
Class based Influence Functions for Error Detection

Nguyen Duc-Thang∗† Hoang Thanh-Tung∗† Quan Tran∗‡
Huu-Tien Dang† Nguyen Ngoc-Hieu† Anh Dau† Nghi Bui†

† FPT Software AI Center ‡ Adobe Research
{nguyenducthang8a2, htt210, quanthdhcn}@gmail.com

Abstract

Influence functions (IFs) are a powerful tool
for detecting anomalous examples in large
scale datasets. However, they are unstable
when applied to deep networks. In this pa-
per, we provide an explanation for the instabil-
ity of IFs and develop a solution to this prob-
lem. We show that IFs are unreliable when
the two data points belong to two different
classes. Our solution leverages class informa-
tion to improve the stability of IFs. Extensive
experiments show that our modification signif-
icantly improves the performance and stability
of IFs while incurring no additional computa-
tional cost.

1 Introduction

Deep learning models are data hungry. Large mod-
els such as transformers (Vaswani et al., 2017),
BERT (Devlin et al., 2019), and GPT-3 (Brown
et al., 2020) require millions to billions of training
data points. However, data labeling is an expensive,
time consuming, and error prone process. Popular
datasets such as the ImageNet (Deng et al., 2009)
contain a significant amount of errors - data points
with incorrect or ambiguous labels (Beyer et al.,
2020). The need for automatic error detection tools
is increasing as the sizes of modern datasets grow.

Influence function (IF) (Koh and Liang, 2017)
and its variants (Charpiat et al., 2019; Khanna et al.,
2019; Barshan et al., 2020; Pruthi et al., 2020) are a
powerful tool for estimating the influence of a data
point on another data point. Researchers leveraged
this capability of IFs to design or detect adversarial
(Cohen et al., 2020), poisonous (Koh et al., 2022;
Koh and Liang, 2017), and erroneous (Dau et al.,
2022) examples in large scale datasets. The intu-
ition is that these harmful data points usually have
a negative influence on other data points and this
influence can be estimated with IFs.

∗Joint first authors

Basu et al. (2021) empirically observed that IFs
are unstable when they are applied to deep neu-
ral networks (DNNs). The quality of influence
estimation deteriorates as networks become more
complex. In this paper, we provide empirical and
theoretical explanations for the instability of IFs.
We show that IFs scores are very noisy when the
two data points belong to two different classes but
IFs scores are much more stable when the two data
points are in the same class (Sec. 3). Based on
that finding, we propose IFs-class, variants of IFs
that use class information to improve the stability
while introducing no additional computational cost.
IFs-class can replace IFs in anomalous data detec-
tion algorithms. In Sec. 4, we compare IFs-class
and IFs on the error detection problem. Experi-
ments on various NLP tasks and datasets confirm
the advantages of IFs-class over IFs.

2 Background and Related work

We define the notations used in this paper. Let
z = (x,y) be a data point, where x ∈ X is
the input, y ∈ Y is the target output; Z ={
z(i)
}n
i=1

be a dataset of n data points; Z−i =

Z\z(i) be the dataset Z with z(i) removed; fθ :
X → Y be a model with parameter θ; LZ,θ =
1
n

∑n
i=1 `(fθ(x

(i)),y(i)) = 1
n

∑n
i=1 `(z

(i);θ) be
the empirical risk of fθ measured on Z , where
` : Y × Y → R+ is the loss function; θ̂ =
argminθ LZ,θ and θ̂−i = argminθ LZ−i,θ be the
optimal parameters of the model fθ trained on Z
and Z−i. In this paper, fθ is a deep network and
θ̂ is found by training fθ with gradient descent on
the training set Z .

2.1 Influence function and variants
The influence of a data point z(i) on another data
point z(j) is defined as the change in loss at z(j)

when z(i) is removed from the training set

s(ij) = `(z(j); θ̂−i)− `(z(j); θ̂) (1)

ar
X

iv
:2

30
5.

01
38

4v
1

 [
cs

.C
L

]
 2

 M
ay

 2
02

3

The absolute value of s(ij) measures the strength of
the influence of z(i) on z(j). The sign of s(ij) show
the direction of influence. A negative s(ij) means
that removing z(i) decreases the loss at z(j), i.e. z(i)

is harmful to z(j). s(ij) has high variance because
it depends on a single (arbitrary) data point z(j).
To better estimate the influence of z(i) on the entire
data distribution, researchers average the influence
scores of z(i) over a reference set Z ′

s(i) =
1

|Z ′|
∑

z(j)∈Z′
s(ij) = LZ′,θ̂−i

− LZ′,θ̂ (2)

s(i) is the influence of z(i) on the reference set Z ′.
Z ′ can be a random subset of the training set or
a held-out dataset. Naive computation of s(ij) re-
quires retraining fθ on Z−i. Koh and Liang (2017)
proposed the influence function (IF) to quickly es-
timate s(ij) without retraining

s(ij) ≈ IF (z(i), z(j))

≈ 1

n
∇θ̂`(z

(i); θ̂)>H−1
θ̂
∇θ̂`(z

(j); θ̂) (3)

where Hθ̂ = ∂2LZ,θ̂/∂θ2 is the Hessian at θ̂. Exact
computation of H−1

θ̂
is intractable for modern net-

works. Koh and Liang (2017) developed a fast al-
gorithm for estimating H−1

θ̂
∇θ̂`(z

(j); θ̂) and used
only the derivatives w.r.t. the last layer’s parameters
to improve the algorithm’s speed. Charpiat et al.
(2019) proposed gradient dot product (GD) and gra-
dient cosine similarity (GC) as faster alternatives to
IF. Pruthi et al. (2020) argued that the influence can
be better approximated by accumulating it through
out the training process (TracIn). The formula for
IFs are summarized in Tab. 1 in Appx. A.

IFs can be viewed as measures of the similarity
between the gradients of two data points. Intu-
itively, gradients of harmful examples are dissimi-
lar from that of normal examples (Fig. 1).

2.2 Influence functions for error detection

In the error detection problem, we have to detect
data points with wrong labels. Given a (potentially
noisy) dataset Z , we have to rank data points in
Z by how likely they are erroneous. Removing
or correcting errors improves the performance and
robustness of models trained on that dataset.

Traditional error detection algorithms that use
hand designed rules (Chu et al., 2013) or simple
statistics (Huang and He, 2018), do not scale well
to deep learning datasets. Cohen et al. (2020);

Dau et al. (2022) used IFs to detect adversarial and
erroneous examples in deep learning datasets. Dau
et al. (2022) used IFs to measure the influence of
each data point z ∈ Z on a clean reference set
Z ′. Data points in Z are ranked by how harmful
they are to Z ′. Most harmful data points are re-
examined by human or are removed fromZ (Alg. 2
in Appx. A). In this paper, we focus on the error
detection problem but IFs and IFs-class can be used
to detect other kinds of anomalous data.

3 Method

3.1 Motivation

2 0 2 4 6

4

2

0

2

4

6

Figure 1: Gradient pattern on a classification problem.
A mislabeled data point is shown by a circle with two
colors, the inner color is the original (true) class, the
outer color is the new (noisy) class. We plot only the
first 2 dimensions of the gradient. See Appx. C for im-
plementation details and other gradient dimensions.

40 20 0 20 40
0.0

0.5

1.0

1.5

2.0

1e6
all classes
class 0
class 1

Figure 2: GD score distribution on the IMDB dataset.
Results on other datasets are shown in Appx. C.

Basu et al. (2021) attributed the instability of
IFs to the non-convexity of DNNs and the errors
in Taylor’s expansion and Hessian-Vector product
approximation. In this section, we show that the
learning dynamics of DNNs makes examples from
different classes unrelated and can have random
influence on each other.

Pezeshkpour et al. (2021); Hanawa et al. (2021)
empirically showed that IFs with last layer gradi-

ent perform as well as or better than IFs with all
layers’ gradient and variants of IF behave simi-
larly. Therefore, we analyze the behavior of GD
with last layer’s gradient and generalize our results
to other IFs. Fig. 1 shows the last layer’s gradi-
ent of an MLP on a 3-class classification problem.
In the figure, gradients of mislabeled data points
have large magnitudes and are opposite to gradients
of correct data points in the true class. However,
gradients of mislabeled data points are not neces-
sarily opposite to that of correct data points from
other classes. Furthermore, gradients of two data
points from two different classes are almost per-
pendicular. We make the following observation.
A mislabeled/correct data point often has a very
negative/positive influence on data points of the
same (true) class, but its influence on other classes
is noisy and small.

We verify the observation on real-world datasets.
(Fig. 2). We compute GD scores of pairs of clean
data points from 2 different classes and plot the
score’s distribution. We repeat the procedure for
pairs of data points from each class. In the 2-class
case, GD scores are almost normally distributed
with a very sharp peak at 0. That means, in many
cases, a clean data point from one class has no
significant influence on data points from the other
class. And when it has a significant effect, the effect
could be positive or negative with equal probability.
In contrast, GD scores of pairs of data points from
the same class are almost always positive. A clean
data point almost certainly has a positive influence
on clean data points of the same class.

Our theoretical analysis shows that when the two
data points have different labels, then the sign of
GD depends on two random variables, the sign of
inner product of the features and the sign of inner
product of gradients of the losses w.r.t. the logits.
And as the model becomes more confident about
the labels of the two data points, the magnitude
of GD becomes smaller very quickly. Small per-
turbations to the logits or the features can flip the
sign of GD. In contrast, if the two data points have
the same label, then the sign of GD depends on
only one random variable, the sign of the inner
product of the feature, and the GD’s magnitude
remains large when the model becomes more confi-
dent. Mathematical details are deferred to Appx. D.

Algorithm 1 Class based influence function for
error detection.
Require:

1: Z =
{
z(i)
}n
i=1

: a big noisy dataset
2: C: number of classes
3: Z ′k =

{
z′(jk)

}mk

jk=1
: clean data from class k

4: Z ′ =
⋃C
k=1Z ′k: a clean reference dataset

5: fθ̂: a deep model pretrained on Z
6: sim(·, ·): a similarity measure in Tab. 1

Ensure: Ẑ: data points in Z ranked by score
7: for z(i) ∈ Z do
8: for k = 1, ..., C do
9: s

(i)
k = 1

mk

∑mk
j=1 sim(∇θ̂`(z

(i)),∇θ̂`(z
′(jk)))

10: end for
11: s(i) = mink(s

(i)
k)

12: end for
13: Ẑ = sort(Z, key = s, ascending = True)
14: return Ẑ

3.2 Class based IFs for error detection

Our class based IFs for error detection is shown in
Alg. 1. In Sec. 3.1, we see that an error has a very
strong negative influence on correct data points
in the true class, and a correct data point has a
positive influence on correct data points in the true
class. Influence score on the true class is a stronger
indicator of the harmfulness of a data point and
is better at differentiating erroneous and correct
data points. Because we do not know the true class
of z(i) in advance, we compute its influence score
on each class in the reference set Z ′ and take the
minimum of these influence scores as the indicator
of the harmfulness of z(i) (line 8-11). Unlike the
original IFs, IFs-class are not affected by the noise
from other classes and thus, have lower variances
(Fig. 4 in Appx. A). In Appx. A, we show that our
algorithm has the same computational complexity
as IFs based error detection algorithm.

4 Experiments

Experiment setup We evaluate the error detec-
tion performance of IFs-class on 2 NLP tasks, (1)
text classification on IMDB (Maas et al., 2011),
SNLI (Bowman et al., 2015), and BigCloneBench
(Svajlenko et al., 2014) datasets, and (2) NER on
the CoNLL2003 (Tjong Kim Sang and De Meul-
der, 2003) dataset. For text classification tasks,
we detect text segments with wrong labels. For
the NER task, we detect tokens with wrong en-
tity types. We use BERT (Devlin et al., 2019) and

5 10 15 20
0.0

0.2

0.5

0.8

1.0

De
te

ct
io

n
ac

cu
ra

cy
IF
IF-class

5 10 15 20
0.0

0.2

0.5

0.8

1.0

GD
GD-class

5 10 15 20
Top (%)

0.0

0.2

0.5

0.8

1.0

De
te

ct
io

n
ac

cu
ra

cy

GC
GC-class

5 10 15 20
Top (%)

0.0

0.2

0.5

0.8

1.0

TracIn
TracIn-class

(a)

5% 10% 15% 20%5% 10% 15% 20%
Noise in dataset

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

De
te

ct
io

n
ac

cu
ra

cy
 o

f I
F

IF
IF-class

(b)

LOC PER MISC ORG
0

1000

2000

3000

4000

5000

3888

3509

2584

3125

3949
3688 3614 3742

GD-class
GD

(c)

Figure 3: (a) Error detection accuracy on SNLI dataset with p = 20%. (b) Error detection accuracy of IF and
IF-class on IMDB dataset with different values of p. (c) Number of erroneous NER tokens detected by GD and
GD-class at p = 30%, r = 30%, q = 9%, grouped by entity types of the erroneous tokens.

CodeBERT (Feng et al., 2020) in our experiments.
Implementation details are located in Appx. B. To
create benchmark datasets Z’s, we inject random
noise into the above datasets. For text classification
datasets, we randomly select p% of the data points
and change their labels to other random classes.
For the CoNLL-NER dataset, we randomly select
p% of the sentences and change the labels of r%
of the phrases in the selected sentences. All tokens
in a selected phrase are changed to the same class.
The reference set Z ′ is created by randomly se-
lecting mk clean data points from each class in Z .
Models are trained on the noisy dataset Z . To eval-
uate an error detection algorithm, we select top q%
most harmful data points from the sorted dataset Ẑ
and check how many percent of the selected data
points are really erroneous. Intuitively, increasing
q allows the algorithm to find more errors (increase
recall) but may decrease the detection accuracy
(decrease precision).

Result and Analysis Because results on all
datasets share the same patterns, we report rep-
resentative results here and defer the full results to
Appx. C.

Fig. 3(a) shows the error detection accuracy on
the SNLI dataset and how the accuracy changes
with q. Except for the GC algorithm, our class-
based algorithms have higher accuracy and lower
variance than the non-class-based versions. When
q increases, the performance of IFs-class does not
decrease as much as that of IFs. This confirms that
IFs-class are less noisy than IFs. Class information
fails to improve the performance of GC. To under-
stand this, let’s reconsider the similarity measure
sim(·, ·). Let’s assume that there exist some clean
data points z′(j) ∈ Z ′ with a very large gradient
∇θ̂`(z

′(j)). If the similarity measure does not nor-
malize the norm of ∇θ̂`(z

′(j)), then z′(j) will have

the dominant effect on the influence score. The
noise in the influence score is mostly caused by
these data points. GC normalizes both gradients,
∇θ̂`(z

(i)) and∇θ̂`(z
′(j)), and effectively removes

such noise. However, gradients of errors tend to be
larger than that of normal data points (Fig. 1). By
normalizing both gradients, GC removes the valu-
able information about magnitudes of gradients of
errors ∇θ̂`(z

(i)). That lowers the detection perfor-
mance. In Fig. 3(a), we see that the performance of
GC when q ≥ 15% is lower than that of other class-
based algorithms. Similar trends are observed on
other datasets (Fig. 6, 7, 8 in Appx. C).

Fig. 3(b) shows the change in detection accuracy
as the level of noise p goes from 5% to 20%. For
each value of p, we set q to be equal to p. Our
class-based influence score significantly improves
the performance and reduces the variance. We note
that when p increases, the error detection problem
becomes easier as there are more errors. The detec-
tion accuracy, therefore, tends to increase with p as
shown in Fig. 3(b), 9, 10.

Fig. 3(c) shows that GD-class outperforms GD
on all entity types in CoNLL2003-NER. The per-
formance difference between GD-class and GD is
greater on the MISC and ORG categories. Intu-
itively, a person’s name can likely be an organiza-
tion’s name but the reverse is less likely. Therefore,
it is harder to detect that a PER or LOC tag has
been changed to ORG or MISC tag than the reverse.
The result shows that IFs-class is more effective
than IFs in detecting hard erroneous examples.

5 Conclusion

In this paper, we study influence functions and
identify the source of their instability. We give a
theoretical explanation for our observations. We
introduce a stable variant of IFs and use that to de-

velop a high performance error detection algorithm.
Our findings shed light of the development of new
influence estimators and on the application of IFs
in downstream tasks.

Limitations

Our paper has the following limitations

1. Our class-based influence score cannot im-
prove the performance of GC algorithm. Al-
though class-based version of GD, IF, and
TracIn outperformed the original GC, we aim
to develop a stronger version of GC. From the
analysis in Sec. 4, we believe that a partially
normalized GC could have better performance.
In partial GC, we normalize the gradient of the
clean data point z′(j) only. That will remove
the noise introduced by ‖∇θ̂`(z

′(j))‖ while
retaining the valuable information about the
norm of ∇θ̂`(z

(i)).

Ethics Statement

Our paper consider a theoretical aspect of influence
functions. It does not have any biases toward any
groups of people. Our findings do not cause any
harms to any groups of people.

References

Elnaz Barshan, Marc-Etienne Brunet, and
Gintare Karolina Dziugaite. 2020. Relatif: Iden-
tifying explanatory training samples via relative
influence. In International Conference on Artifi-
cial Intelligence and Statistics, pages 1899–1909.
PMLR.

Samyadeep Basu, Phil Pope, and Soheil Feizi. 2021.
Influence functions in deep learning are fragile. In
International Conference on Learning Representa-
tions.

Lucas Beyer, Olivier J. Hénaff, Alexander Kolesnikov,
Xiaohua Zhai, and Aäron van den Oord. 2020. Are
we done with imagenet? CoRR, abs/2006.07159.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
632–642, Lisbon, Portugal. Association for Compu-
tational Linguistics.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry,
Amanda Askell, Sandhini Agarwal, Ariel Herbert-
Voss, Gretchen Krueger, Tom Henighan, Rewon
Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu,
Clemens Winter, Chris Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In
Advances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Guillaume Charpiat, Nicolas Girard, Loris Felardos,
and Yuliya Tarabalka. 2019. Input similarity from
the neural network perspective. Advances in Neural
Information Processing Systems, 32.

Xu Chu, Ihab F. Ilyas, and Paolo Papotti. 2013. Holis-
tic data cleaning: Putting violations into context. In
2013 IEEE 29th International Conference on Data
Engineering (ICDE), pages 458–469.

Gilad Cohen, Guillermo Sapiro, and Raja Giryes. 2020.
Detecting adversarial samples using influence func-
tions and nearest neighbors. In Proceedings of the
IEEE/CVF conference on computer vision and pat-
tern recognition, pages 14453–14462.

Anh T. V. Dau, Nghi D. Q. Bui, Thang Nguyen-Duc,
and Hoang Thanh-Tung. 2022. Towards using data-
influence methods to detect noisy samples in source
code corpora. In Proceedings of the 37th IEEE/ACM
International Conference on Automated Software
Engineering.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. 2009. Imagenet: A large-scale hier-
archical image database. In 2009 IEEE conference
on computer vision and pattern recognition, pages
248–255. Ieee.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, and Ming Zhou. 2020. Code-
BERT: A pre-trained model for programming and
natural languages. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
1536–1547, Online. Association for Computational
Linguistics.

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu
Tang, Shujie Liu, Long Zhou, Nan Duan, Alexey
Svyatkovskiy, Shengyu Fu, et al. 2020. Graphcode-
bert: Pre-training code representations with data
flow. arXiv preprint arXiv:2009.08366.

Kazuaki Hanawa, Sho Yokoi, Satoshi Hara, and Ken-
taro Inui. 2021. Evaluation of similarity-based ex-
planations. In International Conference on Learn-
ing Representations.

Zhipeng Huang and Yeye He. 2018. Auto-detect: Data-
driven error detection in tables. In Proceedings of
the 2018 International Conference on Management
of Data, pages 1377–1392.

Rajiv Khanna, Been Kim, Joydeep Ghosh, and Sanmi
Koyejo. 2019. Interpreting black box predictions us-
ing fisher kernels. In The 22nd International Confer-
ence on Artificial Intelligence and Statistics, pages
3382–3390. PMLR.

Pang Wei Koh and Percy Liang. 2017. Understanding
black-box predictions via influence functions. In In-
ternational conference on machine learning, pages
1885–1894. PMLR.

Pang Wei Koh, Jacob Steinhardt, and Percy Liang.
2022. Stronger data poisoning attacks break data
sanitization defenses. Machine Learning, 111(1):1–
47.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In International Con-
ference on Learning Representations.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey
Svyatkovskiy, Ambrosio Blanco, Colin Clement,
Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Li-
dong Zhou, Linjun Shou, Long Zhou, Michele Tu-
fano, MING GONG, Ming Zhou, Nan Duan, Neel

https://openreview.net/forum?id=xHKVVHGDOEk
http://arxiv.org/abs/2006.07159
http://arxiv.org/abs/2006.07159
https://doi.org/10.18653/v1/D15-1075
https://doi.org/10.18653/v1/D15-1075
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.1109/ICDE.2013.6544847
https://doi.org/10.1109/ICDE.2013.6544847
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://openreview.net/forum?id=9uvhpyQwzM_
https://openreview.net/forum?id=9uvhpyQwzM_
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7

Sundaresan, Shao Kun Deng, Shengyu Fu, and Shu-
jie LIU. 2021. CodeXGLUE: A machine learning
benchmark dataset for code understanding and gen-
eration. In Thirty-fifth Conference on Neural In-
formation Processing Systems Datasets and Bench-
marks Track (Round 1).

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
2011. Learning word vectors for sentiment analy-
sis. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 142–150, Port-
land, Oregon, USA. Association for Computational
Linguistics.

Pouya Pezeshkpour, Sarthak Jain, Byron Wallace, and
Sameer Singh. 2021. An empirical comparison of in-
stance attribution methods for NLP. In Proceedings
of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 967–975, On-
line. Association for Computational Linguistics.

Garima Pruthi, Frederick Liu, Satyen Kale, and
Mukund Sundararajan. 2020. Estimating training
data influence by tracing gradient descent. Ad-
vances in Neural Information Processing Systems,
33:19920–19930.

Jeffrey Svajlenko, Judith F. Islam, Iman Keivanloo,
Chanchal K. Roy, and Mohammad Mamun Mia.
2014. Towards a big data curated benchmark of
inter-project code clones. In 2014 IEEE Interna-
tional Conference on Software Maintenance and
Evolution, pages 476–480.

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoNLL-2003 shared task:
Language-independent named entity recognition. In
Proceedings of the Seventh Conference on Natu-
ral Language Learning at HLT-NAACL 2003, pages
142–147.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

A Additional algorithms and formula

Table 1: Influence function and its variants. We drop
the constant factor 1/n for clarity.

IF ∇θ̂`(z
(i); θ̂)>H−1

θ̂
∇θ̂`(z

(j); θ̂)

GD
〈
∇θ̂`(z

(i)),∇θ̂`(z
(j))
〉

GC cos
(
∇θ̂`(z

(i)),∇θ̂`(z
(j))
)

TracIn
∑T

t=1 ηt
〈
∇θ(t)`(z(i)),∇θ(t)`(z(j))

〉

Algorithm 2 Influence function based error detec-
tion (Dau et al., 2022)
Require:

1: Z =
{
z(i)
}n
i=1

: a big noisy dataset
2: Z ′ =

{
z′(j)

}m
j=1

: a small reference dataset
3: fθ̂: a deep model pretrained on Z
4: sim(·, ·): a similarity measure in Tab. 1

Ensure: Ẑ: data points in Z ranked by score
5: for z(i) ∈ Z do
6: s(i) = 1

m

∑m
j=1 sim(∇θ̂`(z

(i)),∇θ̂`(z
′(j)))

7: end for
8: Ẑ = sort(Z, key = s, ascending = True)
9: return Ẑ

Computational complexity of error detection
algorithms

The inner for-loop in Alg. 1 calculates C influence
scores. It calls to the scoring function sim() exactly
|Z ′| = m times. The complexity of the inner for-
loop in Alg. 1 is equal to that of line 6 in Alg. 2.
Thus, the complexity of Alg. 1 is equal to that of
Alg. 2.

600 400 200 0 200 400 600
0

200

400

600

800

GD-class
GD

Figure 4: Distributions of GD and GD-class scores of
erroneous tokens in the CoNLL2003 dataset. GD-class
scores are more concentrated and have mostly negative
values. GD scores are more spread out and the values
are less negative. Furthermore, a significant portion of
GD scores are greater than 0, i.e. GD ‘thinks’ that these
erroneous data points have positive influence on clean
data points inZ ′. In contrast, GD-class scores are more
concentrated and almost always have negative values.
This shows a clear advantage of GD-class over GD.

B Implementation details

B.1 Experiment setup

We used standard datasets and models and experi-
mented with 5 different random seeds and reported

https://aclanthology.org/P11-1015
https://aclanthology.org/P11-1015
https://doi.org/10.18653/v1/2021.naacl-main.75
https://doi.org/10.18653/v1/2021.naacl-main.75
https://doi.org/10.1109/ICSME.2014.77
https://doi.org/10.1109/ICSME.2014.77
https://aclanthology.org/W03-0419
https://aclanthology.org/W03-0419
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

the mean and standard deviation. A Nvidia RTX
3090 was used to run our experiments. Models
are trained with the AdamW optimizer (Loshchilov
and Hutter, 2019) with learning rate η = 5e − 5,
cross entropy loss function, and batch-size of 16.
The epoch with the best classification accuracy on
the validation set was used for error detection.

Our source code and guidelines were attached to
the supplementary materials.

B.2 Datasets

IMDB (Maas et al., 2011) The dataset includes
50000 reviews from the Internet Movie Database
(IMDb) website. The task is a binary sentiment
analysis task. The dataset contains an even num-
ber of positive and negative reviews. The IMDB
dataset is split into training, validation, and test
sets of sizes 17500, 7500, and 25000. The IMDB
dataset can be found at https://ai.stanford.
edu/~amaas/data/sentiment/

SNLI dataset (Standart Natural Language Infer-
ence) (Bowman et al., 2015) consists of 570k sen-
tence pairs manually labeled as entailment, con-
tradiction, and neutral. We convert these labels
into numbers. It is geared towards serving as a
benchmark for evaluating text representational sys-
tems. This dataset is available at https://nlp.
stanford.edu/projects/snli/.

BigCloneBench (Svajlenko et al., 2014) is a huge
code clone benchmark that includes over 6,000,000
true clone pairs and 260,000 false clone pairs from
10 different functionality. The task is to predict
whether two pieces of code have the same seman-
tics. This dataset is commonly used in language
models for code (Feng et al., 2020; Lu et al., 2021;
Guo et al., 2020). This dataset is available at https:
//github.com/clonebench/BigCloneBench

CoNLL2003 (Tjong Kim Sang and De Meulder,
2003) is one of the most influential corpora for
NER model research. A large number of publica-
tions, including many landmark works, have used
this corpus as a source of ground truth for NER
tasks. The data consists two languages: English
and German. In this paper, we use CoNLL2003
English dataset. The sizes of training, validation,
and test are 14,987, 3,466, and 3,684 sentences
correspond to 203,621, 51,362, and 46,435 tokens,
respectively. The dataset is available at https:
//www.clips.uantwerpen.be/conll2003/ner/

B.3 Models
BERT (Devlin et al., 2019) stands for Bidirec-
tional Encoder Representations from Transformers,
is based on Transformers. The BERT model in
this paper was pre-trained for natural language pro-
cessing tasks. We use BERT for IMDB and SNLI
datasets. At the same time, we also use the BERT
model for the NER problem on the CoNLL2003
dataset.
CodeBERT (Feng et al., 2020) is a bimodal pre-
trained model for programming and natural lan-
guages. We use CodeBERT for BigCloneBench
dataset.

C Additional results

C.1 3-class classification experiment
We train a MLP with 2 input neurons, 100 hidden
neurons in the first hidden layer, 2 hidden neurons
in the second hidden layer, and 3 output neurons
with SGD for 1000 epochs. The activation function
is LeakyReLU and the learning rate is η = 1e− 3.
The last layer has 6 parameters organized into a
3× 2 matrix. The gradient of the loss with respect
to the last layer’s parameters is also organized into
a 3× 2 matrix. We visualize 3 rows of the gradient
matrix in 3 subfigures (Fig. 5).

C.2 Result on IMDB, SNLI, BigCloneBench,
and CoNLL2003

To ensure a fair comparison between our class-
based algorithm and algorithm 2, we use the same
reference dataset Z ′ for both algorithms. The ref-
erence dataset Z ′ consists of C classes. We have
C = 2 for the IMDB dataset, C = 3 for the SNLI
dataset, C = 2 for the BigCloneBench dataset, and
C = 5 for the CoNLL2003-NER dataset. From
each of theC classes, we randomly selectmk = 50
k = 1, ..., C clean data points to form Z ′. We tried
varying mk from 10 to 1000 and observed no sig-
nificant changes in performance.

https://ai.stanford.edu/~amaas/data/sentiment/
https://ai.stanford.edu/~amaas/data/sentiment/
https://nlp.stanford.edu/projects/snli/
https://nlp.stanford.edu/projects/snli/
https://github.com/clonebench/BigCloneBench
https://github.com/clonebench/BigCloneBench
https://www.clips.uantwerpen.be/conll2003/ner/
https://www.clips.uantwerpen.be/conll2003/ner/

2 0 2 4 6

4

2

0

2

4

6

2 0 2 4 6

4

2

0

2

4

6

2 0 2 4 6

4

2

0

2

4

6

Figure 5: Gradient pattern on a classification problem.
Each subfigure shows 2 dimensions of the gradient.
The top subfigure shows the 1st and 2nd dimensions of
the gradient. The middle subfigure shows the 3rd and
4th dimensions of the gradient. The bottom subfigure
shows the 5th and 6th dimensions of the gradient.

5 10 15 20
0.0

0.2

0.5

0.8

1.0

De
te

ct
io

n
ac

cu
ra

cy

IF
IF-class

5 10 15 20
0.0

0.2

0.5

0.8

1.0

GD
GD-class

5 10 15 20
Top (%)

0.0

0.2

0.5

0.8

1.0

De
te

ct
io

n
ac

cu
ra

cy

GC
GC-class

5 10 15 20
Top (%)

0.0

0.2

0.5

0.8

1.0

TracIn
TracIn-class

Figure 6: Error detection accuracy on IMDB dataset
with p = 20%.

5 10 15 20
0.0

0.2

0.5

0.8

1.0

De
te

ct
io

n
ac

cu
ra

cy

IF
IF-class

5 10 15 20
0.0

0.2

0.5

0.8

1.0

GD
GD-class

5 10 15 20
Top (%)

0.0

0.2

0.5

0.8

1.0

De
te

ct
io

n
ac

cu
ra

cy

GC
GC-class

5 10 15 20
Top (%)

0.0

0.2

0.5

0.8

1.0

TracIn
TracIn-class

Figure 7: Error detection accuracy on BigCloneBench
dataset with p = 20%.

2 4 6 8
0.6

0.7

0.8

0.9

1.0

De
te

ct
io

n
ac

cu
ra

cy

IF
IF-class

2 4 6 8
0.6

0.7

0.8

0.9

1.0

GD
GD-class

2 4 6 8
Top (%)

0.6

0.7

0.8

0.9

1.0

De
te

ct
io

n
ac

cu
ra

cy

GC
GC-class

2 4 6 8
Top (%)

0.6

0.7

0.8

0.9

1.0

TracIn
TracIn-class

Figure 8: Error detection accuracy on CoNLL2003
dataset with p = 30% and r = 30%

5% 10% 15% 20%5% 10% 15% 20%
Noise in dataset

0.5

0.6

0.7

0.8

0.9

De
te

ct
io

n
ac

cu
ra

cy
 o

f I
F

IF
IF-class

Figure 9: Change in error detection accuracy on the
BigCloneBench dataset as the level of noise changes.

5% 10% 15% 20%5% 10% 15% 20%
Noise in dataset

0.4

0.5

0.6

0.7

De
te

ct
io

n
ac

cu
ra

cy
 o

f I
F

IF
IF-class

Figure 10: Change in error detection accuracy on the
SNLI dataset as the level of noise changes.

7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
1e6

all classes
class 0
class 1
class 2

Figure 11: GD score distribution on the SNLI dataset.

200 100 0 100 200 300 400
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
1e6

all classes
class 0
class 1

Figure 12: GD score distribution on the Big-
CloneBench dataset.

D Explanation of the observation in
Sec. 3

Let’s consider a classification problem with cross
entropy loss function

`(ŷ,y) =

dy∑
i=1

yi log ŷi

where dy is the number of classes. Let z = (x,y)
be a data point with label k, i.e. yk = 1, yi =
0 ∀ i 6= k. The model fθ is a deep network with
last layer’s parameter W ∈ Rdy×dh , where dh is
the number of hidden neurons. Let u ∈ Rdh be the
activation of the penultimate layer. The output is
computed as follow

a =Wu

ŷ = δ(a)

where δ is the softmax output function. The deriva-
tive of the loss at z w.r.t. W is

∂`(z)

∂W
= ∇a`(z) u

> (4)

=

∇a`(z)1u
>

...
∇a`(z)dyu

>

 (5)

The gradient∇a`(z) is

(∇a`)
> =

∂`

∂a
(6)

=
∂`

∂ŷ

∂ŷ

∂a
(7)

=
[
∂`
∂ŷ1

· · · ∂`
∂ŷk

· · · ∂`
∂ŷdy

]
×

∂ŷ1
∂a1

∂ŷ1
∂a2

· · · ∂ŷ1
∂adh

...
...

...
...

∂ŷk
∂a1

∂ŷk
∂a2

· · · ∂ŷk
∂adh

...
...

...
...

∂ŷdy
∂a1

∂ŷdy
∂a2

· · · ∂ŷdy
∂adh

(8)

=
[
∂`
∂ŷk

∂ŷk
∂a1

· · · ∂`
∂ŷk

∂ŷk
∂ak

· · · ∂`
∂ŷk

∂ŷk
∂adh

]
(9)

We go from Eqn. 8 to Eqn. 9 by using the following
fact

∂`

∂ŷi
=

{
0 if i 6= k
1
ŷi

if i = k

We also have

∂ŷk
∂ai

=

{
ŷk(1− ŷk) if i = k

−ŷkŷi if i 6= k

Substitute this into Eqn. 9 we have

∇a` =

−ŷ1

...
1− ŷk

...
−ŷdy

Because 1− ŷk =

∑
j 6=k ŷj , 1− ŷk is much greater

than ŷj in general. Substitute this into Eqn. 5, we
see that the magnitude of the k-th row is much
larger than than of other rows. We also note that
the update for the k-th row of W has the opposite
direction of the updates for other rows.

Let’s consider the inner product of the gradients
of two data points z and z′ with label k and k′.
Let’s consider the case where k′ 6= k first.

vec
(
∂`(z)

∂W

)>
vec
(
∂`(z′)

∂W

)
= (∇a`

>∇a′`)(u
>u′)

(10)

Intuitively, the product ∇a`
>∇a′` is small be-

cause the large element ∇a`k = 1 − ŷk is multi-
plied to the small element∇a′`k = ŷ′k and the large
element∇a′`k′ = 1− ŷ′k′ is multiplied to the small
element ∇a`k′ = ŷk′ . To make it more concrete,
let’s assume that ŷk = α ≈ 1 and ŷi = 1−α

dy−1 = β

for i 6= k. We assume the same condition for ŷ′.

∇a`
>∇a′` = (ŷk − 1)ŷ′k + (ŷ′k′ − 1)ŷk′ +

dy∑
i=1,i 6=k,k′

ŷiŷ
′
i

= (dy − 2)β2 − 2(dy − 1)β2

= −dyβ2

= −dy(1− α)
2

(dy − 1)2
(11)

α ≈ 1 implies 1 − α ≈ 0 and β ≈ 0. Eqn. 11
implies that as the model is more confident about
the label of z and z′, the product ∇a`

>∇a′` tends
toward 0 at a quadratic rate. The means, as the train-
ing progresses, data points from different classes
become more and more independent. The gradients
of data points from different classes also become
more and more perpendicular.

The sign of the gradient product depends on
the sign of ∇a`

>∇a′` and u>u′. The signs of
∇a`

>∇a′` and u>u′ are random variables that de-
pend on the noise in the features u and u′ and the
weight matrix W . If the model fθ cannot learn
a good representation of the input then the fea-
ture u and the sign of u>u′ could be very noisy.
sign(u>u′) is even noisier if z and z′ are from dif-
ferent classes. Because

∣∣∇a`
>∇a′`

∣∣ is small, a
tiny noise in the logits a and a′ can flip the sign of
∇a`

>∇a′` and change the direction of influence.
We now consider the case where k′ = k. When

k′ = k,∇a`
>∇a′` is always positive. The sign of

the gradient product only depends on u>u′. That
explains why the product of gradients of data points
from the same class is much less noisy and almost
always is positive.

Furthermore, the magnitude of ∇a`
>∇a′` is

larger than that in the case k′ 6= k because the
large element 1 − ŷk is multiplied to the large el-
ement 1 − ŷ′k. More concretely, under the same
assumption as in the case k′ 6= k, we have

∇a`
>∇a′` = (1− ŷk)(1− ŷ′k) +

dy∑
i=1,i 6=k

ŷiŷ
′
i

= (1− α)2 + (dy − 1)β2 (12)

From Eqn. 12, we see that when k′ = k, the magni-
tude of∇a`

>∇a′` is approximately dy times larger
than that when k′ 6= k.

