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Abstract

Self-attention-based models have achieved re-
markable progress in short-text mining. How-
ever, the quadratic computational complexities
restrict their application in long text processing.
Prior works have adopted the chunking strat-
egy to divide long documents into chunks and
stack a self-attention backbone with the recur-
rent structure to extract semantic representation.
Such an approach disables parallelization of the
attention mechanism, significantly increasing
the training cost and raising hardware require-
ments. Revisiting the self-attention mechanism
and the recurrent structure, this paper proposes
a novel long-document encoding model, Recur-
rent Attention Network (RAN), to enable the
recurrent operation of self-attention. Combin-
ing the advantages from both sides, the well-
designed RAN is capable of extracting global
semantics in both token-level and document-
level representations, making it inherently com-
patible with both sequential and classification
tasks, respectively. Furthermore, RAN is com-
putationally scalable as it supports paralleliza-
tion on long document processing. Extensive
experiments demonstrate the long-text encod-
ing ability of the proposed RAN model on both
classification and sequential tasks, showing its
potential for a wide range of applications.

1 Introduction

Recently, self-attention-based neural networks,
such as Transformer (Vaswani et al., 2017), GPT
(Radford et al., 2018, 2019; Brown et al., 2020),
and BERT family (Devlin et al., 2019; Liu et al.,
2019; Lan et al., 2020), have demonstrated supe-
rior text encoding ability in many natural language
processing (NLP) tasks with the help of large-scale
pretraining. These models have set state-of-the-art
benchmarks in classification tasks like text catego-
rization (Li et al., 2021a) and sentiment analysis
(Naseem et al., 2020; Li et al., 2021c, 2023), and

∗Corresponding author; † Equal contribution.

sequential tasks like question answering (Lee et al.,
2019; Karpukhin et al., 2020) and information ex-
traction (Li et al., 2021b; Wu et al., 2022). The
time and space complexities of self-attention com-
putation are O(n2) with respect to the sequence
length, making it computationally expensive to en-
code long texts. Therefore, BERT models adopt
an absolute positional encoding strategy to manage
computational overhead. However, such a setting
makes the BERT models unable to handle texts
longer than 512 tokens, restricting their applica-
tion in realistic scenarios like processing user com-
ments, news articles, scientific reports, and legal
documents with arbitrary lengths.

Current works focus on two solutions to enable
self-attention-based models for handling longer
texts. The first solution reduces the computing
complexity of self-attention from quadratic to lin-
ear by approximating its softmax operation (Belt-
agy et al., 2020; Choromanski et al., 2021; Hua
et al., 2022). These models can handle relatively
long texts within the hardware capacity but also suf-
fer from a performance drop (Schlag et al., 2021;
Hutchins et al., 2022). Another solution is to di-
vide the long document into chunks shorter than
512 tokens so that pretrained BERT models can
be applied (Pappagari et al., 2019; Hutchins et al.,
2022). However, as the chunks are individually en-
coded, the resulted representations do not contain
the crucial contextual information for sequential
tasks. While a special recurrent mechanism can
handle sequential tasks (Hutchins et al., 2022), it
cannot produce a document-level representation
for classification, limiting their generality as none
works for both classification and sequential tasks.
Additionally, introducing recurrent modules dis-
ables the parallel computing feature, leading to
unscalable implementation.

To address the aforementioned issues, this paper
proposes the Recurrent Attention Network (RAN)1,

1The code is available at https://github.com/4AI/RAN.
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Figure 1: The architectures of (a) RNN and (b) RAN.
The basic encoding unit of RNN is the fully-connected
(FC) layer, and that of RAN is the self-attention layer.
RNN is a token-level recurrent architecture, while the
proposed RAN is a window-level recurrent model.

a novel model architecture supporting recurrent
self-attention operation over long sequences, en-
abling global dependency extraction and long-term
memory. RAN iterates through the sequence by
non-overlapping windows. Unlike token-level re-
current architectures such as LSTM (Hochreiter
and Schmidhuber, 1997) and GRU (Chung et al.,
2014), RAN applies positional multi-head self-
attention (pMHSA) on a window area to extract
local dependency. To propagate the information
forward, the RAN model extracts the global per-
ception cell (GPC) vector from the self-attention
representation of the current window. The GPC
vector is then concatenated with tokens in the next
window as the input of the self-attention layer. The
new GPC vector will be passed to the subsequent
windows with residual connection to alleviate the
gradient vanishing (He et al., 2016) and updated in
the same manner. Figure 1 depicts the difference
between the recurrent neural network (RNN) and
our proposed RAN.

The function of the GPC vector is twofold. First,
like the [CLS] token in BERT, the GPC vector
is a window-level contextual representation. But
unlike the [CLS] token, the GPC vector is only
applied to the self-attention layer, and no special
token is inserted during text preprocessing. Sec-
ond, the GPC vector, resembling the state cell in
a recurrent architecture, maintains a long-distance
memory over the sequence. For each window, the
attended GPC vector encodes an aggregated repre-
sentation of all the previous windows, which en-
ables the window-level self-attention to perceive
global semantics. With the help of a well-designed
memory review mechanism, the GPC vector from
the last window can be used as a document-level

representation and serve the classification tasks.
Meanwhile, the memory review mechanism en-
hances the token representations of RAN in the
sequence, encoding both contextual and global in-
formation, which can be leveraged for sequential
tasks such as language modeling (LM) and named
entity recognition (NER).

We pretrain the RAN model using a masked lan-
guage modeling (MLM) objective from scratch,
which outperforms other pretrained baselines in
long document classification. The RAN framework
also supports auto-regressive LM and achieves the
lowest perplexity score compared with state-of-the-
art language models on the WikiText-103 dataset.
Furthermore, we apply RAN to different down-
stream tasks via finetuning and observe consistent
improvements compared to baseline models.

RAN solely relies on self-attention, and no
LSTM-style gate is involved when propagating in-
formation via GPC vectors. Therefore, RAN is
computationally efficient as it supports parallelized
GPU computing. Although the memory complex-
ity is still quadratic, it is regarding the window
size W rather than the whole text length L, where
W ≪ L. Nevertheless, the window size can be
adjusted based on hardware availability to achieve
a relatively larger batch size for better training.

In summary, our contribution is to devise the
RAN model for long document processing. RAN
allows for parallelization on GPU and provides
the interfaces for serving both classification and
sequential tasks. With pretraining, RAN can out-
perform the BERT-based models in various tasks.

2 Related Work

This section reviews the relevant works focusing on
sequence modeling in NLP, especially long docu-
ment processing. RNNs are widely used for sequen-
tial modeling by recursively updating a state cell
to maintain a long-distance memory. Traditional
recurrent networks, such as LSTM (Hochreiter and
Schmidhuber, 1997) and GRU (Chung et al., 2014),
use the fully-connected layer as the basic encod-
ing unit and apply the gate mechanism to update
state memory. The recurrent operation is conducted
on the token level, which is inefficient as such a
framework cannot compute parallelly on GPU. Be-
sides, it might suffer from gradient vanishing for
long sequences during the backpropagation phase
(Hutchins et al., 2022).

Self-attention models are powerful in global



representation learning. However, applying self-
attention in long document processing is intractable
due to the quadratic time and memory complexi-
ties. To address this issue, some works (Beltagy
et al., 2020; Choromanski et al., 2021; Hua et al.,
2022) attempt to reduce the computing complexity
of self-attention from quadratic to approximately
linear complexity. Beltagy et al. (2020) propose
a drop-in replacement of the softmax operation in
self-attention with a sparse attention mechanism.
Similarly, Choromanski et al. (2021) rely on prior
knowledge like sparsity and low-rankness to ef-
ficiently estimate the full-rank attention. How-
ever, these approaches face a trade-off between
efficiency and accuracy, as approximations may
lead to a performance drop (Schlag et al., 2021;
Hutchins et al., 2022).

Other works leverage the power of full-rank self-
attention as backbones, such as pretrained BERT
and RoBERTa. These works cope with the token-
length limitation with different strategies. Ding
et al. (2020) propose CogLTX framework to gen-
erate a brief summary of the document. The short
summary is used for the classification task employ-
ing BERT. However, it is inevitable to lose infor-
mation in the length compression. Pappagari et al.
(2019) segment the long text into smaller chunks
so that BERT can be then used. A recurrent layer
is employed to obtain the document-level repre-
sentation upon chunk-level representations. These
models can be applied for the classification task
but cannot handle sequential tasks because of los-
ing crucial contextual and sequential information.
Hutchins et al. (2022) adopt the chunking strategy
and devise a specifically-designed gate mechanism
to obtain token-level representations for sequential
tasks. Similarly, Didolkar et al. (2022) propose a
Transformer-based temporal latent bottleneck for
image classification, reinforcement learning, and
text classification, in which temporal states are up-
dated using a recurrent function across chunks. In
each Transformer block, temporal states update the
chunk-level representation by cross-attention layers
interleaved with self-attention layers. In general,
these models with BERT backbones cannot simul-
taneously handle classification and sequential tasks
for long documents. Meanwhile, the RNN-style
gate architecture does not support parallel comput-
ing, so the computing efficiency is also impaired.

Our proposed RAN achieves recurrent operation
of the self-attention model and hence supports par-

allelization. Moreover, like the traditional RNN ar-
chitecture, RAN can produce both token-level and
document-level representations, which can be lever-
aged for both sequential and classification tasks.

3 Methodology

Attention BlockAttention Block

Figure 2: The generic framework of RAN.

This section introduces the proposed RAN
framework in terms of its components. Figure
2 depicts the structure of the basic RAN module.
In RAN, the primary encoder is the pMHSA, en-
coding the GPC vector and the current input with
the rotary positional information carried (Su et al.,
2021). The GPC vector is employed to propagate
information through the sequence.

3.1 Input Layer
We first employ the padding operation for the input
documents to keep a uniform length L. Then we
map each word into a D-dimensional continuous
space and obtain the word embedding xi ∈ RD.
The word vectors are concatenated to form the
model input: X = [x1,x2, . . . ,xL] ∈ RL×D. To
feed the text into the RAN, we chunk the input
document into m = ceil( L

W ) windows, where W
is the window size. We use Xi ∈ RW×D to denote
the i-th window input. In RAN, the GPC vector
G0 ∈ RD is initialized to 0 by default, following
the common operation in RNN. We parameterize
the GPC vector with the layer normalization (Ba
et al., 2016) as follows:

G0 = LayerNorm(WgG0) ∈ RD. (1)

3.2 Positional Multi-Head Self-Attention
As the positional space of long documents is pro-
hibitively large, it is not feasible to use absolute po-
sitional embedding following Transformer families
(Vaswani et al., 2017) in long document processing.
Hence, we follow Su et al. (2021); Chowdhery et al.
(2022); Black et al. (2022) to incorporate the local
positional information of the current window and
leverage rotary position information as follows:
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Figure 3: The frameworks of RAN with memory review on different tasks.

pMHSA(Xi) = W[Att1(Xi); ...; Atth(Xi)] + b,
(2)

and

Attj(Xi) = SoftMax(
RP(Qj) · RP(KT

j )√
dk

+M)Vj

Qj = Wq
jXi + bqj

Kj = Wk
jXi + bkj

Vj = Wv
jXi + bvj ,

(3)

where Attj(·) is the j-th head of pMHSA, h de-
notes the head size, [; ] means the concatenation
operation, M is the attention mask to adapt to dif-
ferent sequential tasks, and RP(·) stands for the
rotary position function (Su et al., 2021).

3.3 Encoding and Updating Layer
To encode the i-th window, we concatenate the
GPC vector from the previous window Gi−1 and
the current window input Xi ∈ RW×D to form the
model input Xin

i = [Gi−1;Xi] ∈ R(1+W )×D. A
layer normalization layer is applied to normalize
the input.

We then apply the pMHSA to encode the con-
catenated input to obtain the outputs of the current
window:

Oi = pMHSA(Xin
i ). (4)

After encoding, we extract the updated GPC vec-
tor G′

i and the output corresponding to the tokens
in the window:

G′
i = SN(O

[1:2]
i ) ∈ RD

Ow
i = SN(O

[2:1+W ]
i ) ∈ RW×D,

(5)

where [start:end] is the tensor slice operation, and
SN(X) = X−Xmean

σ stands for the standard nor-
malization. To alleviate the gradient vanishing is-
sue in modeling long sequences, we employ resid-
ual connection to connect the current GPC vector
with the previous one, then pass it to a layer normal-
ization layer to normalize the updated GPC vector,

Gi = LayerNorm(G′
i +Gi−1). (6)

The updated GPC vector Gi ∈ RD will be propa-
gated to the next window.

3.4 Memory Review and Output Layer
After encoding all windows, we can obtain the se-
quence output by concatenating all window outputs,
as follows:

Ow = [Ow
1 ;O

w
2 ; ...;O

w
m] ∈ RL×D, (7)

where m is the number of windows. Ow has the
same shape as the input X. To prevent history for-
getting in handling long sequences, this paper pro-
poses a novel memory review mechanism. Specifi-
cally, we first concatenate all updated GPC vectors
to produce the history states vector:

S = [G1;G2; ...;Gm] ∈ Rm×D. (8)

We compute the cross attention of the concatenated
output and the historical memory states to obtain
the final output:

O = SoftMax(
QKT

√
dk

)V

Q = WqOw + bq

K = WkS+ bk

V = WvS+ bv.

(9)



This procedure mimics the human behavior of re-
viewing key points after reading an article, the way
that humans naturally consolidate information and
reinforce memory.

The sequence output O ≡ Oseq ∈ RL×D can
be used for sequential tasks like NER. Although
the GPC vector of the last window, Gm, can serve
as the document representation, it may lose cru-
cial semantics and long-term memory during the
propagation. Therefore, we also add the memory
review mechanism to RAN for classification tasks
by generating Oclf :

Oclf = WgGm +WoOp + bo, (10)

where Op is the pooling of the output O over time
sequence. Our empirical results show that the max
pooling works better than the average pooling in
classification tasks. Therefore, we adopt max pool-
ing to obtain Op:

Op = MaxPooling(O). (11)

Figure 3 provides a visual illustration of the im-
plementations for both classification and sequential
tasks. It is noticeable that the model parameters
of RAN are shared across all windows, allowing
for efficient computation and reduced memory us-
age. Particularly, RAN supports multiple sequen-
tial tasks with different attention masks. For in-
stance, it employs a causal attention mask (Vaswani
et al., 2017) for LM tasks and a prefix causal atten-
tion mask (Dong et al., 2019) for the seq2seq tasks
to prevent forward information exposure.

4 Experiment

4.1 Datasets and Evaluation Metrics
To comprehensively evaluate the model perfor-
mance, we conduct experiments on three major
tasks: text classification (TC), NER, and LM.

For the TC task, we attempt to test the model
performance on datasets with various document
lengths. Specifically, we extend the benchmarks
from Park et al. (2022) by adding the long-text
dataset Arxiv and the short-text dataset AGNews.
The extended benchmarks include (1) AGNews2,
(2) 20NewsGroups (Lang, 1995), and (3) Arxiv
(He et al., 2019) for multi-class classification; (4)
Book Summary (Park et al., 2022; Bamman and
Smith, 2013) (abbr. B.S.) and (5) EURLEX-57K

2http://groups.di.unipi.it/~gulli/AG_corpus_o
f_news_articles

(Chalkidis et al., 2019) (abbr. EUR.57K) for multi-
label classification; and Hyperpartisan (Kiesel
et al., 2019) (abbr. Hyper.) for binary classifica-
tion. Figure 4 depicts the text length distribution
and the long-text ratio of the benchmark datasets.
For a fair comparison, following Park et al. (2022),
we report micro-F1 for multi-label classification
and accuracy for binary and multi-class classifica-
tion.

For the LM task, we adopt the commonly-used
dataset WikiText-1033 (Merity et al., 2017) and
report the perplexity score following the baselines.

For the NER task, we experiment on two widely-
adopted English datasets: OntoNotesV5.04 (abbr.
OntoV5, average length is 77.5) and CoNLL2003
(Tjong Kim Sang and De Meulder, 2003) (average
length is 63.4). Noted that both datasets consist
of short texts with an average length shorter than
100, as there are no available NER datasets of long
documents. Accordingly, we adopt a small window
size for the NER task to test the effectiveness of
the recurrent architecture. We use conlleval5 to
measure the model performance and report the F1
score following the baselines.

4.2 Implementation Details

The primary experiments in Section 4.3 were con-
ducted using the NVIDIA A100 GPU, while the
remaining experiments were conducted using the
NVIDIA Titan X GPU (12G memory). The code
was implemented using TensorFlow and Keras. By
default, we used two layers of RAN, with a window
size of 256 for the TC and LM tasks and 64 for the
NER task. The head number of pMHSA is set to 12,
and the head size is 768. We trained the models for
different tasks using the Adam optimizer (Kingma
and Ba, 2015) by optimizing the corresponding ob-
jective function. For pretrained and non-pretrained
RAN models, we set the learning rate to 2e−5 and
3e− 4, respectively.

4.3 Main Results

4.3.1 Long Text Classification
We compare RAN with baselines on the long-text
classification task, including BiLSTM (Hochreiter
and Schmidhuber, 1997) and pretrained language

3https://blog.salesforceairesearch.com/the-wik
itext-long-term-dependency-language-modeling-dat
aset

4https://catalog.ldc.upenn.edu/LDC2013T19
5https://www.clips.uantwerpen.be/conll2002/ne

r/bin/conlleval.txt

http://groups.di.unipi.it/~gulli/AG_corpus_of_news_articles
http://groups.di.unipi.it/~gulli/AG_corpus_of_news_articles
https://blog.salesforceairesearch.com/the-wikitext-long-term-dependency-language-modeling-dataset
https://blog.salesforceairesearch.com/the-wikitext-long-term-dependency-language-modeling-dataset
https://blog.salesforceairesearch.com/the-wikitext-long-term-dependency-language-modeling-dataset
https://catalog.ldc.upenn.edu/LDC2013T19
https://www.clips.uantwerpen.be/conll2002/ner/bin/conlleval.txt
https://www.clips.uantwerpen.be/conll2002/ner/bin/conlleval.txt
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Figure 4: Statistics of long document benchmark datasets. In (a), the right y-axis is for the Arxiv dataset, and the
left y-axis is for the rest datasets.

Model AGNews 20NG B.S. Hyper. EUR.57K Arxiv
Avg.

Acc. Acc. F1(micro) Acc. F1(micro) Acc.

BiLSTM+GloVe 93.34 77.97 49.90 90.77 65.00 81.28 76.38

BERT 93.80 84.79† 58.18† 92.00† 73.09† 82.00 80.64
Longformer 93.22 83.39† 56.53† 95.69† 54.53† 84.24 77.93
ToBERT 93.80 85.52† 58.16† 89.54† 67.57† 83.75 79.72
CogLTX 93.68 84.63† 58.27† 94.77† 70.13† 83.56 80.84

RAN+Random 91.70 78.88 50.52 93.85 66.59 80.08 76.94
RAN+GloVe 93.46 79.16 51.58 95.38 67.21 83.36 78.36
RAN+Pretrain 93.83 85.41 58.43 96.92 73.94 85.92 82.41

Table 1: Results on long document benchmarks for the classification task. † indicates results retrieved from Park
et al. (2022). The rest results are from our implementation based on the official code. For the pre-trained word
embedding GloVe, we use the embedding model glove.6B.300da. Acc. is accuracy score. Avg. stands for the average
numerical results. All the reported results are in percentage (%).

ahttps://nlp.stanford.edu/data/glove.6B.zip

models such as BERT (Devlin et al., 2019), Long-
former (Beltagy et al., 2020), ToBERT (Pappagari
et al., 2019), and CogLTX (Ding et al., 2020). For a
comprehensive review, we adopt different initializa-
tion methods for RAN parameters. RAN+Random
indicates the weights of RAN are randomly ini-
tialized. RAN+GloVe stands for using the GloVe
embedding (Pennington et al., 2014) as word rep-
resentation. RAN+Pretrain is the RAN pretrained
on the MLM task, following settings in Devlin et al.
(2019); Liu et al. (2019). We pretrained RAN on
the BookCorpus (Zhu et al., 2015) (5GB) and C4
(Raffel et al., 2020) (RealNews-like subset, 15GB).

We present the results of long document bench-
marks in Table 1. In general, the pretrained RAN
achieves the five best results among the six bench-

marks except for the 20NG dataset and outperforms
all the baselines regarding the average score. Note
that the pretrained RAN has only 96M parameters
which are fewer than other pretrained baselines,
suggesting that RAN is more efficient and scalable
than the baselines. Particularly, the pretrained RAN
achieves a 2.2% improvement compared with To-
BERT on the super-long text dataset Arxiv, demon-
strating the superiority of RAN in handling long
documents.

It is worth noticing that the average performance
of RAN is higher than that of the chunking-based
ToBERT and the document summarization model
CogLTX. These two models drop essential infor-
mation in the chunking and summarizing processes,
while RAN can preserve the sequence information



with the help of the well-designed recurrent and
memory review mechanisms. Moreover, the pre-
trained RAN achieves the best result on the short-
text dataset AGNews, indicating that RAN also
performs well in short-text tasks.

Remarkably, even without pretraining, RAN can
still yield competitive performance. For example,
the randomly initialized RAN achieved better re-
sults than BiLSTM with pretrained GloVe word em-
bedding. RAN with GloVe embedding outperforms
pretrained BERT and ToBERT on the accuracy of
the Hyper dataset and Longformer on average score.
Such observations illustrate that RAN is effective
for text encoding and flexible in adopting different
initialization methods for various scenarios. It also
suggests that the recurrent attention-based architec-
ture of RAN is more powerful than the recurrent
architecture of LSTM in modeling texts.

4.3.2 Language Modeling
The self-attention-based RAN can be employed
for LM. Extensive experiments are conducted to
evaluate RAN on language modeling. To avoid in-
formation exposure, we apply the causal attention
mask to ensure the prediction for i-th position only
depends on the known outputs before i, follow-
ing Vaswani et al. (2017). We compare RAN with
widely-adopted baselines that are shown in Table
2. The compared models have the same vocabu-
lary and parameter sizes, and the parameters are
randomly initialized. The experiment settings fol-
low Zhong et al. (2022). Observing the results, we
notice that RAN achieves the state-of-the-art result
on the WikiText-103 dataset with 22.76 perplexity.
It suggests that RAN is efficient in handling the
sequence generation task.

Model #Params PPL↓

LSTM (Grave et al., 2017) 150M 48.70
TransformerXL (Dai et al., 2019) 150M 24.00
B.R. Trans. (Hutchins et al., 2022) 150M 39.48†

Transformer (Zhong et al., 2022) 150M 29.14
Com. Trans.(Zhong et al., 2022) 150M 24.56
∞-former (Zhong et al., 2022) 150M 24.22
TRIMELM (Zhong et al., 2022) 150M 25.60

RAN 150M 22.76

Table 2: Results of the LM task on the WikiText-103
dataset. Note that the parameter size for language mod-
eling is much larger than that for classification tasks
(96M) as we used the same vocabulary for all baselines
for a fair comparison. ↓ means the result is the lower
the better. † denotes that the result is from our imple-
mentation of the official code.

4.3.3 Named Entity Recognition
The NER task is a common information extrac-
tion task, and we conduct experiments on the NER
task to test RAN for information extraction. As
the available NER datasets contain mostly short
texts, we set the window size to 64 to test the ef-
fectiveness of RAN’s recurrent structure. We com-
pare with the following widely-used baselines: ID-
CNN (Strubell et al., 2017), LSTM (Langlais et al.,
2018), LSTM-CNN (Li et al., 2020), ELMo (Pe-
ters et al., 2018), and BERT (Devlin et al., 2019).
As shown in Table 3, we notice that RAN consis-
tently outperforms LSTM-based baselines. Specifi-
cally, RAN without pretraining achieves 0.5% and
0.3% improvement compared with BERT on both
datasets, indicating that the well-designed GPC vec-
tor is effective in handling information extraction
of long sequences. Both the NER and LM tasks are
sequential tasks, and the results demonstrate that
RAN is effective in sequence modeling.

Model OntoV5 CoNLL2003

ID-CNN (Strubell et al., 2017) 86.84 90.54
LSTM (Langlais et al., 2018) 87.95 91.73
LSTM-CNN (Li et al., 2020) 88.40 −
ELMo (Peters et al., 2018) − 92.22
BERT (Devlin et al., 2019) 88.88† 92.40

RAN (W = 64) 89.38 92.68

Table 3: F1 score of the NER task. The results of the
baselines are retrieved from the original paper. † denotes
results from our implementation by the official code.

4.4 Ablation Study
We conducted an ablation study to investigate the
significance of each component of our proposed
model on the Arxiv dataset. The results are pre-
sented in Table 4.

In the first ablation model, we substituted the
max pooling layer depicted in Eq. 11 with an av-
erage pooling layer, resulting in a 1.12% drop in
Accuracy. Moreover, our findings show that the
residual connection between two windows is es-
sential to alleviate gradient vanishing. When we
removed it from RAN, the performance drops ap-
proximately 1.6%. We also ablated the rotary posi-
tional encoding from RAN, which leads to a 1.23%
performance drop.

When the memory review mechanism of RAN
was removed in the last ablation model, the result
shows the most significant drop compared with
other ablation models. RAN without the mem-



ory review mechanism suffers a 2.5% performance
drop. Such an observation indicates that mitigat-
ing information forgetting in processing long docu-
ments is crucial, and our proposed memory review
mechanism is effective in preserving long-distance
memory over the sequence.

In general, the ablation study demonstrates the
significance of each component in our proposed
RAN model and highlights the importance of the
memory review mechanism in processing long doc-
uments. Particularly, our observation accentuates
the importance of maintaining long-distance mem-
ory in long document processing.

Model Accuracy (%) ∆ (%)

RAN+GloVe 83.36

w/ avg pool 82.24 −1.12
w/o residual connection 81.76 −1.60
w/o memory review 80.85 −2.51
w/o rotary position 82.13 −1.23

Table 4: Results of ablation models on the Arxiv dataset.

4.5 Discussion

4.5.1 Scalability Analysis of RAN
This section discusses the scalability of RAN in
actual implementation. The window size W de-
termines the number of tokens that are encoded
by the attention block. In theory, RAN with a
larger window size can yield better performance, as
we have fewer windows and less information loss
when iterating over the windows. However, given
the quadratic memory complexity, the hardware
capacity limits the maximum batch size that can
be used in training and hence imposes a ceiling to
the performance improvement. We have conducted
additional experiments with RAN+Glove on the
Arxiv dataset. Figure 5 depicts the accuracy of
the test set and the training time per epoch of RAN
with different window sizes. Results of each config-
uration are obtained with the maximum batch size
runnable on the GPU. As expected, when window
size increases, the accuracy also gains continuous
improvements, albeit minor. The accuracy curve
begins to flatten out when the size exceeds 256, par-
tially due to the decreasing maximum batch size.
Such an observation indicates the performance is
approaching the bottleneck caused by the hardware
capacities.

On the other hand, the V-shape curve observed
in the training time is an intriguing sign, and we
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Figure 5: The accuracy of the test set (the blue line
with •) and the training time (in seconds per epoch, the
green line with ▼) of RAN + Glove with different RAN
window sizes on the Arxiv dataset. For each window,
the results are obtained with the maximum batch size
(max. BS) allowed on a Titan X GPU.

attribute it to the different time complexities of
recurrent and self-attention operations of RAN. Al-
though computing self-attention is of quadratic
time, it is significantly accelerated owing to the
tensor computation on GPU. In contrast, the re-
current component involves tensor manipulations,
such as splitting and concatenation, and thus takes
more time. Therefore, a smaller window size will
lead to a longer training time as more recurrent
operations need to perform. When the window
size is large enough, the quadratic time of self-
attention becomes significant and dominates the
overall spent time. Hence, the green curve bounces
back when the window size is 1024. Moreover,
when the window size is even larger, such as 2048,
the model becomes too large to be loaded on the
GPU, and training becomes infeasible.

Furthermore, we compare the training time of
pretrained RAN with other pretrained and non-
pretrained baselines on the Arxiv dataset. The re-
sults in Table 5 indicate that the proposed RAN is
highly scalable and efficient. Notably, RAN has
six times the parameter size of LSTM but has a
shorter training time, which indicates our devised
recurrent attention structure is more efficient than
the LSTM-style gate mechanism.

4.5.2 The number of RAN Layers
Similar to RNNs, RAN layers can be stacked to
build a deep architecture. We adopt a serial manner
to pass the previous layer’s GPC output as the in-
put to the subsequent hidden RAN layers. The
GPC output at the last RAN layer will be con-



Models #Params Time (s/epoch)

LSTM (w/o pretrain) 15M 7, 947
LongFormer (w/ pretrain) 148M 26, 536
ToBERT (w/ pretrain) 110M 6, 568
CogLTX (w/ pretrain) 110M 21, 032
RAN (w/ pretrain) 96M 5, 393

Table 5: Training time comparison (in seconds per
epoch) on Titan X GPU of different models on Arxiv
dataset.

catenated with the following window input. In-
tuitively, with more RAN layers, the model will
contain more parameters and is promising to pro-
duce higher performance. We compare the RANs
with different depths and list the results in Table 6.
As expected, the accuracy improves as the number
of layers increases. However, the average training
time will significantly increase due to the serial
connection between layers, and the improvements
become marginal. Therefore, to balance the per-
formance and the time consumption, we adopt the
two-layer RAN in this paper by default. This also
implies that the results presented in this paper could
be further enhanced by increasing the depth of the
RAN.

Layers #Params Time (s/epoch) Accuracy (%)

1 15M 678 83.14
2 17M 1, 311 83.36
3 19M 2, 186 83.76
4 21M 2, 967 83.93

Table 6: Results of RAN+GloVe with different layers
on Arxiv dataset. Time is the average training time (in
seconds per epoch).

5 Conclusion & Future Work

This paper has presented a novel RAN architecture
for long-text modeling that combines the advan-
tages of both recurrent and self-attention networks.
The use of a positional multi-head attention mecha-
nism and GPC vector enhances the model’s perfor-
mance by capturing both local and global depen-
dencies in the input sequence. Our ablation study
also highlights the critical role of residual connec-
tion and memory review mechanisms in preserving
long-distance memory.

With the well-designed recurrent self-attention
mechanism, RAN’s training can be accelerated by
parallel computing on a GPU, making it highly ef-
ficient and scalable. We have conducted extensive

experiments on TC, NER, and LM tasks. The ex-
tensive experiments demonstrate the effectiveness
of the proposed RAN model on both classification
and sequential tasks.

The flexibility and scalability of our proposed
RAN make it a promising choice for future re-
search, with broad potential applications in transla-
tion, summarization, conversation generation, and
large language models. Additionally, we plan to
extend the RAN to tasks involving multi-modality
input and output like audio and video, to exploit
RAN’s long sequence handling capacity in differ-
ent fields.

6 Limitations

The proposed model, Recurrent Attention Network
(RAN), effectively models long sequential data
by propagating information window-by-window
through the sequence via its well-designed recur-
rent architecture. However, the multi-head self-
attention applied to each window is still limited
to local attention, which prevents it from provid-
ing a global dependency relationship for the entire
sequence. This limitation restricts RAN’s appli-
cation in scenarios where a global dependency re-
lationship is necessary, such as visualizing atten-
tion weights for the entire document via a heatmap.
This limitation potentially reduces the interpretabil-
ity of the model, although it does not affect the
model’s performance. Hence, exploring ways to
incorporate global attention mechanisms into the
RAN architecture is a promising research direction
to improve its interpretability and expand its range
of applications.
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