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Abstract

Implicit Discourse Relation Recognition
(IDRR) is a sophisticated and challenging
task to recognize the discourse relations
between the arguments with the absence of
discourse connectives. The sense labels for
each discourse relation follow a hierarchical
classification scheme in the annotation pro-
cess (Prasad et al., 2008), forming a hierarchy
structure. Most existing works do not well
incorporate the hierarchy structure but focus
on the syntax features and the prior knowledge
of connectives in the manner of pure text clas-
sification. We argue that it is more effective
to predict the paths inside the hierarchical tree
(e.g., “Comparison -> Contrast -> however”)
rather than flat labels (e.g., Contrast) or
connectives (e.g., however). We propose
a prompt-based path prediction method to
utilize the interactive information and intrinsic
senses among the hierarchy in IDRR. This
is the first work that injects such structure
information into pre-trained language models
via prompt tuning, and the performance of
our solution shows significant and consistent
improvement against competitive baselines.

1 Introduction

Discourse parsing is the task of automatically pars-
ing discourse structure in a text, including the iden-
tification of discourse structure and the annotation
of discourse relations (Li et al., 2022). Discourse
Relation Recognition (DRR) is a crucial task in dis-
course parsing, recognizing relations between two
arguments (i.e., sentences or clauses). It is vital for
textual coherence and is considered as the essential
step for many downstream tasks involving more
context, such as question answering (Rutherford
and Xue, 2015), text generation (Bosselut et al.,
2018), and argument mining (Liu et al., 2021b).
Explicit discourse relation recognition (EDRR) has
already been demonstrated that utilizing explicit
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Figure 1: An example of the implicit discourse relation
hierarchy and path prediction.

connectives information can effectively determine
the discourse relation types (Varia et al., 2019). On
the other hand, implicit discourse relation recogni-
tion (IDRR) is still challenging with the absence of
connectives (Varia et al., 2019).

Traditional works on IDRR focus on syntax fea-
tures, including word pairs (Lin et al., 2009; Varia
et al., 2019) and other surface features (Ji and Eisen-
stein, 2015; Bai and Zhao, 2018). With deep neu-
ral networks and large language models (LLMs),
different approaches pay much attention to text
representations via attention (Liu and Li, 2016),
pre-training (Shi and Demberg, 2019b), multi-task
learning (He et al., 2020; Long and Webber, 2022),
and prior knowledge (Liu et al., 2020; Zhou et al.,
2022). But one important piece of information, i.e.,
the inherent discourse label hierarchy, is not fully
investigated.

The sense labels for each discourse relation fol-
low a hierarchical classification scheme in the an-
notation process of PDTB 2.0 framework (Prasad
et al., 2008), forming a hierarchy structure. Figure 1
shows an example from PDTB 2.0 dataset (Prasad
et al., 2008). It consists of two arguments (i.e., Arg1
and Arg2) and is annotated with relation senses,
where the semantics of the top-level Comparison
is further refined by the second-level Contrast. Be-
sides, we list representative connectives (e.g., how-
ever) to help better understand the definitions and
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semantics of labels. LDSGM (Wu et al., 2022) uses
graph convolutional networks to encode the label
dependencies into text representations, illustrating
the importance of label structures on text repre-
sentation learning and label prediction. However,
such usage is not compatible with pre-training be-
cause it may significantly affect the representations
from language models. Prompt tuning has shown
its power in text classification without altering the
representations from pre-trained language models,
especially for low-resource scenarios (Schick and
Schütze, 2021; Gao et al., 2021).

In this paper, we propose a prompt-based path
prediction method, Discourse relation path predic-
tion Prompt tuning model (DiscoPrompt 1), to
utilize the hierarchy and intrinsic senses of labels
in IDRR. Specifically, we transform the hierarchy
in Figure 1 to “Comparison -> Concession -> if;
· · · ; Temporal -> Synchrony -> when” as the hi-
erarchical prompt and add it as the prefix of argu-
ments to be classified. The dependencies of top and
second-level relation senses are explicitly provided
as the context. On the other hand, connectives are
provided as the natural language explanations of la-
bels to help the language models better adapt to the
prior knowledge. We ask the LLMs to predict the
label’s hierarchical path instead of the leaf label for
IDDR, and we show such a way of providing the
label hierarchy ahead of arguments significantly im-
proves the IDRR performance. Our contributions
are summarized as follows:

• This is the first work that injects labels’ hierar-
chical structure information and connectives into
pre-trained language models via prompt tuning.

• We model the IDRR problem as the path predic-
tion problem that predicts the joint probability of
top-level relations, second-level types, and con-
nectives at the same time.

• We conduct extensive experiments and thorough
ablation studies to discuss the necessity and effec-
tiveness of the label hierarchy and connectives.
The results support our claims and the success of
our proposed DiscoPrompt model.

2 Related Work

Prompt Tuning With LLMs, such as T5 (Raf-
fel et al., 2020) and GPT-3 (Brown et al., 2020),

1The source code is available at https://github.
com/HKUST-KnowComp/DiscoPrompt

prompt-based methods have attracted much atten-
tion in the field of natural language understand-
ing (Schick and Schütze, 2021; Lester et al., 2021;
Liu et al., 2022). Compared with fine-tuning,
prompt tuning may have a better generalization on
various tasks due to the aligned nature of language
descriptions and answer semantics, e.g., classifica-
tion problems (Gao et al., 2021; Wang et al., 2022a).
At the same time, there are some efforts to leverage
prompts with structural inputs for knowledge cus-
tomization (Zhong et al., 2022). Injecting hierarchy
information into prompts is also promising. For ex-
ample, using top-level predictions to refine prompts
of bottom levels can surpass soft prompts and hard
prompts (Wang et al., 2022b). Nevertheless, how
to employ LLMs to better involve hierarchy knowl-
edge is still under investigation.

Implicit Discourse Relation Recognition It has
been discovered that connectives can provide nec-
essary clues in predicting discourse relations to
achieve around 95% accuracy (Dai and Huang,
2019; Varia et al., 2019). However, the absence
of connectives makes the prediction more challeng-
ing. Many efforts have been paid to explore the
syntax through linguistic features (Rutherford and
Xue, 2015; Ji and Eisenstein, 2015; Wang and Lan,
2016; Dai and Huang, 2018; Varia et al., 2019),
attention (Liu and Li, 2016; Bai and Zhao, 2018),
pre-training (Shi and Demberg, 2019b), knowledge
transfer (Lan et al., 2017; Dai and Huang, 2019;
He et al., 2020), etc. With the power of language
models, connective prediction also illustrates its ef-
fectiveness in implicit relation prediction (Nguyen
et al., 2019; Shi and Demberg, 2019a; Kishimoto
et al., 2020; Kurfali and Östling, 2021). In addi-
tion, PCP (Zhou et al., 2022) shows the feasibility
of combining label prediction and connective pre-
diction under the manner of prompts. The latest
methods reveal the significance of the label hier-
archy of discourse relations. LDSGM (Wu et al.,
2022) utilizes the graph convolutional networks to
incorporate label dependencies into text representa-
tions, while ContrastiveIDRR (Long and Webber,
2022) leverages the sense hierarchy to obtain con-
trastive learning representation. However, these
methods are incompatible with pre-training as they
modify the representations from pre-trained lan-
guage models. Therefore, this work investigates
injecting the label dependencies information and
connectives into pre-trained language models via
prompt tuning with aligning the representations.

https://github.com/HKUST-KnowComp/DiscoPrompt
https://github.com/HKUST-KnowComp/DiscoPrompt
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Figure 2: Prior probabilities of PDTB 2.0 frequent con-
nectives.

3 Method

3.1 Problem Definition

The sense labels in various levels of the Implicit
Discourse Relation Recognition (IDRR) task natu-
rally constitute a hierarchy, denoted as H. H is a
hierarchical tree structure whose depth is d, with
the root node in depth 0 and class sense of differ-
ent levels distributed to the corresponding layer
(i.e., from depth 1 to d) in this tree. Let class label
set C to be

⋃d
k=1 Ck where Ck = {ck1, · · · , cknk

} is
the label set of depth k, and nk is the number of
classes at depth k. For example, the hierarchy H
of PDTB 2.0 forms a tree with depth size 2, and
the C2 corresponds to the label set of the second
level, containing 11 class subtypes like Concession,
Synchrony, etc. We can enrich the label hierarchy
by adding a connective layer like in Figure 1. We
adopt the Naive Bayes to compute the prior distribu-
tion Pr(c2|z) from the explicit relation data, where
c2 ∈ C2 is a subtype, and z is the connectives.
Figure 2 shows the heat map of highly frequent
connectives. We can find that the connectives are
the vital clue for discourse relations. Therefore, we
select the most discriminative ones as C3. We do
not observe significant improvement when adding
more than one connective for each c2. Therefore,
we summarize C for PDTB 2.0 in Table 1. Prior dis-
tributions and label words of CoNLL16 are shown
in Appendix A.2.

In this task, given a data set D = {(xi, yi)}
consisting of data instance xi = (a1i , a

2
i ) and

label yi, where the a1i , a
2
i represent the argument

1 and argument 2 of respective instance i and
the label yi is class label set. In our method, the
class label set including d labels for d layers
forms a path P in hierarchical tree H, instead
of a single class label for a specific level. After
predicting a path, the classes of various levels
are the nodes lying in the predicted path. There-
fore, this task is to find out the optimal path:

Top-level Second-level Connectives

Comparison Concession if
Contrast however

Contingency Cause so
Justification indeed

Expansion

Alternative instead
Conjunction also
Instantiation for example

List and
Restatement specifically

Temporal Asynchronous before
Synchrony when

Table 1: The label word set on PDTB 2.0 dataset,
includes four top-level relations, 11 second-level sub-
types, and 11 connectives.

P ∗i = argmax
Pj

Pr
(
Pj | xi

)
, (1)

where P ∗i is the optimal path and j indicates the
j-th path among all paths.

3.2 T5 Backbone Model

T5 (Raffel et al., 2020) is an encoder-decoder
model pre-trained on a multi-task mixture of unsu-
pervised and supervised tasks. The unsupervised
denoising training task required the model only to
predict the masked consecutive spans of tokens.
For example, the input “Thank you for inviting
me to your party last week.” will be corrupted as
“Thank you <X> me to your party <Y> week.” and
the target is “ <X> for inviting <Y> last </s>” </s>
is the eos_token. In the supervised pre-trained task,
the model was asked to perform the sequence-to-
sequence input-output mapping by specifying the
task prefix (such as “translate German to English:"
or “summarize:”). However, the specific textual
prefix token is difficult to discover and requires a
substantial amount of human effort. Hence, pre-
fix tuning (Li and Liang, 2021) and prompt tun-
ing (Lester et al., 2021) methods proposed to over-
come this problem by relaxing the constraint of
discrete textual tokens to continuous tunable ones.

3.3 Path Prediction Prompt Tuning Method

To predict the path P ∗i for each instance xi, we
leverage a template T (·) to convert the data in-
stances to a human-tailored template and a ver-
balizer V(·) to map a set of words to class labels.
The template translates the xi to the prompt input
x̃i = T (xi), and the verbalizer translates. Figure 3
illustrates the archtecture of DiscoPrompt.

Structure-Aware Prompt The crafted template
includes necessary discrete tokens, masked tokens,
soft continuous tokens, and context with the hier-
archy information. The first part of our prompt
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Figure 3: DiscoPrompt model architecture.

template is the discrete tokens “The path is ” for
eliciting the predicted path Pi. Then three [MASK]
tokens are included: an [MASK] is inserted be-
tween two arguments for predicting the probability
of decided connectives, and two [MASK]s form an
edge “[MASK] -> [MASK]” for receiving the top
and second-level class probabilities. We also added
20 learnable continuous tokens at the beginning
of the template to effectively searching an optimal
template. To better utilize the hierarchy informa-
tion and senses of labels, we explicitly translate
them into a tailored hierarchical tree prompt and in-
sert it into the input. This hierarchical tree prompt
is the discrete tokens appended ahead of the argu-
ments as the context in natural language. Figure 8
in Appendix B.2 shows the details of the template.

Path Verbalizer A traditional verbalizer usually
maps a label y to a single answer token z or a series
of spans z1, z2, · · · greedily (Schick and Schütze,
2021; Liu et al., 2021a). We extend it by mapping
a path P to three tokens, i.e. {Pj} → Z ×Z ×Z ,
where Z is the vocabulary. We denote the three
[MASK] tokens as z1, z2, and z3. Then using
the prompt template with three [MASK]s and the
verbalizer V(·), the probability distribution over
{Pj} can be formalized as the joint probabilities
of z1, z2, and z3, i.e. Pr(Pj | x̃i) = Pr(V(Pj) |
x̃i) = Pr(z1i = pj3, z

2
i = pj1, z

3
i = pj2 | x̃i),

where a path Pj consists of pj1 (the top-level),
pj2 (the second-level), and pj3 (the connective).
Since T5 can synchronously predict masked
tokens, the joint probability can be written as

Pr(Pj | x̃i) =
3∏

k=1

Pr(zki = vk(Pj) | x̃i), (2)

where vk(·) : {Pj} → Z is the submap of
V(·) for the k-th [MASK]. The final learn-
ing objective of DiscoPrompt is to maximize

J =
1

|D|
∑

(xi,yi)∈D

log
3∑

k=1

Pr(zki = vk(Pj) | x̃i). (3)

Once we get the prediction of P∗i by
choosing the maximum joint probabil-
ity (i.e., path score) as Eq. (2), we can
get the prediction of each level as Eq. (4).

ck
∗

i = argmax
ck

Pr(ck | Pj , xi) · Pr(Pj | xi), (4)

where Pr(ck | Pj , xi) can be calculated by the
prior probability (or simply set as 1.0).

4 Experimental Setting

4.1 Dataset

The experiments are conducted on two datasets,
the PDTB 2.0 (Prasad et al., 2008) and the CoNLL-
2016 shared task (CoNLL16) (Xue et al., 2016),
to validate the performance of our method. Both
contain the Wall Street Journal (WSJ) articles, and
the difference is the annotation and relation senses.
We evaluate performance on PDTB 2.0 according
to two different settings denoted as Ji (Ji and Eisen-
stein, 2015) and Lin (Lin et al., 2009) with 11 sub-
types. The CoNLL-2016 shared task provides more



Models Ji (Top) Ji (Second) Lin (Top) Lin (Second)
F1 Accuracy F1 Accuracy F1 Accuracy F1 Accuracy

MTL-MLoss (Nguyen et al., 2019) 53.00 - - 49.95 - - - 46.48
ELMo-C&E (Dai and Huang, 2019) 52.89 59.66 33.41 48.23 - - - -
RWP-CNN (Varia et al., 2019) 50.20 59.13 - - - - - -
TransS (He et al., 2020) - - - - 51.24 59.94 - -
BMGF-RoBERTa (Liu et al., 2020) 63.39 69.06 35.25 58.13 58.54 68.66 39.15 53.96
CG-T5 (Jiang et al., 2021) 57.18 65.54 37.76 53.13 - - - -
LDSGM (Wu et al., 2022) 63.73 71.18 40.49 60.33 - - - -
GOLF (Jiang et al., 2022b) 65.76 72.52 41.74 61.16 - - - -
ContrastiveIDRR (Long and Webber, 2022) 67.85 71.70 45.54 59.19 - - - -

XLNet (base, cased) (Kim et al., 2020) 59.33 66.35 36.36 54.73 56.16 68.05 36.23 55.82
XLNet (large, cased) (Kim et al., 2020) 63.58 69.52 38.24 61.29 58.97 72.17 40.71 58.77
OTMT (XLNet-base) (Jiang et al., 2022a) 60.78 68.89 - 56.65 - - - 56.37
OTMT (XLNet-large) (Jiang et al., 2022a) 64.46 72.34 - 61.06 - - - 61.62
Fine-Tuning (T5-base) (Raffel et al., 2020) 57.61 65.39 33.96 55.53 50.50 63.59 36.49 51.96
Fine-Tuning (T5-large) (Raffel et al., 2020) 61.37 69.69 38.04 57.65 58.12 71.13 42.04 59.40

Prefix-Tuning (T5-base) (Li and Liang, 2021) 25.87 52.45 7.49 31.09 25.08 54.18 8.45 26.37
Prefix-Tuning (T5-large) (Li and Liang, 2021) 63.74 71.51 39.73 59.77 58.06 69.84 36.86 56.53
Prompt-Tuning (T5-base) (Lester et al., 2021) 30.17 56.11 15.01 38.21 25.26 55.09 8.97 27.68
Prompt-Tuning (T5-large) (Lester et al., 2021) 66.95 71.99 44.08 60.15 59.92 71.02 40.75 60.44
PCP (RoBERTa-base) (Zhou et al., 2022) 64.95 70.84 41.55 60.54 53.00 66.58 41.19 56.14
PCP (RoBERTa-large) (Zhou et al., 2022) 67.79 73.80 44.04 61.41 52.75 71.13 43.04 60.44

DiscoPrompt (T5-base) 65.79 71.70 43.68 61.02 64.90 71.28 41.82 59.27
DiscoPrompt (T5-large) 70.84 75.65 49.03 64.58 67.06 73.76 45.25 63.05

DiscoPrompt (T5-11b) 75.34 78.06 52.42 68.14 72.78 77.55 47.18 67.62

Table 2: The accuracy (%) and F1 score (%) are evaluated on the PDTB 2.0 dataset. Italics numbers indicate the
results of reproduced models, underlined numbers correspond to the second best. ContrastiveIDRR corresponds to
the model without a data augmentation for a fair comparison. More baselines before 2019 can be found in Table 14
in Appendix.

abundant annotations and two test data denoted as
Test and Blind with 15 subtypes. More specific
details and statistics are listed in Appendix A.1.

4.2 Implementation Details
We employ the T5 model (Raffel et al., 2020) as
the backbone to implement DiscoPrompt and use
the T5-large as the primary model for a fair com-
parison with extensive baselines. Generally, the
overall configuration follows the setting in Lester
et al. (2021), and we put more details of the con-
figuration in Appendix A.2. We report the Macro-
F1 score and accuracy in experiments and abla-
tion studies. A prediction is considered as correct
whenever it matches one of the ground-truth labels.
All experiments are conducted with 2 × NVIDIA
V100 (32GB) except for the T5-11b scale on 2 ×
NVIDIA A6000 (48GB).

4.3 Baselines
This paper mainly adopts two categories of com-
petitive baselines for the PDTB 2.0 dataset and
the CoNLL-2016 shared task2. The first cate-
gory is the previous state-of-the-art (SOTA) base-
lines, such as TransS (He et al., 2020), BMGF-
RoBERTa (Liu et al., 2020), LDSGM (Wu et al.,
2022), XLNet-large (Kim et al., 2020), OTMT

2We report our produced results via the official code if the
authors did not report results on those data.

(XLNet-large) (Jiang et al., 2022a), and Con-
trastiveIDRR (Long and Webber, 2022). Two parti-
tions of these SOTA baselines are highlighted for
comparison with our method. One partition uti-
lizes the hierarchical information in their methods
(e.g., the LDSGM and ContrastiveIDRR), and the
other is to fine-tune the pre-trained language mod-
els (e.g., XLNet-large). Therefore, we include the
fine-tuned T5 models to illustrate the performance
gain of prompt tuning. Besides, a prompt-based
method PCP (Zhou et al., 2022) and general Prefix-
Tuning (Li and Liang, 2021), as well as Prompt
Tuning (Lester et al., 2021) are included. The de-
tails of implementation are listed in A.3.

5 Experimental Result

5.1 Main Results

Table 2 and Table 3 summarize the main results
of the PDTB 2.0 and CoNLL16 datasets, from
which we derive the following conclusions. First,
our method significantly outperforms all baselines
and achieves state-of-the-art performance at both
top and second-level classes in the IDRR task.
Specifically, our method gains a considerable im-
provement of 6.93% second-level accuracy, 10.99%
second-level F1 score, 5.96% top-level accuracy,
and 9.47% top-level F1 score over the fine-tuning
of the T5-large model in PDTB (Ji). It demon-



Models Test (Top) Test (Second) Blind (Top) Blind (Second)
F1 Accuracy F1 Accuracy F1 Accuracy F1 Accuracy

CoNLL Baseline (Rutherford and Xue, 2016) - - - 36.13 - - - 37.67
MTL-Attn-LSTM (Lan et al., 2017) - - - 39.40 - - - 40.12
RWP-CNN (Varia et al., 2019) - - - 39.39 - - - 39.36
BMGF-RoBERTa (Liu et al., 2020) 56.55 68.23 40.68 57.26 58.30 74.43 28.98 55.19

XLNet (base, cased) (Kim et al., 2020) 43.48 62.29 18.80 33.16 19.90 66.12 9.07 28.71
XLNet (large, cased) (Kim et al., 2020) 47.07 64.76 27.13 47.85 22.37 66.59 11.94 35.06
Fine-Tuning (T5-base) (Raffel et al., 2020) 54.64 67.10 31.99 53.92 50.94 71.30 24.52 49.89
Fine-Tuning (T5-large) (Raffel et al., 2020) 58.74 70.87 34.66 58.88 56.28 73.07 24.63 54.30

Prefix-Tuning (T5-base) (Li and Liang, 2021) 26.18 55.35 8.26 26.63 27.17 65.88 9.70 32.71
Prefix-Tuning (T5-large) (Li and Liang, 2021) 57.84 71.15 46.06 59.40 55.61 74.12 30.53 55.53
Prompt-Tuning (T5-base) (Lester et al., 2021) 25.53 54.44 13.01 29.11 27.21 64.71 11.55 33.65
Prompt-Tuning (T5-large) (Lester et al., 2021) 59.95 72.32 49.59 60.57 63.35 77.41 35.72 57.88
PCP (RoBERTa-base) (Zhou et al., 2022) 58.54 69.31 33.27 55.48 55.30 72.00 26.00 50.99
PCP (RoBERTa-large) (Zhou et al., 2022) 63.78 72.69 37.79 58.36 64.74 76.47 27.77 56.24

DiscoPrompt (T5-base) 60.66 70.63 45.99 60.84 62.98 76.94 39.27 57.88
DiscoPrompt (T5-large) 69.56 75.33 56.29 66.32 67.89 80.47 38.49 63.06

DiscoPrompt (T5-11b) 70.38 78.07 57.75 69.71 72.33 84.94 38.60 66.35

Table 3: The accuracy (%) and F1 score (%) are evaluated on the implicit discourse partition of CoNLL16 dataset.
Italics number indicate the results of reproduced models.

strates that our method effectively utilizes the struc-
ture information and perceives the specific knowl-
edge on the correlation of discourse relations and
connectives and finally enhances the ability of
T5 to undertake this challenging task. Second,
the prompt-based baselines (e.g., Prefix-Tuning,
Prompt-Tuning, and PCP) receive outstanding per-
formance and perform better than the T5-large fine-
tuning method on this task. Many works (Scao and
Rush, 2021; Lester et al., 2021) have discussed
the overfitting problem of T5-large fine-tuning,
and this can be partially solved by prompt-tuning
by updating a few learnable parameters with lim-
ited training instances. The learnable parameters
of baselines and DiscoPrompt are shown in Ap-
pendix A.6. Third, the ContrastiveIDRR and our
method obtain better F1 scores. This observation
can support the necessity of integrating the depen-
dencies among relations as well as connectives in
the label hierarchy.

Fine-tuning a relatively pre-trained large lan-
guage model (LLM) such as T5-11b requires ex-
tensive computation resources to update all train-
able parameters. However, by adapting the prompt
tuning-based method, the entire LLM is frozen,
and only a few learnable parameters of input em-
beddings are required to update to obtain satisfac-
tory performance. Therefore, we also include the
performance of DiscoPrompt with the T5-11b ver-
sion as a reference to explore the ability of a size-
able pre-trained language model on this IDDR task.
As shown in Table 2 and Table 3, DiscoPrompt
(T5-11b) easily beats other methods, achieving a
52.42% F1 score and 68.14% accuracy in the 11-
class classification (second-level) task of the PDTB

(Ji) and illustrating the benefits without adjusting
the representations from LLMs. On the contrary,
fine-tuning T5-11b is infeasible in most single com-
pute nodes. Considering the computation cost, we
still focus on the comparison among large models.

5.2 Ablation Study
To better investigate the factors of DiscoPrompt, we
design numerous ablations on the path prediction
and the tailored hierarchical tree prompt. Table 4
reports the performance of the ablation study for
our model in the PDTB (Ji).

Joint Probability for Path Prediction In our
method, by estimating the likelihoods of pj1 (the
top-level), pj2 (the second-level), and pj3 (the con-
nective) in a predicted path, the dependencies of
these three masks are utilized for enhancing the
ability of the pre-trained language model on this
IDRR task. According to the experimental results
in Table 4, we can conclude that 1) the performance
of the path prediction model incorporating the sig-
nals from all three masks surpasses other models
(i.e., paths forming by two arbitrary masks or one
connective mask), emphasizing the significance of
dependencies and effectiveness of joint prediction;
2) the predicted path model without prior knowl-
edge of selected discriminative connectives (i.e.,
Path w/ Top & Second) performs the worst, which
is consistent with findings in Zhou et al. (2022); 3)
the predicted path model with only the connective
mask (e.g., Path w/ Connective) performs consis-
tently worse than paths adding the second mask,
indicating the slight ambiguity of connectives and
the necessity of the label hierarchy especially with
the top. The performance gain with the complete



Model F1 (Top) Accuracy (Top) F1 (Second) Accuracy (Second)

PCP (RoBERTa-large) (Zhou et al., 2022) 67.79 73.80 44.04 61.41
DiscoPrompt (T5-large) 70.84 75.65 49.03 64.58

Path

w/ Top & Second 53.93 66.89 33.74 53.71
w/ Top & Connective 69.19 72.57 42.95 64.08
w/ Second & Connective 70.04 74.69 45.98 64.37
w/ Connective 68.00 73.82 43.76 63.43
w/ Second 63.45 71.99 40.52 59.67

Prompt
w/o Entire Discrete Prompt 68.38 72.95 41.79 62.66
w/o Cloze Discrete Prompt 68.64 73.72 41.44 63.72
w/o Hierarchical Tree Prompt 68.03 72.18 43.14 62.85

Hierarchy
w/ Continuous Hierarchy Prompt 67.63 73.24 44.03 63.81
w/ Continuous Labels & Connective 67.74 73.24 44.06 64.10
w/ Continuous Connective 68.35 73.15 44.48 64.20

Table 4: Ablation study in the components of DiscoPrompt on PDTB (Ji). The path part considers different
combinations in the path prediction; the prompt part tries to eliminate templates from the structure-aware prompt;
the hierarchy replaces the hierarchical tree prompt with continuous variants.

Model Comp. Cont. Exp. Temp.

MTL-MLoss (Nguyen et al., 2019) 48.44 56.84 73.66 38.60
KANN (Guo et al., 2020) 43.92 57.67 73.45 36.33
BMGF-RoBERTa (Liu et al., 2020) 59.44 60.98 77.66 50.26
CG-T5 (Jiang et al., 2021) 55.40 57.04 74.76 41.54
CVAE (Dou et al., 2021) 55.72 63.39 80.34 44.01
ContrastiveIDRR (Long and Webber, 2022) 65.84 63.55 79.17 69.86
DiscoPrompt (T5-base) 62.55 64.45 78.77 57.41
DiscoPrompt (T5-large) 67.13 69.76 81.61 64.86
DiscoPrompt (T5-11b) 74.35 72.44 82.57 72.00

Table 5: The performance for top-level classes on
PDTB (Ji) in terms of F1 (%) (top-level multi-class
classification). More baselines for comparison can be
found in Table 17 in Appendix B.3.

path is at least 3.76% on average, and models asso-
ciating with paths including individual connective
masks can also beat the previous SOTA.

Discrete Prompt Template Two portions in our
designed prompt template are in natural textual
form and as discrete non-tunable tokens. The
first part is the discrete tokens for the label hier-
archy structure (i.e., hierarchical tree prompt),
shown in Figure 3 and Figure 8. The second part
is the cloze discrete prompt “The path is”. We
remove the discrete tokens from the template to
evaluate their importance. The performance shown
in Table 4 demonstrates that the two parts of the
prompt are essential for achieving satisfactory per-
formance compared with the without manual tips
(i.e., Prompt w/o Entire Prompt). When adding
back the cloze discrete prompt, we do not observe
the model’s ability to understand the correlations
among masks for path prediction. Without explic-
itly injecting structural information into the hierar-
chical tree prompt, the performance dropped signif-
icantly, especially the second-level F1 score, drop-
ping from 49.03% to 43.14%.

Hierarchical Tree Prompt To acquire a deeper
understanding of the discrete hierarchical tree
prompt, we perform experiments to gradually re-

Second-level Label PCP Contrast DP (large) DP (11b)

Temp.Asynchronous 57.81 59.79 64.15 72.27
Temp.Synchrony 0.0 78.26 50.00 33.33
Cont.Cause 65.64 65.58 69.66 72.28
Cont.PragmaticCause 0.0 0.0 0.0 0.0
Comp.Contrast 63.88 62.63 62.88 70.63
Comp.Concession 8.00 0.0 9.09 0.0
Exp.Conjunction 57.78 58.35 60.09 62.84
Exp.Instantiation 74.01 73.04 74.17 76.60
Exp.Restatement 61.00 60.00 65.24 65.98
Exp.Alternative 66.67 53.85 60.00 84.21
Exp.List 29.63 34.78 24.00 38.46

Table 6: The label-wise F1 scores for the second-level
labels on PDTB (Ji) (second-level multi-class classifi-
cation). “Contrast” and “DP” indicate the ContrastiveI-
DRR and DiscoPrompt. Results of more baselines are
listed in Table 19 in Appendix B.3.

place the discrete tokens with continuous ones in
various elements of this hierarchy prompt. The ex-
periments include 1) Continuous Hierarchy Prompt:
replacing the whole hierarchical tree prompt as the
continuous tunable prompt with the same number
of tokens, 2) Continuous Labels & Connective:
only including the “-> ” and replacing other rela-
tion labels and connective as continuous tunable
prompt, and 3) Continuous Connective: only re-
placing the textual connective to be the tunable
prompt. The experimental result in Table 4 un-
derscores the importance and effectiveness of our
tailored discrete hierarchical tree prompt, which
obtains at least 4.98% performance boost.

Prompt Engineering Furthermore, we conduct
the prompt template searching and the parameter
sensitivity on the continuous prompt length that we
describe in Appendix B.2.

5.3 Label-wise F1 Scores

The PDTB (Ji) setting exhibits highly skewed la-
bel distributions, with only roughly 854 training
instances (i.e., 6.8% of 12406 training instances)
annotating as five of the 11 second-level labels. To
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Figure 4: The performance comparison of the T5-large
fine-tuning with and without using our designed tem-
plate on the CoNLL16 dataset.

further explore our model in four top-level relations
and 11 second-level sense types on this dataset, Ta-
ble 5 and Table 6 report the F1 scores (%) of the top-
level and second-level classes, respectively. In Ta-
ble 5, our model outperforms all baselines in three
top-level relations (i.e., Comparison, Contingency,
Expansion), and most of the baselines in the Tempo-
ral relation except ContrastiveIDRR. Specifically,
Table 6 illustrates that our model performs bet-
ter on the Temp.Asynchronous second-level class,
whereas ContrastiveIDRR is much better on the
Temp.Synchrony. In Table 6, our model obtains
valid predictions on most second-level classes,
but all methods fail to predict Cont.Pragmatic
Cause. This situation may result from the few
training examples of this class being insufficient
for optimal learnable parameters, and the models
tend to ignore this class in the prediction process.
When we check the less representative classes (i.e.,
Temp.Synchrony, Comp.Concession), DiscoPrompt
can still make correct predictions, while PCP and
ContrastiveIDRR still fail to predict neither cor-
rect ones. Moreover, we can also see the power of
LLMs that the T5-11b performs remarkably better
than smaller models.

5.4 Prompt Adaptation

For T5 Fine-Tuning To demonstrate the effective-
ness of our designed template and explore whether
our designed template can be used for the fine-
tuning paradigm, we convert the data input to the
tailored prompt template but with only a [MASK]
for generating the entire path. The experimental
results on CoNLL16 are summarised in Figure 4,
and the T5-adapt boosts all metrics over vanilla T5-
large fine-tuning. The detailed performance and
the experimental results for PDTB 2.0 are shown
in Table 18 and Figure 9 in Appendix B.4.

Model F1 (Top) Acc (Top) F1 (Second) Acc (Second)
Random 23.44 32.18 6.48 8.78
ChatGPTlabel 43.37 48.51 16.17 26.95
ChatGPTlabel & con. 43.99 49.28 17.55 30.32
ChatGPTstructure 44.09 50.24 19.88 31.95

Table 7: The performance of ChatGPT performs on
the PDTB (Ji) test set. ChatGPTlabel&con. means pre-
dicting the label and connective, and ChatGPTstructure

means adopting our structural path prompt template.
Model Acc F1
Pitler and Nenkova (2009) 94.15 -
Dai and Huang (2018) 94.46 93.70
Dai and Huang (2019) 95.39 94.84
Zhou et al. (2022) 94.78 93.59
Varia et al. (2019) 96.20 95.48
Fine-tuning (T5-large) w/o Connective 74.47 72.38
Fine-tuning (T5-large) w/ Gold Connective 95.41 94.94
DiscoPrompt (T5-large) w/ Connective Mask 78.35 74.62
DiscoPrompt (T5-large) w/ Gold Connective 96.73 95.64

Table 8: Explicit Top-level sense classification results
on PDTB (Ji). “w/o Connective” and “w/ Connective
Mask” regard the EDRR as IDRR.
5.5 Prompt Adaptation For ChatGPT
With the powerful ability of LLMs exhibited on
numerous tasks, we are curious about the capabil-
ity of ChatGPT on zero-shot IDRR task. We test
the ability of ChatGPT with three designed tem-
plates on the PDTB (Ji), and the performance is
shown in Table 7. All designed templates obtain
higher performance than the random, but still at
a low region in the second level compared with
supervised learning. This result reveals that IDRR
is still tricky for ChatGPT and cannot solve easily
at current state, consistent with the result in Chan
et al. (2023). The structural path template outper-
forms the other two templates, proving the help
of the structural form for ChatGPT to understand
this task. The F1 score of each second level is
shown in Figure 10 in Appendix and illustrates the
effectiveness to distinguish various second-level
senses among the Expansion top class. More case
examples and discussions refer to Appendix B.5.

5.6 Generalization to Explicit Discourse
Relation Classification Task

To demonstrate the generalization ability of our
model, we transfer and adapt our method to the
explicit discourse relation recognition (EDRR)
task. We simply replace the first [MASK] be-
tween two arguments with the gold connective
for each instance in EDRR. Following the previ-
ous works (Varia et al., 2019; Zhou et al., 2022),
the second-level class is the same as our implicit
one setting. In Table 8, our model slightly outper-
forms previous SOTA models on the top-level sense
prediction. DiscoPrompt consistently outperforms
fine-tuning under different settings, and we observe
a larger margin with absenting connectives.



6 Conclusion

In this paper, we introduce a path prediction
method for tackling the IDRR task by utilizing the
hierarchical structural information and prior knowl-
edge of connectives. Combining label structures
in natural language with prompt tuning success-
fully takes a step further in this task as well as
other generalized settings, e.g., prompt adaptation
and explicit relation detection. Our model achieves
new SOTA performance on PDTB 2.0 and CoNLL-
2016 data, and we hope our detailed discussions
can help communities in discourse fields.

Limitations and Future Work

Limited Utilized Knowledge The main limita-
tion of our method is the limited utilized knowl-
edge. Since our prompt tuning-based method tests
on Implicit Discourse Relation Recognition (IDRR)
task, the elicited knowledge only comes from the
dataset of this task and the model pre-training cor-
pora. This constraint restricts the capability owing
to the reporting bias (Gordon and Durme, 2013)
in the pre-training models (PLMs). Moreover, the
relatively few training data of several second-level
classes resulting from the highly skewed label dis-
tribution problem requires extensive knowledge
to make the model understand data instances and
the task. Although we impose the prior human
knowledge against the IDRR task from the input
template designing to the discourse connectives
selection, the knowledge source still only comes
from our prior knowledge and the elicited knowl-
edge of PLMs. As a result, even our method ob-
tains a valid score in all second-level classes except
the Cont.Pragmatic Cause displayed in Table 6,
some second-level senses, which are the same as
previous studies, cannot receive a satisfactory per-
formance (e.g., Comp.Concession and Expa.List).
The future work for this issue is to integrate more
abundant knowledge and equip the model with
more vital abilities. For example, grounding the
arguments pair on the relevant nodes of the knowl-
edge graph for each data instance (Lin et al., 2019)
or knowledge distillation from large language mod-
els to provides more contextual information and
enhances the capability of the model on this task.

Limited Predicted Connectives Another area
for improvement is the prediction of extensive con-
nectives. Although our model includes the pre-
selected connectives as our third layer of a designed

hierarchy tree, we do not include the ground truth
of connectives as our third layer. Because including
these extensive connectives to form many leaves
will result in many paths (more than 100). This
limitation may be addressed in future works by
utilizing the pruning algorithms for reducing a lot
of redundant nodes and leaves on each instance to
enhance effectiveness and efficiency.
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A Appendix for Experimental Settings

A.1 DataSet

The Penn Discourse Treebank 2.0 (PDTB 2.0)
PDTB 2.02 is a large-scale corpus containing 2,312
Wall Street Journal (WSJ) articles (Prasad et al.,
2008), that employs a lexically-grounded approach
to annotating discourse relations. This corpus in-
cludes three sense levels (i.e., classes, types, and
sub-types) and naturally forms the sense hierarchy.
In this dataset, we validate our model on two pop-
ular settings of the PDTB 2.0 dataset, which are
the Ji-setting (Ji and Eisenstein, 2015) and Lin-
setting (Lin et al., 2009). The former one follow-
ing Ji and Eisenstein (2015) to split sections 2-20, 0-
1, and 21-22 as training, validation, and test sets re-
spectively, while the latter follows Lin et al. (2009)
split sections 2-21, 22, 23 as training, validation,
and test sets respectively. We evaluate our model on
the four top-level implicit discourse relations and
the 11 major second-level implicit discourse senses
by following previous works (Wu et al., 2022; Long
and Webber, 2022; Zhou et al., 2022). The data
statistics of the top-level and second-level senses
are displayed in Table 9 and Table 10.

The CoNLL-2016 Shared Task (CoNLL16)
The CoNLL-2016 shared task3 (Xue et al., 2016)
provides more abundant annotation (e.g., second-
level sense type) for shadow discourse pars-
ing. This task includes two test sets, the PDTB
section 23 (CoNLL-Test) and newswire texts
(CoNLL-Blind), that comply with the PDTB an-
notation guidelines. Compared with PDTB 2.0,
CoNLL16 includes more new class sense (e.g.,
Contingency.Condition) and merges several la-
bels to annotate new labels. For example, Con-
tingency.Pragmatic cause is merged into Contin-
gency.Cause.Reason to remove the former type
with very few samples. In this paper, we fol-
low Wang and Lan (2016); Lan et al. (2017); Liu
et al. (2020) to perform the experiments on this
CoNLL-2016 dataset and validate the performance
of our model in the top- and second-level sense.

3The License of the PDTB 2.0 dataset is LDC User
Agreement for Non-Members, and this paper is consistent
with their intended use for research purposes. This dataset
download from https://catalog.ldc.upenn.edu/
LDC2008T05

4CoNLL16 dataset download from https://www.cs.
brandeis.edu/~clp/conll16st/dataset.html.

https://catalog.ldc.upenn.edu/LDC2008T05
https://catalog.ldc.upenn.edu/LDC2008T05
https://www.cs.brandeis.edu/~clp/conll16st/dataset.html
https://www.cs.brandeis.edu/~clp/conll16st/dataset.html


Top-level Senses Train Val. Test

Comparison 1,942 197 152
Contingency 3,342 295 279
Expansion 7,004 671 574
Temporal 760 64 85
Total 12,362 1,183 1,046

Table 9: Statistics of four top-level implicit senses in
PDTB 2.0.

Second-level Senses Train Val. Test

Comp.Concession 180 15 17
Comp.Contrast 1566 166 128
Cont.Cause 3227 281 269
Cont.Pragmatic cause 51 6 7
Exp.Alternative 146 10 9
Exp.Conjunction 2805 258 200
Exp.Instantiation 1061 106 118
Exp.List 330 9 12
Exp.Restatement 2376 260 211
Temp.Asynchronous 517 46 54
Temp.Synchrony 147 8 14
Total 12406 1165 1039

Table 10: The implicit discourse relation data statistics
of second-level types in PDTB 2.0.

A.2 DiscoPrompt Implementation Details

DiscoPrompt is prompt tuning upon T5-model, and
we also validate our method over various model
scales, including T5-base, T5-large, and T5-11b.
Figure 12 shows the heat map of highly frequent
connectives on CoNLL2016, and the label words
are in Table 12. Generally, the overall configu-
ration follows the setting in Lester et al. (2021)
and sets the learnable prompt length as 20. The
training was implemented using cross-entropy loss
with 30,000 training steps, which selects the model
that yields the best performance on the validation
set. We adopt an Adafactor (Shazeer and Stern,
2018) optimizer with various learning rate ranges
for different dataset settings. The batch size and
maximum input sequence are 4 and 350, respec-
tively. The maximum generates sequence length of
the encoder is 10. Our model is conducted on two
32GB NVIDIA V100 GPUs, except for the T5-11b
scale on two 48GB NVIDIA A6000 GPUs. The
running time for T5-base is around 8 hours, while
T5-large is about 19 hours.

Since we are interested in the ability of our
method to adopt a larger-scale model on this task,
we tested the T5-11b model on various datasets.
Most of the configuration is the same as the above
T5-large version. The slight differences in hyper-
parameters are batch size is one and gradient ac-

Dataset Hyperparameters

PDTB (Ji) LR space: {9e-2, 9e-1}, LR∗: 3e-1,
BS: 4, gradient accumulation step:1

PDTB (Lin) LR space: {9e-4, 9e-3}, LR∗: 2e-4,
BS: 4, gradient accumulation step:1

CoNLL16 (Test) LR space: {9e-2, 9e-1}, LR∗: 9e-2,
BS: 4, gradient accumulation step:1

CoNLL16 (Blind) LR space: {9e-2, 9e-1}, LR∗: 9e-2,
BS: 4, gradient accumulation step:1

PDTB (Ji) LR space: {9e-4, 9e-3}, LR∗: 4e-4,
BS: 1, gradient accumulation step:16

PDTB (Lin) LR space: {9e-4, 9e-3}, LR∗: 5e-4,
BS: 1, gradient accumulation step:16

CoNLL16 (Test) LR space: {9e-5, 9e-4}, LR∗: 9e-5
BS: 1, gradient accumulation step:16

CoNLL16 (Blind) LR space: {9e-4, 9e-3}, LR∗: 2e-4,
BS: 1, gradient accumulation step:16

Table 11: The hyperparameters of implementation de-
tails for DiscoPrompt (T5-large) and DiscoPrompt (T5-
11b). The upper part is for the T5-large version in
four datasets, while the bottom is for the T5-11b ver-
sion. “LR space”, “LR∗”, and “BS” refer to learning
rate searching space, optimal learning rate, and batch
size, respectively.

Top-level Second-level Connectives

Comparison Concession nonetheless
Contrast but

Contingency
Reason because
Result so

Condition if

Expansion

Alternative unless
Chosen instead

Conjunction and
Instantiation for example
Exception except

Restatement indeed

Temporal
Precedence before
Succession previously
Synchrony when

Table 12: The label word set on CoNLL2016 dataset.

cumulation step is 16. The running time of the
T5-11b model is around 50 hours. The tailored
prompt template is shown in Figure 8. The specific
hyperparameters of implementation details for Dis-
coPrompt (T5-large) and DiscoPrompt (T5-11b)
are displayed in Table 11. The frozen pre-train
T5 model download from HuggingFace, and our
model inheritance and modification from Open-
Prompt (Ding et al., 2022).

A.3 Baseline Models

To exhibit the effectiveness of our proposed
method, we compared it with previous works on
the PDTB 2.0 and CoNLL16 datasets. In this sec-
tion, we mainly describe some recently published
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Figure 5: Prior probabilities of CoNLL16 frequent con-
nectives.

baselines, and more baselines can be found in Ta-
ble 14.

Common Baselines for PDTB 2.0 and
CoNLL16:

• RWP-CNN (Varia et al., 2019): a convolutional
neural networks-based method to model word
pairs in the arguments in a discourse relation.

• BMGF-RoBERTa (Liu et al., 2020): a
RoBERTa-based model, which contains a robust
contextualized representation module, a bilateral
matching module to capture the interaction be-
tween arguments, and a global information fusion
module to derive final representations for labels.

• XLNet (Kim et al., 2020): it fine-tunes XLNet
model (Yang et al., 2019) for IDRR task to pre-
dict the flat label in each layer of discourse rela-
tion sense.

• T5 (Fine-Tuning) (Raffel et al., 2020): Fine-
tune a T5-model based on specifics tailored input
text in various settings with a comparison of our
model. The Implementation details are described
in Appendix A.5.

• Prefix-Tuning (T5) (Li and Liang, 2021): a
lightweight method concatenates the tunable pre-
fix tokens before the discrete input text, keeps
language model parameters frozen, and opti-
mizes these continuous task-specific prefix to-
kens. The implementation details of the Prefix-
Tuning methods are appended in Appendix A.4.

• Prompt-Tuning (T5) (Lester et al., 2021): a
vanilla Prompt Tuning-based model condition-
ing on a frozen model, releasing the constraints
of the prompt templates from discrete to learn-
able prompts. The implementation details of
the prompt tuning methods are appended in Ap-
pendix A.4.

• PCP (Zhou et al., 2022): a prompt-based con-
nective prediction method for IDRR by adopting
the RoBERTa model. This method utilizes the
strong correlation between connectives and dis-
course relations to map the predicted connectives
to respective implicit discourse relations.

Baselines for PDTB 2.0:

• DER (Bai and Zhao, 2018): a model enhanced
with multiple grained text representations, includ-
ing character, subword, word, sentence, and sen-
tence pair levels.

• MTL-MLoss (Nguyen et al., 2019): a multi-task
learning neural model that predicts labels and
connectives simultaneously by leveraging the de-
pendence between them.

• ELMo-C&E (Dai and Huang, 2019): a neural
model that employs a regularization approach to
utilize the external event knowledge and corefer-
ence relations.

• TransS (He et al., 2020): a TransS-driven joint
learning model which translates the discourse re-
lations in low-dimensional embedding space (i.e.,
TransS), and simultaneously learns the semantic
features of arguments.

• CG-T5 (Jiang et al., 2021): a joint model that
recognizes the relation label and generates the
desired target sentence containing the meaning
of relations simultaneously.

• OTMT(XLNet) (Jiang et al., 2022a): an XL-
Net (Yang et al., 2019) based model exploits the
knowledge distillation (KD) technique for dis-
course relation recognition task.

• LDSGM (Wu et al., 2022): a label dependence-
aware sequence generation model that integrates
the global representation of an input instance,
level-specific contexts, and the label dependence
decoded by graph convolutional network (GCN)
to obtain better label embeddings, and then em-
ploy the label sequence decoder to output the
predicted labels.

• GOLF (Jiang et al., 2022b): a global and local
hierarchy-aware contrastive framework, to model
and capture the information from these two kinds
of hierarchies with the aid of contrastive learning.



• ContrastiveIDRR (Long and Webber, 2022): a
contrastive learning method for incorporating the
sense hierarchy into the recognition process and
using the hierarchy to select the negative exam-
ples.

Baselines for CoNLL16:

• CoNLL Baseline (Rutherford and Xue, 2016):
a neural classifier requires word vectors and a
simple feed-forward training procedure.

• MTL-Attn-LSTM (Lan et al., 2017): a multi-
task attention-based LSTM neural network
model that exploits explicit discourse relations in
PDTB and unannotated external data in a multi-
task joint learning framework.

A.4 Implementation Details of the
Prefix-Tuning and Prompt Tuning

In our paper, we implement the prefix tuning (Li
and Liang, 2021) and prompt tuning (Lester et al.,
2021) methods as the baselines for comparison
with our model. We proposed several templates
for searching for their best performance in these
two methods. The experimental details for these
two methods include the template and hyperpa-
rameter search. Moreover, there are 154 tokens,
including textual tokens (non-tunable tokens) and
tunable tokens, in our prompt template. For a fair
comparison, we insert 154 tunable tokens into the
respective prompt template in these two baselines.

Prefix-Tuning Following the setting of prefix
tuning (Li and Liang, 2021), we implemented
several designed templates on the PDTB 2.0 JI
setting and the templates shown in figure 6. In
these templates, we find that the prefix-prompt
template three is better among all templates, and
we adopted this template for further comparison
with our method. The overall configuration of this
model follows the settings of prefix tuning (Li and
Liang, 2021). The batch size and maximum se-
quence length of this model are 8 and 350. The
training is performed using cross-entropy loss with
an Adafactor optimizer (Shazeer and Stern, 2018)
and a learning rate selecting in 0.3, 0.5, 0.8 yields
the best performance on the validation set, and the
training steps are 30,000.

Prompt-Tuning For the prompt tuning method,
we implemented several designed templates on the
PDTB 2.0 JI setting and the templates shown in fig-
ure 7. In these templates, we find that the prompt

tuning template two is better among all templates,
and adopted this template for further comparison
with our method. The overall configuration of this
model follows the settings of prefix tuning (Lester
et al., 2021). The batch size and maximum se-
quence length of this model are 8 and 350. The
training is performed using cross-entropy loss with
an Adafactor optimizer (Shazeer and Stern, 2018)
and a learning rate selecting in 0.3, 0.5, 0.8 yields
the best performance on the validation set, and the
training steps are 30,000.

A.5 Implementation Details of T5 Model
Fine-Tuning

Here we provide the fine-tuning details for T5 base
and large models on various datasets.

Model Input and Output In main experiments,
T5-model fine-tuning as the competitive baseline,
we concatenate two arguments with an “</s>” at the
end of the sequence as input. The T5 model asked
to generate the top-level labels, and the second-
level labels with concatenating by commas (e.g.,
Comparison.Contrast) given the data input. For the
experiments to test the transferred template on the
fine-tuning paradigm, the “T5-adapt” model in sec-
tion 5.4 concatenate the hierarchy tree prompt in
Figure 8 before the two arguments as input. Then
we concatenate a prompt message “The path is ”
before the original output. Furthermore, for the
setting “T5-large (fine-tune) (w/ connective)” in
the EDRR task (Section 5.6), it required inserting
the connectives between two arguments. There-
fore, we use the text span named “FullRawText” in
the dataset with an additional “</s>” at the end as
input.

Hyperparameter Search We first conduct a pre-
liminary experiment to determine the range of
hyper-parameters. Then, we search for the learn-
ing rate within {3e− 4, 1e− 4} and warmup steps
within {0, 100}. For the T5-base model, we set the
training batch size as 8, and the model is evaluated
with a batch size of 128 every 150 steps. For the
T5-large model, the training and evaluation batch
sizes are set as 16 and 64, respectively. The model
is optimized with an AdamW optimizer with a lin-
ear learning rate schedule. The test performance
of the model with the best validation accuracy is
reported.



Model Parameters
BMGF-RoBERTa (Liu et al., 2020) 2.3M
XLNet(base, cased) (Kim et al., 2020) 110M
XLNet(large, cased) (Kim et al., 2020) 340M
OTMT(XLNet-base) (Jiang et al., 2022a) 110M
OTMT(XLNet-large) (Jiang et al., 2022a) 340M
Fine-Tuning (T5-base) (Raffel et al., 2020) 220M
Fine-Tuning (T5-large) (Raffel et al., 2020) 770M
Prefix-Tuning (T5-base) (Li and Liang, 2021) 0.12M
Prefix-Tuning (T5-large) (Li and Liang, 2021) 0.16M
Prompt-Tuning (T5-base) (Lester et al., 2021) 0.12M
Prompt-Tuning (T5-large) (Lester et al., 2021) 0.16M
LDSGM (Wu et al., 2022) 128M
ContrastiveIDRR (Long and Webber, 2022) 125M
PCP(RoBERTa-base) (Zhou et al., 2022) 124M
PCP(RoBERTa-large) (Zhou et al., 2022) 335M
DiscoPrompt (T5-base) 1.2M
DiscoPrompt (T5-large) 2.1M

Table 13: The approximation of learnable parameters
for models. “M” stands for million learnable parame-
ters.

A.6 The Approximation of Learnable
Parameters

To show the efficiency of our method, we append
the approximation of learnable parameters for all
models, including our model and baselines. The
approximation of learnable parameters is listed in
Table 13.

B Appendix for Evaluation Result and
Analysis

B.1 Performance of Baselines in PDTB 2.0

In this section, we list extensive baselines in Ta-
ble 14 for comparison with our method.

B.2 Ablation study on the DiscoPrompt

Prompt Template Searching We perform the
prompt template research on our designed prompt,
and all prompt searching templates are listed in Fig-
ure 8, and the performance is shown in Table 15.
Our finalized optimal template inserts the connec-
tives between two arguments to improve the textual
coherence of input context and results in the PLMs
easy to understand input. Therefore, this template
performs better than other designed templates.

Continuous Prompt Length The continuous
prompt (i.e., learnable prompt tokens) length is
another factor that influences the performance of
our model. Hence, we implement various prompt
lengths of 10, 20, 50, and 100. The performance
is in Table 16, and the optimal continuous prompt

5We use their model without a data augmentation version
for a fair comparison in Table 2. This model with the data
augmentation version is also appended in this table.

length is 20, which provides the best performance
among all the prompt lengths and is the default
prompt length for implementing other experiments.
Adopting more prompt length than 20 on our
method will not significantly increase this task’s
performance on various evaluation metrics.

B.3 Performance of Label-wise F1 Score on
Top and Second level

The performance (F1 score%) of more baselines
for comparison with our model in Top-level and
Second-level shown in Table 17 and Table 19.

B.4 Performance of Designed Prompt For T5
Fine-Tuning

The performance comparison of the T5-large fine-
tuning with and without using our designed tem-
plate on the PDTB 2.0 is displayed in Figure 9.
The detailed experimental result for PDTB 2.0 and
CoNLL16 dataset is shown in Table 18.

B.5 Discussion and Case Example for
ChatGPT

We test the ability of ChatGPT 5 with three de-
signed templates on the PDTB (Ji) test set. These
templates include: 1) predict the class label only,
2) predict the class label with connectives, and 3)
predict the class label with connectives in a struc-
tural path form. Moreover, the input template with
in-context learning highly relies on the training ex-
amples selected as the prefix instruction part of the
prompt template. The performance of this model
is high variance with the chosen examples vary.
Therefore, this template is not taken into account in
this section. The performance of the random guess
model is obtained by averaging the performance of
5 runs. A prediction is regarded as wrong if Chat-
GPT generates the answer out of the range of label
words. An interesting finding is that the ChatGPT
with label-only template tends to predict many tem-
porally related instances to the Contingency.Cause
second-level sense result in poor performance on
Temporal.synchrony second-level sense shown in
Figure 10. The input template and two case exam-
ples are shown in Table 20 and Table 21.

6The demonstration and details of ChatGPT are on the
website https://openai.com/blog/chatgpt/

https://openai.com/blog/chatgpt/


Models Ji (Top) Ji (Sec) Lin (Top) Lin (Sec)
F1 Acc F1 Acc F1 Acc F1 Acc

Lin et al. (2009) - - - - - - - 40.20
Ji and Eisenstein (2015) - - - 44.59 - - - -
Liu et al. (2016) 44.98 57.27 - - - - - -
Qin et al. (2016a) - - - 45.04 - - - 43.81
Liu and Li (2016) 46.29 57.57 - - - - - -
Wu et al. (2017) 44.84 58.85 - - - - - -
Lan et al. (2017) 47.80 57.39 - - - - - -
Qin et al. (2017) - - - 46.23 - - - 44.65
Xu et al. (2018) 44.48 60.63 - - - - - -
Dai and Huang (2018) 48.82 57.44 - - - - - -
Bai and Zhao (2018) 51.06 - - 48.22 - - - 45.73
Shi and Demberg (2019a) 46.40 61.42 - 47.83 - - - 45.82
Varia et al. (2019) 50.20 59.13 - - - - - -
Dai and Huang (2019) 52.89 59.66 - 48.23 - - - -
Nguyen et al. (2019) 53.00 - - 49.95 - - - 46.48
Shi and Demberg (2019b) - - - 53.23 - - - -
He et al. (2020) - - - - 51.24 59.94 - -
Guo et al. (2020) 47.90 57.25 - - - - - -
Kishimoto et al. (2020) 58.48 65.26 - 54.32 - - - -
Liu et al. (2020) 63.39 69.06 35.25 58.13 58.54 68.66 39.15 53.96
Jiang et al. (2021) 57.18 - 37.76 - - - - -
Kurfali and Östling (2021) 59.24 - 39.33 55.42 - - - -
Dou et al. (2021) 65.06 70.17 - - - - - -
Wu et al. (2022) 63.73 71.18 40.49 60.33 - - - -
Jiang et al. (2022b) 65.76 72.52 41.74 61.16 - - - -
Long and Webber (2022)(w/o data augm.)4 67.85 71.70 45.54 59.19 - - - -
Long and Webber (2022) (w data augm.) 69.60 72.18 49.66 61.69 - - - -

BERT-base (Devlin et al., 2019) 43.17 62.14 26.32 50.24 43.44 63.46 26.70 49.87
BERT-large (Devlin et al., 2019) 57.06 67.59 30.02 54.57 56.06 68.40 38.68 56.53
XLNet(base, cased) (Kim et al., 2020) 59.33 66.35 36.36 54.73 56.16 68.05 36.23 55.82
XLNet (large, cased) (Kim et al., 2020) 63.58 69.52 38.24 61.29 58.97 72.17 40.71 58.77
OTMT (XLNet-base) (Jiang et al., 2022a) 60.78 68.89 - 56.65 - - - 56.37
OTMT (XLNet-large) (Jiang et al., 2022a) 64.46 72.34 - 61.06 - - - 61.62
Fine-Tuning (T5-base) (Raffel et al., 2020) 57.61 65.39 33.96 55.53 50.50 63.59 36.49 51.96
Fine-Tuning (T5-large) (Raffel et al., 2020) 61.37 69.69 38.04 57.65 58.12 71.13 42.04 59.40

Prefix-Tuning (T5-base) (Li and Liang, 2021) 25.87 52.45 7.49 31.09 25.08 54.18 8.45 26.37
Prefix-Tuning (T5-large) (Li and Liang, 2021) 63.74 71.51 39.73 59.77 58.06 69.84 36.86 56.53
Prompt-Tuning (T5-base) (Lester et al., 2021) 30.17 56.11 15.01 38.21 25.26 55.09 8.97 27.68
Prompt-Tuning (T5-large) (Lester et al., 2021) 66.95 71.99 44.08 60.15 59.92 71.02 40.75 60.44
PCP w/ RoBERTa-base (Zhou et al., 2022) 64.95 70.84 41.55 60.54 53.00 66.58 41.19 56.14
PCP w/ RoBERTa-large (Zhou et al., 2022) 67.79 73.80 44.04 61.41 52.75 71.13 43.04 60.44

DiscoPrompt (T5-base) 65.79 71.70 43.68 61.02 64.90 71.28 41.82 59.27
DiscoPrompt (T5-large) 70.84 75.65 49.03 64.58 67.06 73.76 45.25 63.05

DiscoPrompt (T5-11b) 75.34 78.06 52.42 68.14 72.78 77.55 47.18 67.62

Table 14: The accuracy (%) and F1 score (%) are evaluated on the PDTB 2.0 dataset.

Prefix-Tuning Templates

Templates 1 [20 Continuous Prompt] [Argument 1] [Argument 2] [mask]

Templates 2 [154 Continuous Prompt] [Argument 1] [Argument 2] [mask]

Templates 3 [150 Continuous Prompt] [Argument 1] [Argument 2] The relation is [mask]

Figure 6: Prefix-Tuning Template Searching

Prompt Tuning Templates

Templates 1 [150 Continuous Prompt] [Argument 1] [Argument 2] [4 Continuous Prompt] [mask]

Templates 2
[52 Continuous Prompt] [Argument 1] [51 Continuous Prompt]  [Argument 2] [51 

Continuous Prompt] [mask]

Figure 7: Prompt Tuning Template Searching



DiscoPrompt Templates

Optimal Templates 

[20 Continuous Prompt] Comparison -> Concession -> if ; Comparison -> Contrast -> however ;

Contingency -> Cause -> so ; Contingency -> Pragmatic -> indeed; Expansion -> Alternative ->

instead ; Expansion -> Conjunction -> also ; Expansion -> Instantiation -> for example;

Expansion -> List -> and ; Expansion -> Restatement -> specifically ; Temporal ->

Asynchronous -> before ; Temporal -> Synchrony -> when . [Argument 1] [mask] [Argument 2]

The path is [mask] -> [mask];

Templates 1

[20 Continuous Prompt] Comparison -> Concession -> if ; Comparison -> Contrast -> however ;

Contingency -> Cause -> so ; Contingency -> Pragmatic -> indeed; Expansion -> Alternative ->

instead ; Expansion -> Conjunction -> also ; Expansion -> Instantiation -> for example;

Expansion -> List -> and ; Expansion -> Restatement -> specifically ; Temporal ->

Asynchronous -> before ; Temporal -> Synchrony -> when . [Argument 1] [Argument 2] The

path is [mask] -> [mask] -> [mask]

Templates 2

[20 Continuous Prompt] Comparison -> Concession -> if ; Comparison -> Contrast -> however ;

Contingency -> Cause -> so ; Contingency -> Pragmatic -> indeed; Expansion -> Alternative ->

instead ; Expansion -> Conjunction -> also ; Expansion -> Instantiation -> for example;

Expansion -> List -> and ; Expansion -> Restatement -> specifically ; Temporal ->

Asynchronous -> before ; Temporal -> Synchrony -> when . [Argument 1] [mask] [Argument 2]

The relation is [mask].[mask]

Templates 3

[20 Continuous Prompt] Comparison -> Concession -> if ; Comparison -> Contrast -> however ;

Contingency -> Cause -> so ; Contingency -> Pragmatic -> indeed; Expansion -> Alternative ->

instead ; Expansion -> Conjunction -> also ; Expansion -> Instantiation -> for example;

Expansion -> List -> and ; Expansion -> Restatement -> specifically ; Temporal ->

Asynchronous -> before ; Temporal -> Synchrony -> when . [Argument 1] [mask] [Argument 2]

The relation is [mask] -> [mask]

Templates 4

[20 Continuous Prompt] Comparison -> Concession -> if ; Comparison -> Contrast -> however ;

Contingency -> Cause -> so ; Contingency -> Pragmatic -> indeed; Expansion -> Alternative ->

instead ; Expansion -> Conjunction -> also ; Expansion -> Instantiation -> for example;

Expansion -> List -> and ; Expansion -> Restatement -> specifically ; Temporal ->

Asynchronous -> before ; Temporal -> Synchrony -> when . [Argument 1] [Argument 2] The

relation is [mask] -> [mask] -> [mask];

Templates 5

[20 Continuous Prompt] Comparison -> Concession -> if ; Comparison -> Contrast -> however ;

Contingency -> Cause -> so ; Contingency -> Pragmatic -> indeed; Expansion -> Alternative ->

instead ; Expansion -> Conjunction -> also ; Expansion -> Instantiation -> for example;

Expansion -> List -> and ; Expansion -> Restatement -> specifically ; Temporal ->

Asynchronous -> before ; Temporal -> Synchrony -> when . [Argument 1] [Argument 2] The

relation is [mask] -> [mask]. The connective is [mask].

Figure 8: DiscoPrompt Template Searching. The “Optimal Templates” is the finalized optimal template for imple-
menting experiments to compare with extensive baselines.

Model F1 (Top) Acc (Top) F1 (Second) Acc (Second)

DiscoPrompt (Optimal Template : The path is mask -> mask;) 70.84 75.65 49.03 64.58

DiscoPrompt (Template 1: The path is mask -> mask -> mask) 69.22 73.44 43.52 63.33
DiscoPrompt (Template 2: The relation is mask.mask) 67.55 74.21 44.81 64.20
DiscoPrompt (Template 3: The relation is mask -> mask) 69.70 74.01 48.61 64.10
DiscoPrompt (Template 4: The relation is mask -> mask -> mask;) 68.07 72.76 45.91 62.56
DiscoPrompt (Template 5: The relation is mask -> mask.The connective is mask .) 62.71 70.74 40.19 58.81

Table 15: Performance of various templates of our method with adopting T5-large model in PDTB (Ji) dataset.
The details of various templates are shown in Figure 8.

Model F1 (Top) Acc (Top) F1 (Second) Acc (Second)

DiscoPrompt (T5-large) 70.84 75.65 49.03 64.58

Continuous Prompt Length (10) 67.17 72.47 43.56 62.66
Continuous Prompt Length (50) 69.64 74.40 45.06 63.91
Continuous Prompt Length (100) 68.39 73.92 42.77 64.20

Table 16: Performance of various continuous prompt lengths in our method DiscoPrompt (T5-large) on PDTB (Ji)
dataset. The default continuous prompt length of our model is 20.



Model Comp. Cont. Exp. Temp.

Ji and Eisenstein (2015) 35.93 52.78 - 27.63
Rutherford and Xue (2015) 41.00 53.80 69.40 33.30
Liu et al. (2016) 37.91 55.88 69.97 37.17
Liu and Li (2016)2 39.86 54.48 70.43 38.84
Qin et al. (2016b) 38.67 54.91 71.50 32.76
Lan et al. (2017) 40.73 58.96 72.47 38.50
Bai and Zhao (2018) 47.85 54.47 70.60 36.87
Dai and Huang (2018) 46.79 57.09 70.41 45.61
Varia et al. (2019) 44.10 56.02 72.11 44.41
Nguyen et al. (2019) 48.44 56.84 73.66 38.60
Guo et al. (2020) 43.92 57.67 73.45 36.33
Liu et al. (2020) 59.44 60.98 77.66 50.26
Jiang et al. (2021) 55.40 57.04 74.76 41.54
Dou et al. (2021) 55.72 63.39 80.34 44.01
Long and Webber (2022) 65.84 63.55 79.17 69.86
DiscoPrompt (T5-base) 62.55 64.45 78.77 57.41
DiscoPrompt (T5-large) 67.13 69.76 81.61 64.86
DiscoPrompt (T5-11b) 74.35 72.44 82.57 72.00

Table 17: The performance for top-level classes on
PDTB (Ji) in terms of F1 (%) (top-level multi-class
classification).

Model(DataSet Settings) Acc (Second) F1 (Second) Acc (Top) F1 (Top)

T5 (PDTB (Ji)) 57.65 38.04 69.69 61.37
T5-adapt(PDTB (Ji)) 59.77 38.08 70.17 60.89

T5 (PDTB (Lin)) 59.40 42.04 71.13 58.12
T5-adapt(PDTB (Lin)) 59.53 42.83 71.91 61.03

T5 (CoNLL-Test) 58.88 34.66 70.87 58.74
T5-adapt(CoNLL-Test) 59.66 37.49 71.52 60.78

T5 (CoNLL-Blind) 54.3 24.63 73.07 56.28
T5-adapt(CoNLL-Blind) 56.07 26.85 74.61 57.77

Table 18: The performance comparison of the T5-large
fine-tuning with and without using our designed tem-
plate on the PDTB 2.0 and CoNLL16 dataset. “T5-
adapt” means adopting our designed template in the
fine-tuning process. Acc and F1 inside the brackets in-
dicate the accuracy and F1 score.
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Figure 9: The performance comparison of the T5-large
fine-tuning with and without using our designed tem-
plate on the PDTB 2.0 dataset. “T5-adapt” means
adopting our designed template in the fine-tuning pro-
cess. Acc and F1 inside the brackets indicate the accu-
racy and F1 score.
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Figure 10: The performance comparison of various input prompt templates for ChatGPT. “Prag.Cause” stand for
Pragmatic cause second level sense.

Second-level Label BMGF LDSGM PCP ContrastiveIDRR Ours(base) Ours(large) Ours(11B)

Temp.Asynchronous 56.18 56.47 57.81 59.79 57.69 64.15 72.27
Temp.Synchrony 0.0 0.0 0.0 78.26 0.0 50.00 33.33
Cont.Cause 59.60 64.36 65.64 65.58 63.83 69.66 72.28
Cont.PragmaticCause 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Comp.Contrast 59.75 63.52 63.88 62.63 59.26 62.88 70.63
Comp.Concession 0.0 0.0 8.00 0.0 9.09 9.09 0.0
Expa.Conjunction 60.17 57.91 57.78 58.35 61.08 60.09 62.84
Expa.Instantiation 67.96 72.60 74.01 73.04 69.96 74.17 76.60
Expa.Restatement 53.83 58.06 61.00 60.00 58.45 65.24 65.98
Expa.Alternative 60.00 63.46 66.67 53.85 72.73 60.00 84.21
Expa.List 0.0 8.98 29.63 34.78 37.50 24.00 38.46

Table 19: The label-wise F1 scores for the second-level labels on PDTB (Ji) (second-level multi-class classifica-
tion).



Query Template: Argument 1: Right away you notice the
following things about a Philip Glass concert. Argument
2: It attracts people with funny hair. What is the relation
label between Argument 1 and Argument 2? Select from the
candidates.
1. Comparison.Concession
2. Comparison.Contrast
3. Contingency.Cause
4. Contingency.Pragmatic
5. Expansion.Alternative
6. Expansion.Conjunction
7. Expansion.Instantiation
8. Expansion.List
9. Expansion.Restatement
10. Temporal.Asynchronous
11. Temporal.Synchrony
ChatGPT: Expansion.Instantiation

Query Template: Argument 1: Right away you notice the
following things about a Philip Glass concert. Argument 2:
It attracts people with funny hair. What is the relation and
connective between Argument 1 and Argument 2? Select
from the candidates.
1. Comparison.Concession, if
2. Comparison.Contrast, however
3. Contingency.Cause, so
4. Contingency.Pragmatic, indeed
5. Expansion.Alternative, instead
6. Expansion.Conjunction, also
7. Expansion.Instantiation, for example
8. Expansion.List, and
9. Expansion.Restatement, specifically
10. Temporal.Asynchronous, before
11. Temporal.Synchrony, when
ChatGPT: Expansion.Instantiation, for example

Query Template: Argument 1: Right away you notice the
following things about a Philip Glass concert. Argument
2: It attracts people with funny hair. What is the relation
path between Argument 1 and Argument 2? Select from the
candidates.
1. Comparison -> Concession -> if
2. Comparison -> Contrast -> however
3. Contingency -> Cause -> so
4. Contingency -> Pragmatic -> indeed
5. Expansion -> Alternative -> instead
6. Expansion -> Conjunction -> also
7. Expansion -> Instantiation -> for example
8. Expansion -> List -> and
9. Expansion -> Restatement -> specifically
10. Temporal -> Asynchronous -> before
11. Temporal -> Synchrony -> when
ChatGPT: Expansion -> List -> and

Ground truth: Expansion.List

Table 20: Generation cases from three prompt tem-
plates for ChatGPT. The top one is the label-only tem-
plate, the middle one is the label & connectives tem-
plate, and the bottom is the structural path template.

Query Template: Argument 1: Grinned Griffith Peck, a trader
in Shearson Lehman Hutton Inc.’s OTC department: "I tell you,
this market acts healthy". Argument 2: Around him, scores of
traders seemed to get a burst of energy. What is the relation
label between Argument 1 and Argument 2? Select from the
candidates.
1. Comparison.Concession
2. Comparison.Contrast
3. Contingency.Cause
4. Contingency.Pragmatic
5. Expansion.Alternative
6. Expansion.Conjunction
7. Expansion.Instantiation
8. Expansion.List
9. Expansion.Restatement
10. Temporal.Asynchronous
11. Temporal.Synchrony
ChatGPT: Contingency.Cause

Query Template: Argument 1: Grinned Griffith Peck, a trader
in Shearson Lehman Hutton Inc.’s OTC department: "I tell you,
this market acts healthy". Argument 2: Around him, scores of
traders seemed to get a burst of energy. What is the relation and
connective between Argument 1 and Argument 2? Select from
the candidates.
1. Comparison.Concession, if
2. Comparison.Contrast, however
3. Contingency.Cause, so
4. Contingency.Pragmatic, indeed
5. Expansion.Alternative, instead
6. Expansion.Conjunction, also
7. Expansion.Instantiation, for example
8. Expansion.List, and
9. Expansion.Restatement, specifically
10. Temporal.Asynchronous, before
11. Temporal.Synchrony, when
ChatGPT: Contingency.Cause, so

Query Template: Argument 1: Grinned Griffith Peck, a trader
in Shearson Lehman Hutton Inc.’s OTC department: "I tell you,
this market acts healthy". Argument 2: Around him, scores of
traders seemed to get a burst of energy. What is the relation
path between Argument 1 and Argument 2? Select from the
candidates.
1. Comparison -> Concession -> if
2. Comparison -> Contrast -> however
3. Contingency -> Cause -> so
4. Contingency -> Pragmatic -> indeed
5. Expansion -> Alternative -> instead
6. Expansion -> Conjunction -> also
7. Expansion -> Instantiation -> for example
8. Expansion -> List -> and
9. Expansion -> Restatement -> specifically
10. Temporal -> Asynchronous -> before
11. Temporal -> Synchrony -> when
ChatGPT: Temporal -> Synchrony -> when

Ground truth: Temporal.Synchrony

Table 21: Generation cases from three prompt tem-
plates for ChatGPT. The top one is the label-only tem-
plate, the middle one is the label & connectives tem-
plate, and the bottom is the structural path template.


