) = Xt(I− J)(W − I) from J(W − I) = J− J, and in the second
inequality we have used ‖W‖2 ≤ 1 and ‖W − I‖2 ≤ 2.
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Taking expectation over both sides of (34) and using (23), we have

E
[
‖Xt+1 −Xt‖2

]
≤ 3

(
4E
[
‖Xt
⊥‖2

]
+
(
1− η

2λ

)
E
[
‖X̂t −Xt‖2

]
+ 4η2E

[
‖Yt
⊥‖2

]
+ 2η2σ2

)
+ 3E

[
‖X̂t −Xt‖2

]
+ 12E

[
‖Xt
⊥‖2

]
= 3

(
2− η

2λ

)
E
[
‖X̂t −Xt‖2

]
+ 12η2E

[
‖Yt
⊥‖2

]
+ 6η2σ2 + 24E

[
‖Xt
⊥‖2

]
.

Plugging the inequality above into (33) gives

E
[
‖Yt
⊥‖2

]
≤
(

1+ρ2

2 + 24ρ2L2η2

1−ρ2

)
E
[
‖Yt−1
⊥ ‖

2
]

+ 5ρ2nσ2 + 12ρ2L2η2σ2

1−ρ2

+ 6ρ2L2

1−ρ2
(
2− η

2λ

)
E
[
‖X̂t−1 −Xt−1‖2

]
+ 48ρ2L2

1−ρ2 E
[
‖Xt−1
⊥ ‖2

]
.

By ρ < 1 and η ≤ 1−ρ2

4
√

6ρL
, we have 24ρ2L2η2

1−ρ2 ≤ 1−ρ2
4 and 12ρ2L2η2

1−ρ2 ≤ 1−ρ2
8 ≤ n, and further (29).

Lemma 14. Let η ≤ λ ≤ 1
4L . It holds

n∑
i=1

E[φλ(xt+1
i )] ≤

n∑
i=1

E[φλ(xti)] +
4

λ
E
[
‖Xt
⊥‖2

]
+

4η2

λ
E[‖Yt

⊥‖2
]
− η

4λ2
E
[
‖X̂t −Xt‖2

]
+
η2σ2

λ
. (35)

Proof. By the definition in (18), the update in (6), the L-weakly convexity of φ, and the convexity of ‖ · ‖2, we have

φλ(xt+1
i )

(18)
= φ(x̂t+1

i ) + 1
2λ‖x̂

t+1
i − xt+1

i ‖
2

(6)
≤ φ

( n∑
j=1

Wjix̂
t+ 1

2
j

)
+

1

2λ

∥∥∥∥ n∑
j=1

Wji

(
x̂
t+ 1

2
j − x

t+ 1
2

j

)∥∥∥∥2

Lemma 8
≤

n∑
j=1

Wjiφ(x̂
t+ 1

2
j ) +

L

2

n−1∑
j=1

n∑
l=j+1

WjiWli‖x̂
t+ 1

2
j − x̂

t+ 1
2

l ‖2 +
1

2λ

n∑
j=1

Wji‖x̂
t+ 1

2
j − x

t+ 1
2

j ‖2

≤
n∑
j=1

Wjiφλ(x
t+ 1

2
j ) +

1

4λ

n−1∑
j=1

n∑
l=j+1

WjiWli‖x
t+ 1

2
j − x

t+ 1
2

l ‖2, (36)

where in the last inequality we use φ(x̂
t+ 1

2
j ) + 1

2λ‖(x̂
t+ 1

2
j − x

t+ 1
2

j )‖2 = φλ(x
t+ 1

2
j ), ‖x̂t+

1
2

j − x̂
t+ 1

2

l ‖2 ≤ 1
(1−λL)2 ‖x

t+ 1
2

j −

x
t+ 1

2

l ‖2 from Lemma 9, 1
(1−λL)2 ≤ 2 and L ≤ 1

4λ . For the first term on the right hand side of (36), with
∑n
i=1 Wji = 1,

we have

n∑
i=1

n∑
j=1

Wjiφλ(x
t+ 1

2
j ) =

n∑
i=1

φλ(x
t+ 1

2
i ) ≤

n∑
i=1

φλ(xti) +
1

2λ
‖X̂t −Xt+ 1

2 ‖2 − 1

2λ
‖X̂t −Xt‖2, (37)

where we have used φλ(x
t+ 1

2
i ) ≤ φ(x̂ti) + 1

2λ‖x̂
t
i − x

t+ 1
2

i ‖2 and φλ(xti) = φ(x̂ti) + 1
2λ‖x̂

t
i − xti‖. For the second term on



Decentralized Proximal Stochastic Gradient Method for Nonconvex Composite Problems

the right hand side of (36), with Lemma 9 and (5), we have

n∑
i=1

n−1∑
j=1

n∑
l=j+1

WjiWli‖x
t+ 1

2
j − x

t+ 1
2

l ‖2 =

n∑
i=1

n−1∑
j=1

n∑
l=j+1

WjiWli‖Proxηr(x
t
j − ηytj)−Proxηr(x

t
l − ηytl)‖2

≤
n∑
i=1

n−1∑
j=1

n∑
l=j+1

WjiWli‖(xtj − ηytj)− (xtl − ηytl)‖2

=

n∑
i=1

n−1∑
j=1

n∑
l=j+1

WjiWli‖(xtj − ηytj)− (x̄t − ηȳt) + (x̄t − ηȳt)− (xtl − ηytl)‖2

≤ 2

n∑
i=1

n−1∑
j=1

n∑
l=j+1

WjiWli‖(xtj − ηytj)− (x̄t − ηȳt)‖2 + 2

n∑
i=1

n−1∑
j=1

n∑
l=j+1

WjiWli‖(x̄t − ηȳt)− (xtl − ηytl)‖2

≤ 2

n∑
i=1

n−1∑
j=1

Wji‖(xtj − ηytj)− (x̄t − ηȳt)‖2 + 2

n∑
i=1

n∑
l=2

Wli‖(x̄t − ηȳt)− (xtl − ηytl)‖2

≤ 4

n∑
j=1

‖(xtj − ηytj)− (x̄t − ηȳt)‖2 ≤ 8‖Xt
⊥‖2 + 8η2‖Yt

⊥‖2. (38)

With (37) and (38), summing up (36) from i = 1 to n gives

n∑
i=1

φλ(xt+1
i ) ≤

n∑
i=1

φλ(xti) +
1

2λ
‖X̂t −Xt+ 1

2 ‖2 − 1

2λ
‖X̂t −Xt‖2 +

2

λ

(
‖Xt
⊥‖2 + η2‖Yt

⊥‖2
)
.

Now taking the expectation on the above inequality and using (23), we have

n∑
i=1

E
[
φλ(xt+1

i )
]
≤

n∑
i=1

E
[
φλ(xti)

]
− 1

2λ
E
[
‖X̂t −Xt‖2

]
+

2

λ
E
[
‖Xt
⊥‖2 + η2‖Yt

⊥‖2
]

+
1

2λ

(
4E
[
‖Xt
⊥‖2

]
+
(
1− η

2λ

)
E
[
‖X̂t −Xt‖2

]
+ 4η2E

[
‖Yt
⊥‖2

]
+ 2η2σ2

)
.

Combining like terms in the inequality above gives (35).

With Lemmas 12, 13 and 14, we are ready to prove Theorem 4. We build the following Lyapunov function:

Vt = z1E[‖Xt
⊥‖2] + z2E[‖Yt

⊥‖2] + z3

n∑
i=1

E[φλ(xti)],

where z1, z2, z3 ≥ 0 will be determined later.

Proof of Theorem 4.

Proof. Denote

Φt =

n∑
i=1

E[φλ(xti)], Ωt0 = E[‖X̂t −Xt‖2], Ωt =
(
E[‖Xt

⊥‖2],E[‖Yt
⊥‖2],Φt

)>
.

Then Lemmas 12, 13 and 14 imply Ωt+1 ≤ AΩt + bΩt0 + cσ2, where

A =


1+ρ2

2
2ρ2

1−ρ2 η
2 0

48ρ2L2

1−ρ2
3+ρ2

4 0
4
λ

4
λη

2 1

 , b =

 0
12ρ2L2

1−ρ2
− η

4λ2

 , c =

 0
6n
η2

λ

 .



Decentralized Proximal Stochastic Gradient Method for Nonconvex Composite Problems

For any z = (z1, z2, z3)> ≥ 0, We have

z>Ωt+1 ≤ z>Ωt + (z>A− z>)Ωt + z>bΩt0 + z>cσ2.

Take

z1 =
10

1− ρ2
, z2 =

(
80ρ2

(1− ρ2)3
+

16

1− ρ2

)
η2, z3 = λ.

We have z>A− z> =
(

48ρ2L2

1−ρ2 z2 − 1, 0, 0
)
. Note z2 ≤ 96

(1−ρ2)3 η
2. Thus

z>A− z> ≤
(

4608ρ2L2

(1−ρ2)4 η
2 − 1, 0, 0

)
, z>b ≤ 1152ρ2L2

(1−ρ2)4 η
2 − η

4λ , z
>c ≤

(
576n

(1−ρ2)3 + 1
)
η2 ≤ 577n

(1−ρ2)3 η
2.

With η ≤ (1−ρ2)4

96ρL and λ ≤ 1
96ρL , we have z>A− z> ≤ (− 1

2 , 0, 0)> and z>b ≤
(
12ρL− 1

8λ

)
η − η

8λ ≤ −
η
8λ . Thus

z>Ωt+1 ≤ z>Ωt − 1
2E[‖Xt

⊥‖2]− η
8λΩt0 + 577n

(1−ρ2)3 η
2σ2. (39)

Hence, summing up (39) for t = 0, 1, . . . , T − 1 gives

1

λT

T−1∑
t=0

Ωt0 +
4

ηT

T−1∑
t=0

E[‖Xt
⊥‖2] ≤ 8

ηT

(
z>Ω0 − z>ΩT

)
+ 577n

(1−ρ2)3 8ησ2. (40)

From y−1
i = 0,∇Fi(x−1

i , ξ−1
i ) = 0,x0

i = x0,∀ i ∈ N , we have

‖X0
⊥‖2 = 0, ‖Y0

⊥‖2 = ‖∇F0(I− J)‖2, Φ0 = nφλ(x0). (41)

From Assumption 1, φ is lower bounded and thus φλ is also lower bounded, i.e., there is a constant φ∗λ satisfying
φ∗λ = minx φλ(x) > −∞. Thus

ΦT ≥ nφ∗λ. (42)

With (41), (42), and the nonnegativity of E[‖XT
⊥‖2] and E[‖YT

⊥‖2], we have

z>Ω0 − z>ΩT ≤ 96η2

(1−ρ2)3E[‖∇F0(I− J)‖2] + λnφλ(x0)− λnφ∗λ. (43)

By the convexity of the Frobenius norm and (43), we obtain from (40) that

1

λ2n
E
[
‖X̂τ −Xτ‖2

]
+

4

nλη
E
[
‖Xτ
⊥‖2

]
≤ 1

λ2nT

T−1∑
t=0

E
[
‖X̂t −Xt‖2

]
+

4

nληT

T−1∑
t=0

E
[
‖Xt
⊥‖2

]
≤ 8(φλ(x0)−φ∗λ)

ηT + 4616η
λ(1−ρ2)3σ

2 +
768ηE[‖∇F0(I−J)‖2]

nλT (1−ρ2)3 .

Note ‖∇φλ(xτi )‖2 =
‖xτi−x̂

τ
i ‖

2

λ2 from Lemma 2, we finish the proof.

C. Convergence Analysis for CDProxSGT
In this section, we analyze the convergence rate of CDProxSGT. Similar to the analysis of DProxSGT, we establish a
Lyapunov function that involves consensus errors and the Moreau envelope. But due to the compression, compression errors
‖X̂t −Xt‖ and ‖Ŷt −Yt‖ will occur. Hence, we will also include the two compression errors in our Lyapunov function.

Again, we can equivalently write a matrix form of the updates (7)-(12) in Algorithm 2 as follows:

Yt− 1
2 = Yt−1 +∇Ft −∇Ft−1, (44)

Yt = Yt−1 +Qy

[
Yt− 1

2 −Yt−1
]
, (45)

Yt = Yt− 1
2 + γyY

t(W − I), (46)

Xt+ 1
2 = Proxηr

(
Xt − ηYt

)
, (47)

Xt+1 = Xt +Qx

[
Xt+ 1

2 −Xt
]
, (48)

Xt+1 = Xt+ 1
2 + γxX

t+1(W − I). (49)
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When we apply the compressor to the column-concatenated matrix in (45) and (48), it means applying the compressor to
each column separately, i.e., Qx[X] = [Qx[x1], Qx[x2], . . . , Qx[xn]].

Below we first analyze the progress by the half-step updates of Y and X from t+ 1/2 to t+ 1 in Lemmas 15 and 16. Then
we bound the one-step consensus error and compression error for X in Lemma 17 and for Y in Lemma 18. The bound
of E[φλ(xt+1

i )] after one-step update is given in 19. Finally, we prove Theorem 6 by building a Lyapunov function that
involves all the five terms.

Lemma 15. It holds that

E
[
‖Yt+1 −Yt+ 1

2 ‖2
]
≤ 2α2E

[
‖Yt −Yt‖2

]
+ 6α2nσ2 + 4α2L2E

[
‖Xt+1 −Xt‖2

]
, (50)

E
[
‖Yt+1 −Yt+ 1

2 ‖2
]
≤ 1 + α2

2
E
[
‖Yt −Yt‖2

]
+

6nσ2

1− α2
+

4L2

1− α2
E
[
‖Xt+1 −Xt‖2

]
. (51)

Proof. From (7) and (8), we have

E
[
‖Yt+1 −Yt+ 1

2 ‖2
]

= E
[
EQ
[
‖Qy

[
Yt+ 1

2 −Yt
]
− (Yt+ 1

2 −Yt)‖2
]]

≤ α2E
[
‖Yt+ 1

2 −Yt‖2
]

= α2E
[
‖Yt −Yt +∇Ft+1 −∇Ft‖2

]
≤ α2(1 + α0)E

[
‖Yt −Yt‖2

]
+ α2(1 + α−1

0 )E
[
‖∇Ft+1 −∇Ft‖2

]
≤ α2(1 + α0)E

[
‖Yt −Yt‖2

]
+ α2(1 + α−1

0 )
(
3nσ2 + 2L2E

[
‖Xt+1 −Xt‖2

])
, (52)

where the first inequality holds by Assumption 4, α0 can be any positive number, and the last inequality holds by
(31) which still holds for CDProxSGT. Taking α0 = 1 in (52) gives (50). Letting α0 = 1−α2

2 in (52), we obtain
α2(1 + α0) = (1− (1− α2))(1 + 1−α2

2 ) ≤ 1+α2

2 and α2(1 + α−1
0 ) ≤ 2

1−α2 , and thus (51) follows.

Lemma 16. Let η ≤ λ ≤ 1
4L . Then

E
[
‖X̂t −Xt+ 1

2 ‖2
]
≤ 4E

[
‖Xt
⊥‖2

]
+
(

1− η

2λ

)
E
[
‖X̂t −Xt‖2

]
+ 4η2E

[
‖Yt
⊥‖2

]
+ 2η2σ2, (53)

E
[
‖Xt+1 −Xt+ 1

2 ‖2
]
≤ 3α2

(
E
[
‖Xt −Xt‖2

]
+ E

[
‖Xt+ 1

2 − X̂t‖2
]

+ E
[
‖X̂t −Xt‖2

])
, (54)

E
[
‖Xt+1 −Xt+ 1

2 ‖2
]
≤ 16

1− α2

(
E
[
‖Xt
⊥‖2

]
+ η2E

[
‖Yt
⊥‖2

])
+

1 + α2

2
E
[
‖Xt −Xt‖2

]
+

8

1− α2

(
E
[
‖X̂t −Xt‖2

]
+ η2σ2

)
. (55)

Further, if γx ≤ 2
√

3−3
6α , then

E
[
‖Xt+1 −Xt‖2

]
≤ 30E

[
‖Xt
⊥‖2

]
+ 4
√

3αγxE
[
‖Xt −Xt‖2

]
+ 16η2E

[
‖Yt
⊥‖2

]
+ 8E

[
‖X̂t −Xt‖2

]
+ 8η2σ2. (56)

Proof. The proof of (53) is the same as that of Lemma 11 because (10) and (16) are the same as (5) and (16).

For Xt+1 −Xt+ 1
2 , we have from (11) that

E
[
‖Xt+1 −Xt+ 1

2 ‖2
]

= E
[
EQ
[
‖Qx

[
Xt+ 1

2 −Xt
]
− (Xt+ 1

2 −Xt)‖2
]]

≤ α2E
[
‖Xt+ 1

2 −Xt‖2
]

= α2E
[
‖Xt+ 1

2 − X̂t + X̂t −Xt + Xt −Xt‖2
]

≤ α2(1 + α1)E
[
‖Xt −Xt‖2

]
+ α2(1 + α−1

1 )E
[
‖Xt+ 1

2 − X̂t + X̂t −Xt‖2
]

≤ α2(1 + α1)E
[
‖Xt −Xt‖2

]
+ 2α2(1 + α−1

1 )E
[
‖Xt+ 1

2 − X̂t‖2
]

+ 2α2(1 + α−1
1 )E

[
‖X̂t −Xt‖2

]
, (57)

where α1 can be any positive number. Taking α1 = 2 in (57) gives (54). Taking α1 = 1−α2

2 in (57) and plugging (53) give
(55).
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About E[‖Xt+1 −Xt‖2], similar to (34), we have from (14) that

E
[
‖Xt+1 −Xt‖2

]
= E

[
‖Xt+ 1

2Ŵx −Xt + γx(Xt+1 −Xt+ 1
2 )(W − I)‖2

]
≤ (1 + α2)E

[
‖Xt+ 1

2Ŵx −Xt‖2
]

+ (1 + α−1
2 )E

[
‖γx(Xt+1 −Xt+ 1

2 )(W − I)‖2
]

(34),(54)
≤ (1 + α2)

(
3E
[
‖Xt+ 1

2 − X̂t‖2
]

+ 3E
[
‖X̂t −Xt‖2

]
+ 12E

[
‖Xt
⊥‖2

])
+ (1 + α−1

2 )4γ2
x · 3α2

(
E
[
‖Xt+ 1

2 − X̂t‖2
]

+ E
[
‖X̂t −Xt‖2

]
+ E

[
‖Xt −Xt‖2

])
≤ 4E

[
‖Xt+ 1

2 − X̂t‖2
]

+ 4E
[
‖X̂t −Xt‖2

]
+ 14E

[
‖Xt
⊥‖2

]
+ 4
√

3αγxE
[
‖Xt −Xt‖2

]
,

where in the first inequality α2 could be any positive number, in the second inequality we use (54), and in the last
inequality we take α2 = 2γxα and thus with γx ≤ 2

√
3−3

6α , it holds 3(1 + α2) + 12γ2
xα

2(1 + α−1
2 ) = 3(1 + 2γxα)2 ≤ 4,

12(1 + α2) ≤ 8
√

3 ≤ 14, (1 + α−1
2 )4γ2

x · 3α2 ≤ 4
√

3αγx. Then plugging (53) into the inequality above, we obtain
(56).

Lemma 17. Let η ≤ λ ≤ 1
4L and γx ≤ min{ (1−ρ̂2x)2

60α , 1−α2

25 }. Then the consensus error and compression error of X can
be bounded by

E
[
‖Xt+1
⊥ ‖

2
]
≤ 3 + ρ̂2

x

4
E
[
‖Xt
⊥‖2

]
+ 2αγx(1− ρ̂2

x)E
[
‖Xt −Xt‖2

]
+

9

4(1− ρ̂2
x)
η2E

[
‖Yt
⊥‖2

]
+ 4αγx(1− ρ̂2

x)E
[
‖X̂t −Xt‖2

]
+ 4αγx(1− ρ̂2

x)η2σ2, (58)

E
[
‖Xt+1 −Xt+1‖2

]
≤ 21

1− α2
E
[
‖Xt
⊥‖2

]
+

3 + α2

4
E
[
‖Xt −Xt‖2

]
+

21

1− α2
η2E

[
‖Yt
⊥‖2

]
+

11

1− α2
E
[
‖X̂t −Xt‖2

]
+

11

1− α2
η2σ2. (59)

Proof. First, let us consider the consensus error of X. With the update (14), we have

E
[
‖Xt+1
⊥ ‖

2
]
≤ (1 + α3)E

[
‖Xt+ 1

2Ŵx(I− J)‖2
]

+ (1 + α−1
3 )E

[
‖γx(Xt+1 −Xt+ 1

2 )(W − I)‖2
]
,

≤ (1 + α3)E
[
‖Xt+ 1

2 (Ŵx − J)‖2
]

+ (1 + α−1
3 )4γ2

xE
[
‖Xt+1 −Xt+ 1

2 ‖2
]
, (60)

where α3 is any positive number, and ‖W − I‖2 ≤ 2 is used. The first term in the right hand side of (60) can be processed
similarly as the non-compressed version in Lemma 12 by replacing W by Ŵx, namely,

E
[
‖Xt+ 1

2 (Ŵx − J)‖2
]
≤ 1+ρ̂2x

2 E
[
‖Xt
⊥‖2

]
+

2ρ̂2xη
2

1−ρ̂2x
E
[
‖Yt
⊥‖2

]
. (61)

Plugging (61) and (54) into (60) gives

E
[
‖Xt+1
⊥ ‖

2
]
≤ (1 + α3)

(
1+ρ̂2x

2 E
[
‖Xt
⊥‖2

]
+

2ρ̂2xη
2

1−ρ̂2x
E
[
‖Yt
⊥‖2

])
+ (1 + α−1

3 )12α2γ2
x

(
E
[
‖Xt −Xt‖2

]
+ E

[
‖Xt+ 1

2 − X̂t‖2
]

+ E
[
‖X̂t −Xt‖2

])
(53)
≤
(

1+ρ̂2x
2 (1 + α3) + 48α2γ2

x(1 + α−1
3 )
)
E
[
‖Xt
⊥‖2

]
+ 12α2γ2

x(1 + α−1
3 )E

[
‖Xt −Xt‖2

]
+
(

2ρ̂2x
1−ρ̂2x

(1 + α3) + 48α2γ2
x(1 + α−1

3 )
)
η2E

[
‖Yt
⊥‖2

]
+ 24α2γ2

x(1 + α−1
3 )E

[
‖X̂t −Xt‖2

]
+ 24α2γ2

x(1 + α−1
3 )η2σ2.

Let α3 = 7αγx
1−ρ̂2x

and γx ≤ (1−ρ̂2x)2

60α . Then α2γ2
x(1 + α−1

3 ) = αγx(αγx +
1−ρ̂2x

7 ) ≤ αγx(
(1−ρ̂2x)2

60 +
1−ρ̂2x

7 ) ≤ αγx(1−ρ̂2x)
6 and

1+ρ̂2x
2 (1 + α3) + 48α2γ2

x(1 + α−1
3 ) =

1+ρ̂2x
2 + 48α2γ2

x + 7αγx
1−ρ̂2x

+
48αγx(1−ρ̂2x)

7

≤ 1+ρ̂2x
2 + 48

602 (1− ρ̂2
x)4 + 7

60 (1− ρ̂2
x) + 7

60 (1− ρ̂2
x)3 ≤ 1+ρ̂2x

2 +
1−ρ̂2x

4 =
3+ρ̂2x

4 ,

2ρ̂2x
1−ρ̂2x

(1 + α3) + 48α2γ2
x(1 + α−1

3 ) =
2ρ̂2x

1−ρ̂2x
+ 48α2γ2

x +
2ρ̂2x

1−ρ̂2x
7αγx
1−ρ̂2x

+
48αγx(1−ρ̂2x)

7

≤ 1
1−ρ̂2x

(
2ρ̂2
x + 48

602 (1− ρ̂2
x) +

14ρ̂2x
60 + 7

60 (1− ρ̂2
x)
)
≤ 1

1−ρ̂2x

(
2ρ̂2
x + 48

602 + 7
60

)
≤ 9

4(1−ρ̂2x) .
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Thus (58) holds.

Now let us consider the compression error of X. By (12), we have

E
[
‖Xt+1 −Xt+1‖2

]
= E

[
‖(Xt+1 −Xt+ 1

2 )
(
γx(W − I)− I

)
+ γxX

t+ 1
2 (I− J)(W − I)‖2

]
≤ (1 + α4)(1 + 2γx)2E

[
‖Xt+1 −Xt+ 1

2 ‖2
]

+ (1 + α−1
4 )4γ2

xE
[
‖Xt+ 1

2

⊥ ‖2
]
, (62)

where we have used JW = J in the equality, ‖γx(W− I)− I‖2 ≤ γx‖W− I‖2 + ‖I‖2 ≤ 1 + 2γx and ‖W− I‖2 ≤ 2 in
the inequality, and α4 can be any positive number. For the second term in the right hand side of (62), we have

‖Xt+ 1
2

⊥ ‖2 (10)
=
∥∥(Proxηr

(
Xt − ηYt

)
−Proxηr

(
x̄t − ηȳt

)
1>
)

(I− J)
∥∥2

≤ ‖Xt
⊥ − ηYt

⊥‖2 ≤ 2‖Xt
⊥‖2 + 2η2‖Yt

⊥‖2, (63)

where we have used 1>(I− J) = 0>, ‖I− J‖2 ≤ 1, and Lemma 9. Now plugging (55) and (63) into (62) gives

E
[
‖Xt+1 −Xt+1‖2

]
≤
(

(1 + α−1
4 )8γ2

x + (1 + α4)(1 + 2γx)2 16
1−α2

) (
E
[
‖Xt
⊥‖2

]
+ η2E

[
‖Yt
⊥‖2

])
+(1 + α4)(1 + 2γx)2 1+α2

2 E
[
‖Xt −Xt‖2

]
+ (1 + α4)(1 + 2γx)2 8

1−α2

(
E
[
‖X̂t −Xt‖2

]
+ η2σ2

)
.

With α4 = 1−α2

12 and γx ≤ 1−α2

25 , (59) holds because (1 + 2γx)2 ≤ 1 + 104
25 γx ≤

7
6 , (1 + 2γx)2 1+α2

2 ≤ 1+α2

2 + 104
25 γx ≤

2+α2

3 , and

(1 + α4)(1 + 2γx)2 1 + α2

2
≤ 2 + α2

3
+ α4 =

3 + α2

4
, (64)

(1 + α−1
4 )8γ2

x + (1 + α4)(1 + 2γx)2 16

1− α2
≤ 13

1− α2

8

625
+

13

12

7

6

16

1− α2
≤ 21

1− α2
, (65)

(1 + α4)(1 + 2γx)2 8

1− α2
≤ 13

12

7

6

8

1− α2
≤ 11

1− α2
.

Lemma 18. Let η ≤ min{λ, 1−ρ̂2y
8
√

5L
}, λ ≤ 1

4L , γx ≤ 2
√

3−3
6α , γy ≤ min{

√
1−ρ̂2y
12α , 1−α2

25 }. Then the consensus error and
compression error of Y can be bounded by

E
[
‖Yt+1
⊥ ‖

2
]
≤ 150L2

1− ρ̂2
y

E
[
‖Xt
⊥‖2

]
+

20
√

3αγxL
2

1− ρ̂2
y

E
[
‖Xt −Xt‖2

]
+

3 + ρ̂2
y

4
E
[
‖Yt
⊥‖2

]
+

48α2γ2
y

1− ρ̂2
y

E
[
‖Yt −Yt‖2

]
+

40L2

1− ρ̂2
y

E
[
‖X̂t −Xt‖2

]
+ 12nσ2, (66)

E
[
‖Yt+1 −Yt+1‖2

]
≤ 180L2

1− α2
E
[
‖Xt
⊥‖2

]
+

24
√

3αγxL
2

1− α2
E
[
‖Xt −Xt‖2

]
+

3 + α2

4
E
[
‖Yt −Yt‖2

]
+

104γ2
y + 96η2L2

1− α2
E
[
‖Yt(I− J)‖2

]
+

48L2

1− α2
E
[
‖X̂t −Xt‖2

]
+

10n

1− α2
σ2. (67)

Proof. First, let us consider the consensus of Y. Similar to (60), we have from the update (13) that

E
[
‖Yt+1
⊥ ‖

2
]
≤ (1 + α5)E

[
‖Yt+ 1

2 (Ŵy − J)‖2
]

+ (1 + α−1
5 )4γ2

yE
[
‖Yt+1 −Yt+ 1

2 ‖2
]
, (68)

where α5 can be any positive number. Similarly as (30)-(33) in the proof of Lemma 13, we have the bound for the first term
on the right hand side of (68) by replacing W with Ŵy , namely,

E
[
‖Yt+ 1

2 (Ŵy − J)‖2
]
≤ 1+ρ̂2y

2 E
[
‖Yt
⊥‖2

]
+

2ρ̂2yL
2

1−ρ̂2y
E
[
‖Xt+1 −Xt‖2

]
+ 5ρ̂2

ynσ
2. (69)
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Plug (69) and (50) back to (68), and take α5 =
1−ρ̂2y

3(1+ρ̂2y) . We have

E
[
‖Yt+1
⊥ ‖

2
]
≤ 2(2+ρ̂2y)

3(1+ρ̂2y)

1+ρ̂2y
2 E

[
‖Yt
⊥‖2

]
+

24γ2
y

1−ρ̂2y
2α2E

[
‖Yt −Yt‖2

]
+

24γ2
y

1−ρ̂2y
6α2nσ2 + 2 · 5ρ̂2

ynσ
2 +

(
24γ2

y

1−ρ̂2y
4α2L2 + 2 · 2ρ̂2yL

2

1−ρ̂2y

)
E
[
‖Xt+1 −Xt‖2

]
≤ 2+ρ̂2y

3 E
[
‖Yt
⊥‖2

]
+

48α2γ2
y

1−ρ̂2y
E
[
‖Yt −Yt‖2

]
+ 11nσ2 + 5L2

1−ρ̂2y
E
[
‖Xt+1 −Xt‖2

]
≤ 150L2

1−ρ̂2y
E
[
‖Xt
⊥‖2

]
+ 20

√
3L2

1−ρ̂2y
αγxE[‖Xt −Xt‖2] + 40L2

1−ρ̂2y
η2σ2 + 11nσ2

+
(

2+ρ̂2y
3 + 80L2

1−ρ̂2y
η2
)
E
[
‖Yt
⊥‖2

]
+

48α2γ2
y

1−ρ̂2y
E
[
‖Yt −Yt‖2

]
+ 40L2

1−ρ̂2y
E
[
‖X̂t −Xt‖2

]
,

where the first inequality holds by 1 + α5 =
2(2+ρ̂2y)

3(1+ρ̂2y) ≤ 2 and 1 + α−1
5 =

2(2+ρ̂2y)

1−ρ̂2y
≤ 6

1−ρ̂2y
, the second inequality holds

by γy ≤
√

1−ρ̂2y
12α and α2 ≤ 1, and the third equality holds by (56). By 80L2

1−ρ̂2y
η2 ≤ 1−ρ̂2y

4 and 40L2

1−ρ̂2y
η2 ≤ 1−ρ̂2y

8 ≤ 1 from

η ≤ 1−ρ̂2y
8
√

5L
, we can now obtain (66).

Next let us consider the compression error of Y, similar to (62), we have by (9) that

E
[
‖Yt+1 −Yt+1‖2

]
≤ (1 + α6)(1 + 2γy)2E

[
‖Yt+1 −Yt+ 1

2 ‖2
]

+ (1 + α−1
6 )4γ2

yE
[
‖Yt+ 1

2

⊥ ‖2
]
, (70)

where α6 is any positive number. For E
[
‖Yt+ 1

2

⊥ ‖2
]
, we have from (7) that

E
[
‖Yt+ 1

2

⊥ ‖2
]

= E
[
‖(Yt +∇Ft+1 −∇Ft)(I− J)‖2

]
≤ 2E

[
‖Yt
⊥‖2

]
+ 2E

[
‖∇Ft+1 −∇Ft‖2

]
≤ 2E

[
‖Yt
⊥‖2

]
+ 6nσ2 + 4L2E

[
‖Xt+1 −Xt‖2

]
, (71)

where we have used (31). Plug (51) and (71) back to (70) to have

E
[
‖Yt+1 −Yt+1‖2

]
≤ (1 + α6)(1 + 2γy)2 1+α2

2 E
[
‖Yt −Yt‖2

]
+ (1 + α−1

6 )8γ2
yE
[
‖Yt(I− J)‖2

]
+
(

(1 + α−1
6 )4γ2

y + (1 + α6)(1 + 2γy)2 1
1−α2

)
4L2E

[
‖Xt+1 −Xt‖2

]
+
(

(1 + α−1
6 )4γ2

y + (1 + α6)(1 + 2γy)2 1
1−α2

)
6nσ2.

With α6 = 1−α2

12 and γy < 1−α2

25 , like (64) and (65), we have (1+α6)(1+2γy)2 1+α2

2 ≤ 3+α2

4 , 8(1+α−1
6 ) ≤ 8·13

1−α2 = 104
1−α2

and (1 + α−1
6 )4γ2

y + (1 + α6)(1 + 2γy)2 1
1−α2 ≤ 13

1−α2
4

625 + 13
12

7
6

1
1−α2 ≤ 3

2(1−α2) . Thus

E
[
‖Yt+1 −Yt+1‖2

]
≤ 3+α2

4 E
[
‖Yt −Yt‖2

]
+

104γ2
y

1−α2 E
[
‖Yt(I− J)‖2

]
+ 6L2

1−α2E
[
‖Xt+1 −Xt‖2

]
+ 9nσ2

1−α2

≤ 180L2

1−α2 E
[
‖Xt
⊥‖2

]
+ 24

√
3αγxL

2

1−α2 E
[
‖Xt −Xt‖2

]
+ 3+α2

4 E
[
‖Yt −Yt‖2

]
+

104γ2
y+96η2L2

1−α2 E
[
‖Yt(I− J)‖2

]
+ 48L2

1−α2E
[
‖X̂t −Xt‖2

]
+ 48L2η2+9n

1−α2 σ2,

where the second inequality holds by (56). By 48L2η2 ≤ n, we have (67) and complete the proof.

Lemma 19. Let η ≤ λ ≤ 1
4L and γx ≤ 1

6α . It holds

n∑
i=1

E
[
φλ(xt+1

i )
]
≤

n∑
i=1

E
[
φλ(xti)

]
+

12

λ
E
[
‖Xt
⊥‖2

]
+

7αγx
λ

E
[
‖Xt −Xt‖2

]
+

12

λ
η2E

[
‖Yt
⊥‖2

]
+

1

λ

(
− η

4λ
+ 23αγx

)
E
[
‖X̂t −Xt‖2

]
+

5

λ
η2σ2. (72)
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Proof. Similar to (36), we have

E
[
φλ(xt+1

i )
] (18)

= E
[
φ(x̂t+1

i )
]

+
1

2λ
E
[
‖x̂t+1

i − xt+1
i ‖

2
]

(14)
≤ E

[
φ

( n∑
j=1

(
Ŵx

)
ji
x̂
t+ 1

2
j

)]
+

1

2λ
E
[∥∥∥∥ n∑

j=1

(
Ŵx

)
ji

(
x̂
t+ 1

2
j − x

t+ 1
2

j

)
− γx

n∑
j=1

(
Wji − Iji

)(
xt+1
j − x

t+ 1
2

j

)∥∥∥∥2]

≤ E
[
φ

( n∑
j=1

(
Ŵx

)
ji
x̂
t+ 1

2
j

)]
+

1 + α7

2λ
E
[∥∥∥∥ n∑

j=1

(
Ŵx

)
ji

(
x̂
t+ 1

2
j − x

t+ 1
2

j

)∥∥∥∥2]

+
1 + α−1

7

2λ
E
[∥∥∥∥γx n∑

j=1

(
Wji − Iji

)(
xt+1
j − x

t+ 1
2

j

)∥∥∥∥2]
Lemma 8
≤

n∑
j=1

(
Ŵx

)
ji
E
[
φ(x̂

t+ 1
2

j )
]

+
L

2

n−1∑
j=1

n∑
l=j+1

(
Ŵx

)
ji

(Ŵx)liE
[
‖x̂t+

1
2

j − x̂
t+ 1

2

l ‖2
]

+
1 + α7

2λ

n∑
j=1

(
Ŵx

)
ji
E
[
‖x̂t+

1
2

j − x
t+ 1

2
j ‖2

]
+

1 + α−1
7

2λ
γ2
xE
[
‖

n∑
j=1

(Wji − Iji)(x
t+1
j − x

t+ 1
2

j )‖2
]

≤
n∑
j=1

(
Ŵx

)
ji
E
[
φλ(x

t+ 1
2

j )
]

+
1

4λ

n−1∑
j=1

n∑
l=j+1

(
Ŵx

)
ji

(Ŵx)liE
[
‖xt+

1
2

j − x
t+ 1

2

l ‖2
]

+
α7

2λ

n∑
j=1

(
Ŵx

)
ji
E
[
‖x̂t+

1
2

j − x
t+ 1

2
j ‖2

]
+

1 + α−1
7

2λ
γ2
xE
[
‖

n∑
j=1

(Wji − Iji)(x
t+1
j − x

t+ 1
2

j )‖2
]
. (73)

The same as (37) and (38), for the first two terms in the right hand side of (73), we have

n∑
i=1

n∑
j=1

(
Ŵx

)
ji
φλ(x

t+ 1
2

j ) ≤
n∑
i=1

φλ(xti) +
1

2λ
‖X̂t −Xt+ 1

2 ‖2 − 1

2λ
‖X̂t −Xt‖2, (74)

n∑
i=1

n−1∑
j=1

n∑
l=j+1

(
Ŵx

)
ji

(Ŵx)li‖x
t+ 1

2
j − x

t+ 1
2

l ‖2 ≤ 8‖Xt
⊥‖2 + 8η2‖Yt

⊥‖2. (75)

For the last two terms on the right hand side of (73), we have

n∑
i=1

n∑
j=1

(
Ŵx

)
ji
E
[
‖x̂t+

1
2

j − x
t+ 1

2
j ‖2

]
= ‖X̂t+ 1

2 −Xt+ 1
2 ‖2 ≤ 2‖X̂t+ 1

2 − X̂t‖2 + 2‖X̂t −Xt+ 1
2 ‖2

≤ 2
(1−λL)2 ‖X

t+ 1
2 −Xt‖2 + 2‖X̂t −Xt+ 1

2 ‖2 ≤ 10‖Xt+ 1
2 − X̂t‖2 + 8‖X̂t −Xt‖2, (76)

n∑
i=1

E
[
‖

n∑
j=1

(Wji − Iji)(x
t+1
j − x

t+ 1
2

j )‖2
]

= E
[
‖(Xt+1 −Xt+ 1

2 )(W − I)‖2
]
≤ 4E

[
‖Xt+1 −Xt+ 1

2 ‖2
]

≤ 12α2
(
E
[
‖Xt −Xt‖2

]
+ E

[
‖Xt+ 1

2 − X̂t‖2
]

+ E
[
‖X̂t −Xt‖2

])
, (77)

where (76) holds by Lemma 9 and 1
(1−λL)2 ≤ 2, and (77) holds by (54).
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Sum up (73) for t = 0, 1, . . . , T − 1 and take α7 = αγx. Then with (74), (75), (76) and (77), we have

n∑
i=1

E
[
φλ(xt+1

i )
]
≤

n∑
i=1

E
[
φλ(xti)

]
+

2

λ

(
E
[
‖Xt
⊥‖2

]
+ η2E

[
‖Yt
⊥‖2

])
+

6αγx+6α2γ2
x

λ E
[
‖Xt −Xt‖2

]
+

1

λ

(
1
2 + 11αγx + 6α2γ2

x

)
E
[
‖Xt+ 1

2 − X̂t‖2
]

+
1

λ

(
− 1

2 + 10αγx + 6α2γ2
x

)
E
[
‖X̂t −Xt‖2

]
≤

n∑
i=1

E
[
φλ(xti)

]
+

2

λ

(
E
[
‖Xt
⊥‖2

]
+ η2E

[
‖Yt
⊥‖2

])
+

7αγx
λ

E
[
‖Xt −Xt‖2

]
+

1

λ

(
1
2 + 12αγx

)
E
[
‖X̂t −Xt+ 1

2 ‖2
]

+
1

λ

(
− 1

2 + 11αγx
)
E
[
‖X̂t −Xt‖2

]
.

≤
n∑
i=1

E
[
φλ(xti)

]
+

12

λ
E
[
‖Xt
⊥‖2

]
+

7αγx
λ

E
[
‖Xt −Xt‖2

]
+

12

λ
η2E

[
‖Yt
⊥‖2

]
+

1

λ

((
1
2 + 12αγx

) (
1− η

2λ

)
+
(
− 1

2 + 11αγx
))

E
[
‖X̂t −Xt‖2

]
+

5

λ
η2σ2,

where the second inequality holds by 6αγx ≤ 1, and the third inequality holds by (53) with 1
2 + 12αγx ≤ 5

2 . Noticing(
1

2
+ 12αγx

)(
1− η

2λ

)
+

(
−1

2
+ 11αγx

)
= 23αγx −

η

4λ
− 6αγxη

λ
≤ 23αγx −

η

4λ
,

we obtain (72) and complete the proof.

With Lemmas 17, 18 and 19, we are ready to prove the Theorem 6. We will use the Lyapunov function:

Vt = z1E
[
‖Xt
⊥‖2

]
+ z2E

[
‖Xt −Xt‖2

]
+ z3E

[
‖Yt
⊥‖2

]
+ z4E

[
‖Yt −Yt‖2

]
+ z5

n∑
i=1

E[φλ(xti)],

where z1, z2, z3, z4, z5 ≥ 0 are determined later.

Proof of Theorem 6

Proof. Denote

Ωt0 = E[‖X̂t −Xt‖2], Φt =

n∑
i=1

E[φλ(xti)],

Ωt =
(
E
[
‖Xt
⊥‖2

]
,E
[
‖Xt −Xt‖2

]
,E
[
‖Yt
⊥‖2

]
,E
[
‖Yt −Yt‖2

]
,Φt
)>
.

Then Lemmas 17, 18 and 19 imply Ωt+1 ≤ AΩt + bΩt0 + cσ2 with

A =



3+ρ̂2x
4 2αγx(1− ρ̂2

x) 9
4(1−ρ̂2x)η

2 0 0
21

1−α2
3+α2

4
21

1−α2 η
2 0 0

150L2

1−ρ̂2y
20
√

3L2

1−ρ̂2y
αγx

3+ρ̂2y
4

48
1−ρ̂2y

α2γ2
y 0

180L2

1−α2
24
√

3L2

1−α2 αγx
104γ2

y+96L2η2

1−α2
3+α2

4 0
12
λ

7αγx
λ

12
λ η

2 0 1


,

b =


4αγx(1− ρ̂2

x)
11

1−α2

40L2

1−ρ̂2y
48L2

1−α2

1
λ

(
− η

4λ + 23αγx
)

 , c =


4αγxη

2(1− ρ̂2
x)

11η2

1−α2

12n
10n

1−α2

5
λη

2

 .
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Then for any z = (z1, z2, z3, z4, z5)> ≥ 0>, it holds

z>Ωt+1 ≤ z>Ωt + (z>A− z>)Ωt + z>bΩt0 + z>cσ2.

Let γx ≤ η
α and γy ≤

(1−α2)(1−ρ̂2x)(1−ρ̂2y)

317 . Take

z1 =
52

1− ρ̂2
x

, z2 =
448

1− α2
η, z3 =

521

(1− ρ̂2
x)2(1− ρ̂2

y)
η2, z4 = (1− α2)η2, z5 = λ.

We have

z>A− z> ≤



21·448
(1−α2)2 η + 150·521L2η2

(1−ρ̂2x)2(1−ρ̂2y)2 + 180L2η2 − 1

521·20
√

3L2η3

(1−ρ̂2x)2(1−ρ̂2y)2 + 24
√

3L2η3 − η
448·21η3

(1−α2)2 + 96L2η4 − η2

(1−ρ̂2x)2

0

0



>

,

z>b ≤ − η
4λ + 23η + 48L2η2 + 521·40η2L2

(1−ρ̂2x)2(1−ρ̂2y)2 + 448·11η
(1−α2)2 + 52 · 4η,

z>c ≤
(

52 · 4η + 448·11η
(1−α2)2 + 521·12n

(1−ρ̂2x)2(1−ρ̂2y) + 10n+ 5
)
η2.

By η ≤ (1−α2)2(1−ρ̂2x)2(1−ρ̂2y)2

18830 max{1,L} and λ ≤ (1−α2)2

9L+41280 , we have z>A− z> ≤ (− 1
2 , 0, 0, 0, 0)>,

z>c ≤ (521·12+10)n+6
(1−ρ̂2x)2(1−ρ̂2y) η

2 = 6262n+6
(1−ρ̂2x)2(1−ρ̂2y)η

2

and

z>b ≤ η
(
− 1

4λ + 23 + 48L2η + 521·40ηL2

(1−ρ̂2x)2(1−ρ̂2y)2 + 448·11
(1−α2)2 + 52 · 4

)
≤ − η

8λ + η
(
− 1

8λ + 9L
8 + 5160

(1−α2)2

)
≤ − η

8λ .

Hence we have

z>Ωt+1 ≤ z>Ωt − η
8λΩt0 − 1

2E[‖Xt
⊥‖2] + 6262n+6

(1−ρ̂2x)2(1−ρ̂2y)η
2σ2. (78)

Thus summing up (78) for t = 0, 1, . . . , T − 1 gives

1

λT

T−1∑
t=0

Ωt0 +
4

ηT

T−1∑
t=0

E[‖Xt
⊥‖2] ≤ 8(z>Ω0−z>ΩT )

ηT + 8(6262n+6)
(1−ρ̂2x)2(1−ρ̂2y)ησ

2. (79)

From y−1
i = 0, y−1

i
= 0,∇Fi(x−1

i , ξ−1
i ) = 0, x0

i = 0, x0
i = x0,∀ i ∈ N , we have

‖Y0
⊥‖2 = ‖∇F0(I− J)‖2 ≤ ‖∇F0‖2, ‖Y0 −Y0‖2 = ‖∇F0 −Qy

[
∇F0

]
‖2 ≤ α2‖∇F0‖2, (80)

‖X0
⊥‖2 = 0, ‖X0 −X0‖2 = 0, Φ0 = nφλ(x0). (81)

Note (42) still holds here. With (80), (81), (42), and the nonnegativity of E[‖XT
⊥‖2], E[‖XT − XT ‖2], E[‖YT

⊥‖2],
E[‖YT −YT ‖2], we have

z>Ω0 − z>ΩT ≤ 521
(1−ρ̂2x)2(1−ρ̂2y)η

2E[‖∇F0‖2] + η2E[‖∇F0‖2] + λnφλ(x0)− λnφ∗λ. (82)

where we have used α2 ≤ 1 from Assumption 4.
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By the convexity of the frobenius norm and (82), we obtain from (79) that

1

nλ2
E
[
‖X̂τ −Xτ‖2

]
+

4

nλη
E[‖Xτ

⊥‖2] ≤ 1

nλ2

1

T

T−1∑
t=0

E
[
‖X̂t −Xt‖2

]
+

4

nληT

T−1∑
t=0

E[‖Xt
⊥‖2]

≤ 8(φλ(x0)−φ∗λ)
ηT + 50096n+48

(1−ρ̂2x)2(1−ρ̂2y)
η
nλσ

2 + 8·521η
nλT (1−ρ̂2x)2(1−ρ̂2y)E

[
‖∇F0‖2

]
+ 8η

nλT E
[
‖∇F0‖2

]
≤ 8(φλ(x0)−φ∗λ)

ηT + (50096n+48)ησ2

nλ(1−ρ̂2x)2(1−ρ̂2y) +
4176ηE[‖∇F0‖2]
nλT (1−ρ̂2x)2(1−ρ̂2y) . (83)

With ‖∇φλ(xτi )‖2 =
‖xτi−x̂

τ
i ‖

2

λ2 from Lemma 2, we complete the proof.

D. Additional Details on FixupResNet20
FixupResNet20 (Zhang et al., 2019) is amended from the popular ResNet20 (He et al., 2016) by deleting the BatchNorm
layers (Ioffe & Szegedy, 2015). The BatchNorm layers use the mean and variance of some hidden layers based on the data
inputted into the models. In our experiment, the data on nodes are heterogeneous. If the models include BatchNorm layers,
even all nodes have the same model parameters after training, their testing performance on the whole data would be different
for different nodes because the mean and variance of the hidden layers are produced on the heterogeneous data. Thus we use
FixupResNet20 instead of ResNet20.


