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Abstract
In this work, we investigate the implicit regular-
ization induced by teacher-student learning dy-
namics. To isolate its effect, we describe a simple
experiment where instead of trained teachers, we
consider teachers at random initialization. Surpris-
ingly, when distilling a student into such a random
teacher, we observe that the resulting model and
its representations already possess very interest-
ing characteristics; (1) we observe a strong im-
provement of the distilled student over its teacher
in terms of probing accuracy. (2) The learnt rep-
resentations are highly transferable between dif-
ferent tasks but deteriorate strongly if trained on
random inputs. (3) The student checkpoint suf-
fices to discover so-called lottery tickets, i.e. it
contains identifiable, sparse networks that are as
performant as the full network. These observa-
tions have interesting consequences for several
important areas in machine learning: (1) Self-
distillation can work solely based on the implicit
regularization present in the gradient dynamics
without relying on any dark knowledge, (2) self-
supervised learning can learn features even in the
absence of data augmentation and (3) SGD al-
ready becomes stable when initialized from the
student checkpoint with respect to batch order-
ings. Finally, we shed light on an intriguing local
property of the loss landscape: the process of fea-
ture learning is strongly amplified if the student is
initialized closely to the teacher. This raises inter-
esting questions about the nature of the landscape
that have remained unexplored so far.

1. Introduction
The teacher-student setting is a key ingredient in several
areas of machine learning. Knowledge distillation is a com-
mon strategy to achieve strong model compression by train-
ing a smaller student on the outputs of a larger teacher
model, leading to better performance compared to training
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the small model on the original data only (Bucila et al.,
2006; Ba & Caruana, 2013; Hinton et al., 2015; Polino et al.,
2018; Yim et al., 2017; Chen et al., 2017). In the special
case of self-distillation, where the two architectures match,
it is often observed in practice that the student manages to
outperform its teacher (Zhang et al., 2019; Furlanello et al.,
2018; Yang et al., 2018). The pre-dominant hypothesis in
the literature attests this surprising gain in performance to
the so-called dark knowledge of the teacher, i.e. its logits
encode additional information about the data distribution
(Hinton et al., 2015; Wang et al., 2021; Xu et al., 2018).
Another area relying on a teacher student setup is non-
contrastive self-supervised learning where the goal is to
learn informative representations in the absence of tar-
gets (Caron et al., 2021a; Grill et al., 2020; Chen & He,
2021; Zbontar et al., 2021; Assran et al., 2022). Here, the
two models typically receive two different augmentations of
a sample and the student is forced to mimic the behaviour of
the teacher. Such a learning strategy encourages represen-
tations that remain invariant to the employed augmentation
pipeline, which in turn leads to better downstream perfor-
mance.

Despite its importance as a building block, the teacher-
student setting itself remains very difficult to analyze as its
contribution is often overshadowed by stronger components
in the pipeline such as dark knowledge in the trained teacher
or the inductive bias of data augmentation. In this work
we take a step towards simplifying and isolating the key
components in the setup by devising a very simple experi-
ment; instead of working with a trained teacher, we consider
teachers at random initialization, stripping them from any
data-dependence and thus removing any dark knowledge.
We also remove augmentations, making the setting com-
pletely symmetric between student and teacher and further
reducing inductive bias. Counter-intuitively, we observe
that even in this setting, the student still manages to learn
from its teacher and even exceed it significantly in terms of
representational quality, measured through linearly probing
the features (see Fig. 1). This result shows the following:
(1) Even in the absence of dark knowledge, relevant feature
learning can happen for the student in the setting of self-
distillation. (2) Data augmentation is the main but not only
ingredient in non-contrastive self-supervised learning that
leads to representation learning.
Surprisingly, we find that initializing the student close to the
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Figure 1. Linear probing accuracies of representations generated
by teachers, students, and the flattened input images on CIFAR10
as a function of training time. Left: ResNet18. Right: VGG11
without batch normalization.

teacher further amplifies the implicit regularization present
in the dynamics. This is in-line with common practices in
non-contrastive learning, where teacher and student are usu-
ally initialized closely together and only separated through
small asymmetries in architecture and training protocol
(Grill et al., 2020; Caron et al., 2021a; Tarvainen & Valpola,
2017). We study this locality effect of the landscape and
connect it with the ‘asymmetric valleys’ phenomenon ob-
served in He et al. (2019a).
Inspired by the improvement in terms of probing accuracy,
we study the converged student checkpoint as an initializa-
tion for sparse network discovery. Similarly to Frankle et al.
(2020b), we find that so-called lottery tickets are already
contained in the student and no additional gradient steps are
necessary to unravel them, in contrast to Frankle & Carbin
(2019); Frankle et al. (2020a) where training on the concrete
learning tasks for a few epochs is essential.

2. Related Work
There are several works in the literature aiming at analyz-
ing self-distillation and the impact on the student. Phuong
& Lampert (2019) prove a generalization bound that estab-
lishes fast decay of the risk in case of linear models. Mobahi
et al. (2020) demonstrate an increasing regularization effect
through repeated distillation for kernel regression. Ji & Zhu
(2020) consider a similar approach and rely on the fact that
very wide networks behave very similarly to the neural tan-
gent kernel (Jacot et al., 2018) and leverage this connection
to establish risk bounds. Allen-Zhu & Li (2020) on the
other hand study more realistic width networks and show
that if the data satisfies a certain multi-view property, ensem-
bling and distilling is provably beneficial. Yuan et al. (2020)
study a similar setup as our work by considering teachers
that are not perfectly pre-trained but of weaker (but still far
from random) nature. They show that the dark knowledge
is more a regularization effect and that a similar boost in
performance can be achieved by label smoothing. We would
like to point out however that we study completely random

teachers and our loss function does not provide the hard
labels for supervisory signal, making our task completely
independent of the targets. Another related work studies
benign memorization (Anagnostidis et al., 2022) where it is
shown that strong representation learning can happen even
if the targets are replaced by random labels. In contrast to
our work, the authors rely on heavy data augmentation and
hence no implicit regularization is contained in the dynam-
ics due to the random labels.

Self-supervised learning can be broadly split into two cate-
gories, contrastive and non-contrastive methods. Contrastive
methods rely on the notion of negative examples, where fea-
tures are actively being encouraged to be dissimilar if they
stem from different examples (Chen et al., 2020; Schroff
et al., 2015; van den Oord et al., 2018). Non-contrastive
methods follow our setting more closely as only the notion
of positive examples is employed (Caron et al., 2021a; Grill
et al., 2020; Chen & He, 2021). While these methods en-
joy great empirical successes, a theoretical understanding
is still largely missing. Tian et al. (2021) investigate the
collapse phenomenon in non-contrastive learning and show
in a simplified setting how the stop gradient operation can
prevent it. Wang et al. (2022) extend this work and prove
in the linear setting how a data-dependent projection matrix
is learnt. Zhang et al. (2022) explore a similar approach
and prove that SimSiam (Chen & He, 2021) avoids collapse
through the notion of extra-gradients. Despite this progress
on the optimization side, a good understanding of feature
learning has largely remained elusive.

The high-dimensional loss landscapes of neural networks
remain very mysterious and their properties play a crucial
role in our work. While some structures of it such as (lack
of) linear-mode connectivity and low test loss curves be-
tween minima are well-understood (Garipov et al., 2018;
Frankle et al., 2020a; Draxler et al., 2018; Nagarajan &
Kolter, 2019), the field still lacks a convincing explanation
as to how simple first-order gradient-based methods such
as SGD manage to navigate the landscape so efficiently. In
our experiments, we encounter a novel, local property of
the loss landscape, where a precise initialization turns out
to be essential for successful downstream performance.

3. Setting
Notation. Let us setup some notation first. We consider a
family of parametrized functionsF = {fθ : Rd −→ Rm

∣∣θ ∈
Θ} where θ denotes the (vectorized) parameters of a given
model and Θ refers to the underlying parameter space. In
this work we study the teacher-student setting, i.e. we con-
sider two models fθT and fθS from the same function space
F . We will refer to fθT as the teacher model and to fθS as
the student model. Notice that here we assume that both
teacher and student have the same architecture unless oth-
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erwise stated. Moreover, assume that we have access to
n ∈ N input-output pairs (x1, y1), . . . , (xn, yn)

i.i.d.∼ D
distributed according to some probability measureD, where
xi ∈ Rd and yi ∈ {0, . . . ,K − 1} encodes the class mem-
bership for one of the K ∈ N classes.

Supervised. The standard learning paradigm in machine
learning is supervised learning, where a model fθ ∈ F is
chosen based on empirical risk minimization, i.e. given a
loss function l, we train a model to minimize

L(θ) :=

n∑
i=1

l(fθ(xi), yi).

Minimization of the objective is usually achieved by virtue
of standard first-order gradient-based methods such as
SGD or ADAM (Kingma & Ba, 2017), where parameters
θ ∼ INIT are randomly initialized and then subsequently
updated based on gradient information.

Teacher-Student Loss. A similar but distinct way to per-
form learning is the teacher-student setting. Here we first fix
a teacher model fθT where θT is usually a parameter con-
figuration arising from training in a supervised fashion on
the same task. The task of the student fθS is then to mimic
the teacher’s behaviour on the training set by minimizing a
distance function d between the two predictions,

L(θS) :=

n∑
i=1

d (fθS (xi), fθT (xi)) . (1)

We have summarized the setting schematically in Fig. 2. We
experiment with several choices for the distance function
but largely focus on the KL divergence. We remark that
many works on self-distillation (Tarvainen & Valpola, 2017)
consider a combination of losses of the form

L(θS) :=

n∑
i=1

d (fθS (xi), fθT (xi)) + β

n∑
i=1

l(fθ(xi), yi),

for β > 0, thus the objective is also informed by the true
labels y. Here we set β = 0 to precisely test how much per-
formance is solely due to the implicit regularization present
in the learning dynamics and the inductive bias of the model.

Somewhat counter-intuitively, it has been observed in many
empirical works that the resulting student often outperforms
its teacher. It has been hypothesized in many prior works
that the teacher logits fθT (x) encode some additional, rel-
evant information for the task that benefit learning (dark
knowledge), i.e. wrong but similar classes might have a
non-zero probability under the teacher model (Hinton et al.,
2015; Wang et al., 2021; Xu et al., 2018). In the following,
we will explore this hypothesis by systematically destroying
the label information in the teacher.

Figure 2. Schematic drawing of the teacher-student setup. The
model consists of an encoder and projector. The same image is
passed to both student and teacher and the outputs of the projectors
are compared. The student weights are then adjusted to mimic the
output of the teacher. In this work, we consider a simplified setting
without augmentations and without teacher updates such as EMA.

Non-Contrastive. Self-supervised learning is a recently
developed methodology enabling the pretraining of vision
models on large-scale unlabelled image corpora, akin to the
autoregressive loss in natural language processing (Devlin
et al., 2019). A subset of these approaches is formed by non-
contrastive methods. Consider a set of image augmentations
G where any G ∈ G is a composition of standard augmen-
tation techniques such as random crop, random flip, color
jittering etc. The goal of non-contrastive learning is to learn
a parameter configuration that is invariant to the employed
data augmentations while avoiding to simply collapse to a
constant function. Most non-contrastive objectives can be
summarized to be of the form

L(θS) :=

n∑
i=1

EG1,G2
[d (fθS (G1(xi)), fθT (G2(xi)))]

where the expectation is taken uniformly over the set of aug-
mentations G. In Fig. 3 we have summarized this pipeline
schematically. While the teacher does not directly receive
any gradient information, the parameters θT are often up-
dated based on an exponentially weighted moving average,

θT ←− (1− γ)θT + γθS

which is applied periodically at a fixed frequency. In this
work, we will consider a simplified setting without aug-
mentations and where the teacher remains frozen at random
initialization, γ = 0.
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Figure 3. Schematic illustration of non-contrastive learning. Two
augmentations are produced and passed to the student and teacher
respectively. Then a distance function is minimized to make en-
courage stronger similarity of the representations.

Probing. Since minimizing the teacher-student loss is a
form of unsupervised learning if the teacher itself has not
seen any labels, we need a way to measure the quality of the
resulting features. Here we rely on the idea of probing repre-
sentations, a very common technique from self-supervised
learning (Chen & He, 2020; Chen et al., 2020; Caron et al.,
2021a; Bardes et al., 2022; Grill et al., 2020). As illustrated
in Fig. 2, the network is essentially split into an encoder
gψ : Rd −→ Rr and a projector hφ : Rr −→ Rm where it
holds that fθ = hφ◦gψ . The encoder is usually given by the
backbone of a large vision model such as ResNet (He et al.,
2016) or VGG (Simonyan & Zisserman, 2014), while the
projector is parametrized by a shallow MLP. We then probe
the representations gψ by learning a linear layer on top,
where we now leverage the label information y1, . . . , yn.
Notice that the weights of the encoder remain frozen while
learning the linear layer. The idea is that a linear model
does not add more feature learning capacity, and the result-
ing probing accuracy hence provides an adequate measure
of quality of the representations. Unless otherwise stated,
we perform probing on the CIFAR10 dataset and aggregate
mean and standard deviation over three runs.

4. Random Teacher Distillation
Distillation. Let us denote by θ ∼ INIT a randomly ini-
tialized parameter configuration, according to some standard
initialization scheme INIT. Throughout this text, we rely
on Kaiming initialization (He et al., 2015). In standard self-
distillation, the teacher is a parameter configuration θ(l)T

resulting from training in a supervised fashion for l ∈ N
epochs on the task {(xi, yi)}ni=1. In a next step, the teacher
is then distilled into a student, i.e. the student is trained to
match the outputs of the pre-trained teacher f

θ
(l)
T

. In this
work, we change the nature of the teacher and instead con-
sider a teacher at random initialization θT ∼ INIT (we drop
the superscript 0 for convenience). The teacher has thus not
seen any data at all and is hence of a similar (bad) quality as
the student. This experiment, therefore, serves as the ideal
test bed to measure the implicit regularization present in the
optimization itself without relying on any dark knowledge

about the target distribution. Due to the absence of targets,
the setup also closely resembles the learning setting of non-
contrastive methods. Through that lens, our experiment can
also be interpreted as a non-contrastive pipeline without
augmentations and exponential moving average.
We minimize the objective (1) with the ADAM optimizer
(Kingma & Ba, 2017) using a learning rate η = 0.001. We
analyze two encoder types based on the popular ResNet18
and VGG11 architectures and similarly to Caron et al.
(2021a), we use a 2-hidden layer MLP with an L2 bot-
tleneck, as a projector. To assess whether batch-dependent
statistics play a role, we remove the batch normalization lay-
ers (Ioffe & Szegedy, 2015) from the VGG11 architecture.
For more details on the architecture and hyperparameters,
we refer to App. C. We display the linear probing accuracy
of both student and teacher as a function of training time in
Fig. 1 on the CIFAR10 dataset (Krizhevsky & Hinton, 2009).
We follow the protocol of non-contrastive learning and ini-
tialize the student closely to the teacher. We will expand
more on this choice of initialization in the next paragraph.
Notice that while the teacher remains fixed throughout train-
ing, linear probing accuracies can vary due to the stochastic
optimization. As a result, we observe that teacher probes
exhibit minor fluctuations. The dashed line represents the
linear probing accuracy obtained directly from the (flat-
tened) inputs. We clearly see that the student significantly
outperforms its teacher throughout the training. Moreover, it
also improves over probing on the raw inputs, demonstrating
that not simply less signal is lost due to random initializa-
tion but rather that meaningful learning is performed. We
expand our experimental setup to more datasets, including
CIFAR100 (Krizhevsky & Hinton, 2009), STL10 (Coates
et al., 2011) and TinyImageNet (Le & Yang, 2015). We
summarize the results in Table 1. We observe that across
all tasks, distilling the student into a random teacher proves
beneficial in terms of probing accuracy. For further abla-
tions on the architecture, we refer to the App. B. Moreover,
we find very similar results for k-NN probing instead of
linear in App. D.1.

Local Initialization. It turns out that the initialization of
the student and its proximity to the teacher plays a crucial
role. To that end, we consider initializations of the form

θS(α) =
1

δ

(
(1− α)θT + αθ̃

)
,

where θ̃ ∼ INIT is a fresh initialization, α ∈ [0, 1] and
δ =

√
α2 + (1− α)2 ensures that the variance remains

constant ∀α ∈ [0, 1]. Values for α close to 0 result in
student initializations in close proximity to the teacher con-
figuration. We refer to initializations with small α as local
initializations and coin α the locality parameter. It is impor-
tant to point out that in the non-contrastive learning setting,
teacher and student are initialized at the exact same parame-
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Figure 4. Linear probing accuracies of the encoder gθ∗
S
(α) on CI-

FAR10 as a function of the locality parameter α after 150 epochs.

DATASET MODEL TEACHER STUDENT INPUT

CIFAR10 ResNet18 35.50 46.02
39.02VGG11 36.55 51.98

CIFAR100 ResNet18 11.58 21.50
14.07VGG11 12.05 26.62

STL10 ResNet18 24.24 40.58
31.51VGG11 24.67 46.20

TinyImageNet ResNet18 4.85 10.40
3.28VGG11 5.25 12.88

Table 1. Linear probing accuracies (in percentage) of the represen-
tations for various datasets for teacher, student and pixel inputs.

ter values (i.e. α = 0) and only minor asymmetries in the
architectures lead to different overall functions. We now
study how the locality parameter α can affect the resulting
quality of the representations of the student in our setup. We
display the resulting probing accuracy of the teacher as a
function of the locality parameter α in Fig. 4. Surprisingly,
we find that α has a very pronounced effect on the resulting
accuracies, e.g. initializing the student independently of the
teacher (α = 1) almost entirely destroys the improvement
over the teacher. To the best of our knowledge, we are the
first to observe such a locality phenomenon in the teacher-
student landscape. We investigate this phenomenon in more
detail in the next section and for now, if not explicitly stated
otherwise, use initializations with small locality parameter
α ∼ 10−10.

Data-dependence. In a next step we aim to better under-
stand the origin of the observed improvement and to what
degree the learnt features are data-dependent, i.e. tuned to
the particular input distribution x ∼ px. While the improve-
ment over the raw input probe already suggests non-trivial
learning, we want to more precisely characterize the role of
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Figure 5. Linear probing accuracy of a VGG11 trained on CI-
FAR5M and evaluated on CIFAR10 as a function of sample size.

the input data.
As a first experiment, we study how the improvement of
the student over the teacher evolves as a function of the
sample size n involved in the teacher-student training phase.
Notice that for probing, we do not adjust the sample size
but always use the standard training set. We use the CI-
FAR5M dataset, where the standard CIFAR10 dataset has
been extended to 5 million data points through the usage
of a generative adversarial network (Nakkiran et al., 2021).
We train the student for different sample sizes in the interval
[5× 102, 5× 106] and probe the learnt features on the stan-
dard CIFAR10 training and test set. We display the resulting
probing accuracy as a function of sample size in Fig. 5 (blue
line). Indeed, we observe a steady increase in performance
of the student as the size of the data corpus grows, high-
lighting that data-specific feature learning is happening. As
further confirmation, we next replace the inputs xi ∼ px
with pure Gaussian noise, i.e. xi ∼ N (0, σ21), effectively
removing any relevant structure in the samples. The linear
probing on the other hand is again performed on the clean
data. This way we can assess whether the teacher-student
training is simply moving the initialization in a favorable
way (e.g. potentially ‘uncollapsing’ it), which would still
prove beneficial for meaningful tasks. We show the probing
accuracy as a function of dataset size, for these random
inputs, as well in Fig. 5 (orange line). Very clearly, such
a random input training does not lead to an improvement
of the student, on the contrary, the performance of the stu-
dent collapses to randomly guessing the targets, across all
dataset sizes. This is another indication that data-dependent
feature learning is happening, where in this case adapting to
the noise inputs of course proves detrimental for the clean
probing.

Transferability. As a final measure for the quality of
the learnt features, we test how well a set of representa-
tions obtained on one task transfers to a related but dif-
ferent task. More precisely, we are given a source task
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DATASET MODEL TEACHER STUDENT

CIFAR10 ResNet18 35.50 46.06

VGG11 36.55 52.45

CIFAR100 ResNet18 11.58 22.60

VGG11 12.05 27.49

STL10 ResNet18 24.24 41.42

VGG11 24.67 45.86

Table 2. Linear probing accuracies (in percentage) of the represen-
tations for various datasets for teacher and student. The student is
trained by distilling a random teacher on the TinyImageNet dataset.

A = {(xi, yi)}ni=1
i.i.d.∼ DA and a target task B =

{(xi, yi)}ñi=1
i.i.d.∼ DB. We assume that both tasks are

related, i.e. some useful features on A also prove to be
useful on task B. For our experiments, the two tasks are usu-
ally two image-recognition tasks such as TinyImageNet and
CIFAR10. We then first use the source task A to perform
random teacher distillation. We then use the target task B
to train and evaluate the linear probe. Clearly, we should
only see an improvement in the probing accuracy over the
(random) teacher if the features learnt on the source task
encode relevant information for the target task as well. We
illustrate the results of such a transfer strategy for various
source and task dataset configurations in Table 2.

5. Loss and Probing Landscapes
Visualization. We now revisit the locality property iden-
tified in the previous section, where initializations with α
closer to zero significantly outperformed other configura-
tions. To gain further insight into the inner-workings of
this phenomenon, we visualize the teacher-student loss land-
scape as well as the resulting probing accuracies as a func-
tion of the model parameters. Since the loss function is
a very high-dimensional function of the parameters, only
”slices” of it can be visualized at once. More precisely,
given two directions v1,v2 in parameter space, we form a
visualization plane of the form

θ(λ1, λ2) = λ1v1 + λ2v2, (λ1, λ2) ∈ [0, 1]2

and then collect loss and probing values at a certain reso-
lution. Such visualization strategy is very standard in the
literature, see e.g. Li et al. (2018); Garipov et al. (2018);
Izmailov et al. (2021). Denote by θ∗S(α) the student trained
until convergence initialized with locality parameter α. We
study two choices for the landscape slices v1 and v2; first
we let v1 = θS(1) − θT and v2 = θ∗S(1) − θT , i.e. the
plane defined by the random teacher θT , the student at a
fresh, random initialization θS(1) and the resulting trained
student θ∗S(1). We refer to this choice as the ”non-local”
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Figure 6. Visualization of the loss and probing landscape. Left
column corresponds to the ”non-local view” with α = 1, whereas
the right column contains both the local (α = 0) and the non-local
solution (α = 1). First row displays the loss landscape while the
second one shows probing accuracies. Contours lines represent
||θ||2, orthogonal projections are in the App. D.2.

view of the landscape since the student is independently
initialized from the teacher. The second choice is given by
v1 = θ∗S(0) − θT and v2 = θ∗S(1) − θT , i.e. the plane
defined by the random teacher θT , the trained student start-
ing from a fresh random initialization θ∗S(1) and the trained
student θ∗S(0) initialized closely to the teacher (α is not
exactly zero but around 10−10).

We show the results in Fig. 6, where left and right col-
umn represent first and second choice of visualization plane
respectively, while first and second row display loss and
probing landscapes respectively. For more visualizations,
including the loss landscape for the encoder, we refer to
App. D.2. Let us focus on the left column first. Clearly,
for α = 1 the converged student θ∗S(1) ends up in a qual-
itatively different minimum than the teacher (which is the
global minimum by definition), i.e. the two points are sep-
arated by a significant loss barrier. This is expected as the
student is initialized far away from the teacher. Further,
we see that the probing landscape is largely unaffected by
moving from the initialization θS(1) to the solution θ∗S(1),
confirming our empirical observation in Fig. 4 that far way
initialized students do not improve significantly. The right
column reveals more structure. We clearly see that although
it was initialized very closely to the teacher, the student
θ∗S(0) moved considerably. While the energy barrier is
smaller as in the case of θ∗S(1), it is still very apparent that
θ∗S(0) settled for a different, local minimum with high prob-
ing accuracy. This is surprising as the teacher θT itself is
the global minimum.
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Figure 7. Illustration of the lottery ticket hypothesis and iterative
magnitude pruning.

Asymmetric valleys. Another striking structure is the
very pronounced asymmetric valley close to the teacher
θT in the direction of the student θ∗S(0), i.e. to the ‘left’,
there is a very steep increase in loss while to the ‘right’
it is gradual. On the other hand, we observe that in the
probing landscape, walking towards the more flat direction
significantly improves probing accuracy. Interestingly, He
et al. (2019b) have proven a fact remarkably in-line with our
situation. He et al. (2019b) show that being on the flatter
side of an asymmetric valley (i.e. θ∗S(0)) provably leads
to better generalization compared to lying in the valley it-
self (i.e. θT ). Initializing the student closely to the teacher
seems to capitalize on that fact and leads to systematically
better generalization. Still, it remains unclear why such an
asymmetric valley is only encountered close to the teacher
and not for initializations with α = 1. We leave a more
in-depth analysis of this phenomenon for future work.

6. Discovering Lottery Tickets
Lottery tickets. Another measure to assess the amount
of structure present in the student is through sparse net-
work discovery, i.e. the lottery ticket hypothesis (Frankle &
Carbin, 2019). The lottery ticket hypothesis posits the fol-
lowing: Any large network possesses a sparse subnetwork
that can be trained as fast and which achieves or surpasses
the test error of the original network. Frankle & Carbin
(2019) discover such sparse networks through the following
iterative pruning strategy:

1. Fix an initialization θ(0) ∼ INIT and train a network
to convergence in a supervised fashion, leading to θ∗.

2. Prune the parameters based on some criterion, leading
to a binary maskm and pruned parametersm� θ∗.

3. Prune the initialized networkm� θ(0) and re-train.

The above procedure is repeated for a fixed number of
times r, and in every iteration, a fraction k ∈ [0, 1] of

Figure 8. Illustration of stability of SGD and linear mode-
connectivity. Blue contour lines indicate a basin of low test loss,
πi denote different batch orderings for SGD.

the weights is pruned, leading to an overall pruning rate
of pr =

∑r−1
i=0 (1 − k)i × k percentage of weights. We

illustrate the algorithm in Fig. 7. The choice of pruning
technique is flexible, in the common variant iterative magni-
tude pruning (IMP) the globally smallest weights are pruned.
The above recipe turns out to work very well for MLPs and
smaller convolutional networks and indeed very sparse solu-
tions can be discovered without any deterioration in terms
of training time or test accuracy (Frankle & Carbin, 2019).
However, for more realistic architectures such as ResNets,
the picture changes and subnetworks can only be identi-
fied if the employed learning rate is small enough. As a
remedy, Frankle et al. (2020a) add the following modifica-
tion to the above strategy: Instead of rewinding back to the
initialization θ(0) and applying the pruning there, another
checkpoint θ(l) early in training is used and m � θ(l) is
re-trained instead ofm� θ(0). Frankle et al. (2020a) show
that checkpoints as early as 1 epoch can suffice to identify
lottery tickets, even at standard learning rates. Interestingly,
Frankle et al. (2020a) further show that the point in time l
where lottery tickets can be found, coincides with the time
where SGD becomes stable to different batch orderings π,
i.e. different runs of SGD with distinct batch orderings but
the same initialization θ(l) end up in the same linear basin.
This property is also called linear mode connectivity; we
provide an illustration in Fig. 8. Notice that in general, linear
mode-connectivity does not hold, i.e. two SGD runs from
the same initialization end up in two disconnected basins
(Frankle et al., 2020a; Garipov et al., 2018).

IMP from student. A natural question that emerges now
is whether a student checkpoint θ∗S obtained through random
teacher distillation already developed sparse structures in
the form of lottery tickets. Closely following the setup
in Frankle et al. (2020a), we compare the robustness of
rewinding points θ(l) with our student checkpoints θ∗S (we
focus on α = 0 in this section). We display the results
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Figure 9. Test accuracy as a function of sparsity for different ini-
tialization and rewinding strategies. Fresh initializations θS are
not robust to IMP with rewinding to initialization (l = 0), this
only emerges with rewinding to l ≥ 1. Student checkpoints θ∗S are
always robust to IMP even with rewinding to l = 0. One epoch
corresponds to 196 steps. Aggregation is done over 5 checkpoints.

in Fig. 9, where we plot test performance on CIFAR10 as
a function of the sparsity level. We use a ResNet18 and
iterative magnitude pruning, reducing the network by a
fraction of 0.2 every round. We compare against rewinding
to supervised checkpoints θ(l) for l ∈ {0, 1, 2, 5} where l is
measured in number of epochs. We observe that rewinding
to l = 0, as shown in Frankle & Carbin (2019); Frankle
et al. (2020a), incurs strong losses in terms of test accuracy
at all pruning levels and thus does not constitute a lottery
ticket. The distilled student θ∗S on the other hand remains
very robust to strong degrees of pruning and shows a similar
behaviour to the networks rewound to later checkpoints, thus
constituting a valid ticket. We re-iterate here that the student
has not seen any target information but is simply distilled
from a random teacher without any structure. Similarly
to previous experiments, the simple implicit regularization
present in the learning dynamics of SGD suffices to find
meaningful, data-dependent representations. This is in line
with results in Frankle et al. (2020b) that show that auxiliary
tasks such as rotation prediction can lead to lottery tickets.
We emphasize however that our setup completely lacks any
data-informed bias such as rotations.

Linear mode connectivity. In light of the observation
regarding the stability of SGD in Frankle et al. (2020a), it is
natural to verify whether a similar stability property holds
for the student checkpoint θ∗S . To that end, we train several
runs of SGD in a supervised fashion with initialization θ∗S
and different batch orderings π1, . . . ,πb and study the test
accuracies occurred along linear paths between different
solutions θ∗πi

for i = 1, . . . , b, i.e.

θπi−→πj (γ) := γθ∗πi
+ (1− γ)θ∗πj

.
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Figure 10. Test error when interpolating between networks that
were finetuned from the same checkpoint. Left: Networks initial-
ized at random, i.e. the untrained student θS . Right: Networks
initialized with the converged student checkpooint θ∗

S . Aggre-
gation is done over 3 checkpoints and 5 different data orderings
πi.

If the test accuracy along the path does not significantly
worsen, we call θ∗πi

and θ∗πj
linearly mode-connected. We

contrast the results with the interpolation curves for SGD
runs started from the same, random initialization. We dis-
play the interpolation curves in Fig. 10. We used a ResNet18
student, distilled on CIFAR10 from a random teacher and
finetuned three networks subsequently with SGD. We see
that indeed, the resulting parameters θ∗πi

all lie in approx-
imately the same linear basin. The networks trained from
the random initialization however face a significantly larger
barrier.

7. Discussion and Conclusion
In this work we examined the teacher-student setting more
closely, with the aim of disentangling its implicit regular-
ization from other very common components such as dark
knowledge in trained teachers and the implicit bias in learn-
ing invariances with respect to data augmentations. We
showed that surprisingly, students manage to learn strong
structures even from random teachers in the absence of
data augmentation. We studied the quality of the resulting
student representations and observed that (1) probing accu-
racies significantly improve over the teacher, (2) features are
transferable across tasks and (3) lottery tickets can be iden-
tified based on the student checkpoints without training on
the supervised task. The successes of teacher-student-based
pipelines such as knowledge distillation and non-contrastive
learning can thus at least partially be attributed to the regu-
larizing nature of the learning dynamics.
In summary, we find that even if the teacher is completely
data-agnostic, training dynamics exhibit a remarkable regu-
larizing effect, mimicking the very early phase of supervised
training to a surprising degree. The simple and minimal
nature of our setting makes it an ideal test bed for better un-
derstanding this early phase of learning. We hope that future
theoretical work can build upon our simplified framework.
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A. The Algorithm
Distillation from a random teacher has two important details. The outputs are very high-dimensional, 216-d. And a special
component, the l2-bottleneck, is hidden in the architecture of the projection head just before the softmax. It linearly maps a
feature vector to a low-dimensional space, normalizes it and computes the dot product with a normalized weight matrix, i.e.

x→ Ṽ T WTx+ b

||WTx+ b||2
with ||Ṽ:,i||2 = 1

for x ∈ Rn, W ∈ Rn×k, b ∈ Rk, Ṽ ∈ Rk×m. This architecture is heavily inspired by DINO (Caron et al., 2021b). Let us
summarize the method in pseudo-code:

1 encoder , head , w n l a y e r = ResNet ( 5 1 2 ) , MLP( 2 0 4 8 , 2 0 4 8 , 2 5 6 ) , L i n e a r (216 )

3 s t u d e n t = i n i t i a l i z e ( encoder , head , w n l a y e r )
t e a c h e r = copy ( s t u d e n t ) # i n i t i a l i z e wi th same p a r a m e t e r s

5 f o r x , y i n r e p e a t ( da t a , n e p o c h s ) :
# a p p l y weight − n o r m a l i z a t i o n

7 n o r m a l i z e d w e i g h t t = n o r m a l i z e ( t e a c h e r . w n l a y e r . we igh t )
n o r m a l i z e d w e i g h t s = n o r m a l i z e ( s t u d e n t . w n l a y e r . we igh t )

9

# p r e p a r e t a r g e t
11 x t = t e a c h e r . head ( t e a c h e r . e n c o d e r ( x ) )

x t = n o r m a l i z e ( x t )
13 x t = d o t ( n o r m a l i z e d w e i g h t t , x t )

t a r g e t = so f tmax ( x t )
15

# p r e p a r e p r e d i c t i o n
17 x s = s t u d e n t . head ( s t u d e n t . e n c o d e r ( x ) )

x s = n o r m a l i z e ( x s )
19 x s = d o t ( n o r m a l i z e d w e i g h t s , x s )

p r e d i c t i o n = so f tmax ( x s )
21

# compute l o s s , b a c k p r o p a g a t e and u p d a t e
23 l o s s = sum ( t a r g e t * − l o g ( p r e d i c t i o n ) ) # c r o s s − e n t r o p y

l o s s . backward ( )
25 o p t i m i z e r . s t e p ( s t u d e n t ) # u p d a t e on ly s t u d e n t
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Figure 11. Random teacher distillation for increasing output dimension (ResNet18 on CIFAR10). Left: Probing accuracy during training.
Right: Best probe vs output dimension.
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B. Ablating the Architecture
B.1. Ablating Encoder Normalization Layers

If the teacher is used in evaluation mode, then one possible source of asymmetry is introduced by batch normalization layers.
But is the effect caused by this batch-dependent signal? Or does the batch dependency amplify the mechanism? In Fig. 12
we compare different types of normalization layers and no normalization (Identity). We observe that although BN stabilizes
training, the effect occurs also with batch-independent normalization. Further, networks without normalization reach similar
performance but take longer to converge.
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Figure 12. Comparing different types of normalization layers (ResNet18, VGG11 on CIFAR10)

B.2. Ablating the Projector L2-Bottleneck

The l2-Bottleneck is a complex layer with many unexplained design choices. We compare different combinations of
weight-normalization (wn), linear layer (lin), and feature normalization (fn) for the first and second part of the bottleneck
in Figures 13 and 14 for a ResNet18 and a VGG11 respectively. While the default setup is clearly the most performant,
removing feature normalization is more destructive than removing weight normalization. In particular, only one linear layer
followed by a feature normalization still exhibits a similar trend and does not break down.
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Figure 13. Ablating components of the l2-bottleneck (ResNet18 on CIFAR10).
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Figure 14. Ablating components of the l2-bottleneck (VGG11 on CIFAR10).
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C. Experimental Details
Our main goal is to demystify the properties of distillation in a simplistic setting, removing a series of ‘tricks’ used in
practice. For clarity reasons, we here present a comprehensive comparison with the popular framework of DINO (Caron
et al., 2021b).

C.1. Architecture

Configuration
Encoder ResNet18&VGG1 from torchvision, without fc or classification layers (embedding ∈ R512)

(ResNet18 adjusted stem for CIFAR: conv from 7x7 to 3x3, remove maxpool)
Projection Head 3-Layer MLP: 512→ 2048→ 2048→ l2-bottleneck(256)→ 216

(GELU activation, no batchnorms, init: trunc normal with σ = 0.02, biases=0)
L2-Bottleneck(in, mid, out) for x ∈ Rin, W ∈ Rin×mid, b ∈ Rmid, Ṽ ∈ Rmid×out

1. linear to bottleneck: z = WTx+ b ∈ Rmid

2. feature normalization: z̃ = z/||z||2
3. weightnormalized linear: y = Ṽ T z̃ ∈ Rout, with ||Ṽ:,i||2 = 1

⇒ fṼ ,W (x) = Ṽ T WT x+b
||WT x+b||2 with ||Ṽ:,i||2 = 1

C.2. Data

Configuration DINO default Random Teacher
Augmentations Multicrop (2× 2242 + 10× 962) + SimCLR-like None (1× 322)
Training batchsize 64 per GPU 256
Evaluation batchsize 128 per GPU 256

C.3. DINO Hyperparameters

Configuration DINO default Random Teacher Distillation
Teacher update ema with momentum 0.996

cos→ 1 no updates
Teacher BN update BN in train mode BN in eval mode
Teacher centering track statistics with momentum 0.9 not applied

Teacher sharpening temperature 0.04 (paper: 0.04
lin→ 0.07) temperature 1

Student sharpening temperature 0.1 temperature 1
Loss function opposite-crop cross-entropy single-crop cross-entropy

C.4. Random Teacher Distillation

Configuration DINO default Random Teacher Distillation
Optimizer AdamW AdamW

Learning rate 0
lin→ 0.0005

cos→ 1e-6 schedule 0.001 (torch default)

Weight decay 0.04
lin→ 0.4 schedule not applied

Gradient Clipping to norm 3 not applied
Freezing of last layer during first epoch not applied

C.5. IMP Supervised Training

Configuration Lottery Ticket Hypothesis (Frankle et al., 2020b) IMP on student checkpoints
Training Epochs 160 160
Optimizer SGD (momentum 0.9) SGD (momentum 0.9)

Learning rate MultiStep: 0.1
80 epochs→ 0.01

40 epochs→ 0.001 MultiStep: 0.1
80 epochs→ 0.01

40 epochs→ 0.001
Weight decay 0.0001 0.0001
Augmentations Random horizontal flip & padded crop (4px) Random horizontal flip & padded crop (4px)
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D. Additional Results
We present additional experimental results that serve to better understand the regularization properties of self-distillation
with random teachers.

D.1. K-NN probing

A different probing choice instead of learning a linear layer on top of the extracted embeddings is to perform K-NN
classification on the features. We apply K-nearest-neighbour classification with the number of neighbours set to K = 20, as
commonly done in practice. As in Table 1 in the main text, we present results under K-NN evaluation in Table 3. Also, as in
Table 2, we evaluate using K-NN probing the transferability of the learnt embeddings from TinyImageNet in Table 4.

DATASET MODEL TEACHER STUDENT INPUT

CIFAR10 ResNet18 37.65 44.67
33.61VGG11 44.92 51.32

CIFAR100 ResNet18 13.77 20.22
14.87VGG11 18.10 23.53

STL10 ResNet18 31.71 37.41
28.94VGG11 36.92 43.58

TinyImageNet ResNet18 4.59 7.11
3.44VGG11 5.98 9.23

Table 3. K-NN probing accuracies (in percentage) of the representations for various datasets for teacher, student and raw pixel inputs.

DATASET MODEL TEACHER STUDENT

CIFAR10 ResNet18 37.65 44.45

VGG11 44.92 51.48

CIFAR100 ResNet18 13.77 19.48

VGG11 18.10 23.95

STL10 ResNet18 31.71 38.86

VGG11 36.92 42.26

Table 4. K-NN probing accuracies (in percentage) of the representations for various datasets for teacher, student when transferred from
TinyImageNet
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D.2. Loss landscapes

The parameter plane visualized in Fig. 6 is defined by interpolation between three parameterizations, thus distances and
angles are not preserved. In the following Fig. 15, we orthogonalize the basis of the parameter plane to achieve a distance
and angle-preserving visualization. We note that both converged solutions of the students ΘS∗

0
and ΘS∗

1
stay comparably

close to their initializations. Further, we provide a zoomed crops the asymmetric valley around the teacher ΘST
in Fig. 16.
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Figure 15. Orthogonal projection of the loss landscape in the parameter plane.
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Figure 16. Higher resolution crop of the global optimum around the teacher.
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The same visualization technique allows plotting the KL divergence between embeddings produced by the teacher and other
parametrization in the plane. While in Fig,15, the basin of the local solution matches with the area of increased probing
accuracy, such a correlation is not visible if one only considers the encoder.

−30

−20

−10

0

10

20

30

θT

θS(1)

θ∗S (1)

48

54

60

6066

6672

72

78

78

84

84

90 90

90

90

θT

θ∗S (0) θ∗S (1)

48

5460

60

66

6672

72

78

7884

84

84
90

90

−60 −40 −20 0 20 40 60

−30

−20

−10

0

10

20

30

θT

θS(1)

θ∗S (1)

48

54

60

6066

6672

72

78

78

84

84

90 90

90

90
−60 −40 −20 0 20 40 60

θT

θ∗S (0) θ∗S (1)

48

5460

60

66

6672

72

78

7884

84

84
90

90

10−6

10−5

10−4

10−3

10−2

10−1

100

0.1

0.2

0.3

0.4

0.5

Figure 17. Orthogonal projection of the embedding KL divergence landscape in the parameter plane.
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Figure 18. Higher resolution crop of the global optimum around the teacher.


