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Abstract

Universal Information Extraction (Universal
IE) aims to solve different extraction tasks in
a uniform text-to-structure generation manner.
Such a generation procedure tends to struggle
when there exist complex information struc-
tures to be extracted. Retrieving knowledge
from external knowledge bases may help mod-
els to overcome this problem but it is impos-
sible to construct a knowledge base suitable
for various IE tasks. Inspired by the fact that
large amount of knowledge are stored in the
pretrained language models (PLM) and can be
retrieved explicitly, in this paper, we propose
MetaRetriever to retrieve task-specific knowl-
edge from PLMs to enhance universal IE. As
different IE tasks need different knowledge,
we further propose a Meta-Pretraining Algo-
rithm which allows MetaRetriever to quicktly
achieve maximum task-specific retrieval per-
formance when fine-tuning on downstream IE
tasks. Experimental results show that MetaRe-
triever achieves the new state-of-the-art on 4
IE tasks, 12 datasets under fully-supervised,
low-resource and few-shot scenarios.

1 Introduction

Information extraction (IE) is the task of extract-
ing specific information structures of interest from
unstructured text (Andersen et al., 1992; Grish-
man, 2019). The various IE tasks at hand can be
highly heterogeneous, as each task may have dif-
ferent extraction targets, such as entities (Lample
et al., 2016), relations (Zheng et al., 2017), and
events (Lin et al., 2018). Traditional IE methods
tend to be task-specific, resulting in specialized and
isolated approaches for different tasks.

In recent years, researchers have made efforts
towards universal information extraction, or Uni-
versal IE (Lu et al., 2022), which aims to develop
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a unified method capable of solving a range of IE
tasks. One proposed approach involves the use of
a Structure Extraction Language to express differ-
ent extraction targets in a unified structure form,
and pretrains a Transformer model to generate this
unified structure through a sequence-to-sequence
process. However, this structure generation process
can be limited in its ability to fully utilize contex-
tual semantic correlation between the extracted in-
formation, as the Transformer generation process
is unidirectional. In cases where the information
structure to be extracted is complex, the universal
IE model may struggle to generate accurate results.

Previous studies on retrieval-augmented gener-
ation (Lewis et al., 2020b; Wang et al., 2021; Cai
et al., 2022; Geng et al., 2022) have shown that
utilizing external knowledge bases to retrieve task-
specific information can improve the ability of mod-
els to generate complex sequences. However, this
approach is not practical for Universal IE, as it
is almost impossible to build a knowledge base
suitable for various IE tasks, and it is also the ulti-
mate goal of IE. Recently, research on knowledge
probing (Petroni et al., 2019; Roberts et al., 2020;
Zhang et al., 2022; Yu et al., 2022) has demon-
strated that large amounts of knowledge are stored
in pretrained language models (PLMs) and can be
retrieved explicitly. Utilizing this knowledge to en-
hance IE models could avoid the need for extensive
resource construction. In light of these findings, the
question arises: can PLMs be used as knowledge
bases to retrieve knowledge and improve universal
IE models? If so, universal IE models would be
able to generate more accurate results.

Based on this idea, in this paper, we propose
MetaRetriever, a pretrained model for universal
IE. Unlike existing method which generates re-
sults in a single step, MetaRetriever utilizes a
retrieve-then-extract approach: first, it retrieves
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(a) First: Retrieval task-specific knowledge from the
model.
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(b) Second: Extraction based on the retrieved knowledge.

Figure 1: Illustrations of our proposed MetaRetriever
with the retrieve-then-extract manner.

task-specific knowledge from itself, and then it
uses this knowledge as additional input to extract
information. However, different IE tasks require
different knowledge, and simply retrieving infor-
mation from PLM can lead to irrelevant informa-
tion being included, which can negatively impact
performance. To address this, incorporating meta-
learning techniques (Finn et al., 2017), we develop
a Meta-Pretraining Algorithm (MPA) which allows
the model to quickly learn the semantics of extrac-
tion targets of different tasks to retrieve the relevant
knowledge. Specifically, MPA pretrains the model
with a bi-level optimization, in which the model
are optimized to achieve maximal task-specific re-
trieval performance given the extraction targets af-
ter the parameters have been updated through a
small number of gradient steps on a new IE task.
Thus, in the fine-tuning phase, MetaRetriever can
learn downstream tasks quickly to retrieve relevant
knowledge and disregard irrelevant information.

We conduct experiments on 12 datasets of 4
main IE tasks under fully-supervised, few-shot
and low-resource scenarios. Experiments show
that MetaRetriever significantly surpasses previous
works and achieves the new state-of-the-art. On
fully-supervised scenario, MetaRetriever achieves
0.7% gains on average over UIE (Lu et al., 2022).
On few-shot and low-resource scenarios, our model
outperforms UIE with over 2.0% improvement.

Our contributions can be summarized as fol-
lows: (1) We introduce a retrieve-then-extract per-
spective into universal IE. It retrieves task-specific
knowledge from the pretrained language model
to improve performance. (2) We propose a meta-
pretraining algorithm to make models fast-adapt

(
(SpotName: InfoSpan

(AssoName: InfoSpan)
(AssoName: InfoSpan)

)
)

(a) Structured extraction language (SEL).
[spot] SpotName1 ... [spot] SpotNameN
[asso] AssoName1 ... [asso] AssoNameN
[text]

(b) Structural Schema Instructor (SSI)

Figure 2: Illustrations of SEL and SSI.

into various downstream IE tasks by retrieving task-
specific knowledge. (3) We construct large-scale
pretraining corpus for universal IE and it can pro-
mote future research1.

2 Preliminaries

2.1 Structured Extraction Language
The UIE paper (Lu et al., 2022) presents the con-
cept of the Structured Extraction Language (SEL)
for expressing the diverse extraction targets of vari-
ous IE tasks in a uniform representation. As illus-
trated in Figure 2a, SEL is a hierarchical key-value
structure that comprises three components:

(1) SpotName: the targeted class name of the
extracted information pieces in a specific IE task,
e.g., “PERSON” in named entity recognition;

(2) AssoName: the targeted class name of the
relationship between different information, e.g.,
“Works For” in relation extraction;

(3) InfoSpan: the text span corresponding to the
specific SpotName or AssoName.

Additionally, the colon (“:”) symbol denotes the
mapping of the text span to its class name or rela-
tionship, and the hierarchical structure is indicated
by the use of parentheses (“(” and “)”).

2.2 Structural Schema Instructor
To make the model be aware of which extraction
targets the IE task focus on, UIE further proposes
Structural Schema Instructor (SSI), a schema-based
prompt. As shown in Figure 2b, SSI first uses sev-
eral special symbols ([spot], [asso]) to denote Spot-
Names and AssoNames. Then these SpotNames
and AssoNames are concatenated before each text
sequence with a “[text]” symbol as a prompt. UIE
takes the prompted text as input to generate the
linearized SEL to achieve information extraction.

1Our code and constructed corpus are released at
https://github.com/AlibabaResearch/DAMO-ConvAI/
tree/main/metaretriever

https://github.com/AlibabaResearch/DAMO-ConvAI/tree/main/metaretriever
https://github.com/AlibabaResearch/DAMO-ConvAI/tree/main/metaretriever


3 Methodology

Our proposed MetaRetriever achieves universal
IE via a retrieve-then-extract manner. It first re-
trieves task-specific knowledge from itself accord-
ing to the input text and then generates the ex-
traction results based on the retrieved knowledge.
To make MetaRetriever only retrieve task-specific
knowledge and neglect other distracting knowledge,
we further proposed a meta-pretraining algorithm
based on meta-learning technique. In this section,
we first introduce how MetaRetriever works via
the retrieve-then-extract manner and then detail the
meta-pretraining algorithm.

3.1 Retrieve-then-Extract
Given that providing task-specific knowledge can
be beneficial for IE and that pretrained models
have acquired a significant amount of knowledge
through training on large corpora (Petroni et al.,
2019; Roberts et al., 2020; Zhang et al., 2022; Yu
et al., 2022), our proposed system, MetaRetriever,
utilizes this pretrained knowledge by first retrieving
relevant information from the model itself. This
retrieved knowledge then serves as an additional
input, along with the original input, to produce
the final extraction results. The design of MetaRe-
triever is depicted in Figure 1.

3.1.1 Retrieval Procedure
We use SEL (Lu et al., 2022) to express knowledge
for knowledge retrieval and knowledge understand-
ing. To specify which extraction targets MetaRe-
triever should retrieve, we adopt SSI as a prefix
that controls which kinds of knowledge need to be
retrieved. Thus, the input is in the form of:

s⊕ x = [s1, s2, ..., s|s|, x1, x2, ..., x|x|] (1)

where s = [s1, s2, ..., s|s|] is SSI and x =
[x1, x2, ..., x|x|] is the original text. Defining a uni-
fied format of task-specific knowledge for various
IE tasks is a challenging issue. In this paper, we
adopt a simple strategy: using the ground truth lin-
earized SEL sequence of the corresponding input
text as the knowledge we wish to retrieve. Taking
SSI (s) and the text sequence (x) as input, MetaRe-
triever generates the linearized SEL (k) to retrieve
task-specific knowledge. The retrieval procedure
can represented as follows:

k = MetaRetriever(s⊕ x) (2)

where k = [k1, ..., k|k|] is the retrieved knowledge
represented by SEL.

Algorithm 1 Meta-Pretraining Algorithm
Require: α, β: inner/outer step size; D: pretraining corpus
1: Initialize parameters θ of the model
2: Construct support-query pair based on D
3: // Outer Loop
4: while not converged do
5: Sample the support set (xS , yS)

and the query set (xQ, yQ)
6: Compute record loss Lrecord(y; θ)
7: Corrupt raw text: x′, x′′ ← Corrupt(x)
8: Compute LM loss LLM(x

′, x′′; θ)
9: // Inner Loop

10: for j in number of inner-loop updates J do
11: Compute retrieval loss Lretrv(x

S , yS ; θj)
12: Compute extraction loss Lext(x

S , kS , yS ; θj)
13: Compute inner loss Linner = Lretrv + Lext
14: Compute adapted parameters

θj+1 ← θj − α∇θjLinner
15: end for
16: Compute retrieval loss Lretrv(x

Q, yQ; θJ)
17: Compute extraction loss Lext(x

Q, kQ, yQ; θJ)
18: Compute outer loss

Louter = Lretrv + Lext + Lrecord + LLM
19: Update model parameters θ ← θ − β∇θLouter
20: end while

3.1.2 Extraction Procedure
After retrieval of task-specific knowledge, MetaRe-
triever incorporates this information as an addi-
tional input to generate the extraction results. To en-
sure that MetaRetriever utilizes the retrieved knowl-
edge in generating the results, we concatenate it
with the original input by appending it as a suffix:

s⊕ x⊕ k = [s1, ..., s|s|, x1, ..., x|x|, k1, ..., k|k|] (3)

Then, MetaRetriever will take s⊕x⊕ k as the new
input to generate the final extraction results y:

y = MetaRetriever(s⊕ x⊕ k) (4)

3.2 Meta-Pretraining Algorithm
As the knowledge contained in the pretrained
model may not always be relevant to the down-
stream IE tasks, we propose a Meta-Pretraining
Algorithm (MPA) that utilizes a meta-learning tech-
nique (Finn et al., 2017) to enable MetaRetriever
to quickly learn the semantics of the extraction
targets of downstream IE tasks, and thus, retrieve
task-specific knowledge only. The algorithm is
detailed in Algorithm 1.

To make MetaRetriever retrieve task-specific
knowledge, MPA meta-pretrain MetaRetriever with
a bi-level optimization (Finn et al., 2017) to op-
timize MetaRetriever to achieve maximum task-
specific retrieval performance after the parameters
have been updated through a small number of gra-
dient steps on a new IE task. In the bi-level opti-
mization, models will experience two optimization



trials: the inner loop and the outer loop. The in-
ner loop aims to mimic the downstream fine-tuning
procedure to compute a intermediate parameters of
the model via SGD (Saad, 1998; Sutskever et al.,
2013). The outer loop aims to mimic the down-
stream evaluation procedure to optimize the model
parameters based on the intermediate parameters
computed in the inner loop. The inner loop and the
outer loop are nested and thus, it calculates high-
order gradients to update parameters. Optimized by
such a bi-level optimization, MetaRetriever would
lean that after finetuning a small number of steps
(the inner loop), MetaRetriever can achieve lower
retrieval loss (the outer loop), a.k.a. learning a
fast-adaptation ability for task-specific retrieval.

To accomplish this, MetaRetriever should be pre-
trained on a set of simulated “IE tasks” T in the pre-
training phase. Each “IE task” contains a support
set S and a query set Q. The support set is to mimic
the training set used in the inner loop and the query
set is to mimic the test set used in the outer loop. To
construct various “IE tasks”, a intuitive way is to
follow the widely-used episodic training technique
in conventional meta-learning methods (Vinyals
et al., 2016) to randomly sample instances by cate-
gory. However, such a random-sampling operation
requires random access to all data, which is infea-
sible when processing large-scale corpora, as such
corpora cannot be stored in memory and must be
accessed from external storage instead, resulting in
intolerable long input/output (IO) time. To address
this limitation, we design a support-query pairing
method based on the graph maximum-weighted
matching algorithm (Galil, 1986), which signifi-
cantly reduces IO time (see in Section 5.5). Details
of our method are introduced in Appendix B.

Inner Loop Since the inner loop simulates the
downstream fine-tuning process, MetaRetriever
computes the intermediate parameters by consid-
ering two inner losses: the retrieval loss Lretrv and
the extraction loss Lext. Let MetaRetriever be
represented by a parametrized function fθ with
parameters θ. When learning a mimic IE task
Ti = {Si,Qi}, the retrieval loss is computed based
on the support set Si = (xSi , ySi).

Lretrv = CrossEntropy
(
fθ(x

Si), ySi

)
(5)

It takes the text with SSI as the input and calculates
the cross-entropy loss between the output sequence
and the ground truth retrieved knowledge SEL se-

quence. Then, we compute the extraction loss:

Lext = CrossEntropy
(
fθ(x

Si , kSi), ySi

)
(6)

where MetaRetriever takes the retrieved knowledge
kSi with original input and generates the final pre-
dicted linearized SEL expression. We compute the
cross-entropy loss between the predicted linearized
SEL and ground truth as the extraction loss. Thus,
the total inner loss is calculated as follows:

Linner = Lretrv + Lext (7)

The inner loop may consist of several update
steps, resulting in multiple updates of the interme-
diate parameters. Let the number of steps in the
inner loop be denoted as J , then the model param-
eters θ are updated iteratively to θJ based on the
inner loss Linner:

θj+1 = θj − α∇θjLinner(fθj ) (8)

where α is the inner step size.

Outer Loop In the outer loop, the model param-
eters are updated by optimizing the performance of
fθJ with respect to θ. As the outer loop simulates
the downstream evaluation process, given the query
set Qi = (xQi , yQi), the retrieval loss is calculated
to evaluate the retrieval performance:

Lretrv = CrossEntropy
(
fθJ (x

Qi), yQi

)
(9)

The extraction loss is computed to assess the ex-
traction results based on the retrieved knowledge:

Lext = CrossEntropy
(
fθJ (x

Qi , kQi), yQi

)
(10)

Additionally, to maintain the ability to understand
language, we include a T5-style language modeling
loss LLM (Raffel et al., 2020a). And to acquire the
capability of generating valid linearized SEL struc-
tures, we include a record loss Lrecord as proposed
in UIE (Lu et al., 2022). The overall objective in
the outer loop is calculated using these four losses:

Louter = Lretrv + Lext + LLM + Lrecord (11)

It is worth noting that the language modeling loss
and the record loss are not the primary learning
objectives in the downstream IE tasks, thus these
losses are calculated based on the original parame-
ters θ rather than the intermediate parameters θJ .

Eventually, the model parameters θ are updated
as follows:

θ ← θ − β∇θ

∑
Ti∈T

Louter(fθJ ) (12)



where β is the outer step size. The bi-level op-
timization is applied to the model parameters θ,
but the objective is computed using the updated
model parameters θJ , which calculates high-order
gradients to update parameters. Essentially, our
proposed method optimizes the model parameters
such that one or a small number of gradient steps
on a new task will yield optimal performance on
that task.

4 Experiments

4.1 Pretraining Datasets

To pretrain MetaRetriever, we collect a large-scale
corpus using CROCODILE(Cabot and Navigli,
2021), an automatic relation extraction dataset con-
struction tool. CROCODILE is based on the distant
supervision technique (Mintz et al., 2009) which
aligns texts from English Wikipedia 2 and knowl-
edge base from Wikidata 3 to create distant labeled
relation extraction data. Since distant supervision
inevitably introduces noise (Mintz et al., 2009;
Cabot and Navigli, 2021), CROCODILE further
uses Natural Language Inference (NLI) to filter
data with low confidence. Finally, we construct a
71 million distant labeled pretraining corpus and
obtained 6.9 million high-quality pretraining cor-
pus after NLI filtering. Detailed statistics of our
pretraining corpus are listed in Appendix A.

Our analysis experiment (Section 5.3) indicates
that the pretraining corpus we constructed can yield
comparable results in the trained model as the data
constructed by UIE. As UIE’s pretraining data is
not open-sourced, our data will be the first 10-
million-level corpus to be open-sourced, and will
be released after the acceptance of the paper.

4.2 Evaluation Datasets

Following previous work (Lu et al., 2022), we
conduct experiments across 4 IE tasks: named
entity recognization (NER), relational triple ex-
traction (RTE), event extraction (EE), structured
sentiment extraction (Senti). Specifically, we use
12 IE benchmarks in total for these 4 IE tasks4:
ACE04 (Mitchell et al., 2005), ACE05 (Walker
et al., 2006); CoNLL03 (Tjong Kim Sang and
De Meulder, 2003), CoNLL04 (Roth and Yih,
2004), SciERC (Luan et al., 2018), CASIE (Satya-

2https://www.wikipedia.org/
3https://www.wikidata.org/
4As NYT datasets overlaps with pre-training data, we

didn’t conduct on it for fair comparsion.

Task Dataset UIE MetaRetriever

NER
ACE04 85.69 86.10 (0.41↑)

ACE05-Ent 83.88 84.01 (0.13↑)
CoNLL03 91.94 92.38 (0.44↑)

RTE
ACE05-Rel 62.73 64.37 (1.64↑)
CoNLL04 73.48 73.66 (0.18↑)
SciERC 35.35 35.77 (0.42↑)

EE Trg.
ACE05-Evt 71.33 72.38 (1.05↑)

CASIE 69.14 69.76 (0.62↑)

EE Arg.
ACE05-Evt 50.62 52.62 (2.00↑)

CASIE 58.56 60.37 (1.81↑)

Senti

14-res 72.86 73.41 (0.55↑)
14-lap 62.68 62.83 (0.15↑)
15-res 65.51 65.85 (0.34↑)
16-res 73.26 73.55 (0.29↑)

Table 1: Overall results on 12 datasets in the fully su-
pervised settings. The performance of UIE are reported
based on the official UIE-en-base model.

panich et al., 2020), SemEval-14 (Pontiki et al.,
2014), SemEval-15 (Pontiki et al., 2015), SemEval-
16 (Pontiki et al., 2016). The detailed statistics of
these datasets can be seen in Appendix D.

4.3 Evaluation Metrics

We use span-based offset Micro-F1 as the primary
metric to evaluate the model for different IE tasks:

(1) NER: an entity is correct if its offsets and
type are correct.

(2) RTE: a relation is correct if its relation type
is correct and the offsets and entity types of the
related head/tail entity are correct.

(3) EE Trg.: an event trigger is correct if its
offsets and event type are correct.

(4) EE Arg.: an event argument is correct if its
offsets, role type, and event type are correct.

(5) Senti: a sentiment triple is correct if the off-
sets boundary of the target, the offsets boundary of
the opinion span, and the target sentiment polarity
are correct.

After generation, we reconstruct the offset of pre-
dicted information pieces by finding the matched
utterance in the input sequence one by one.

To validate the effectiveness of our proposed
method, we compare MetaRetriever with the state-
of-the-art model UIE (Lu et al., 2022) in fully-
supervised, few-shot and low-resource scenarios.



Task Model Few-Shot Low-Resource
1-Shot 5-Shot 10-Shot 1% 5% 10%

NER
(CoNLL03)

UIE 46.43 67.09 73.90 82.84 88.34 89.63
MetaRetriever 49.44 69.88 74.19 83.45 89.11 90.42
∆ 3.01↑ 2.79↑ 0.29↑ 0.61↑ 0.77↑ 0.79↑

RTE
(CoNLL04)

UIE 22.05 45.41 52.39 30.77 51.72 59.18
MetaRetriever 29.90 47.02 53.95 36.31 52.59 59.45
∆ 7.85↑ 1.61↑ 1.56↑ 5.54↑ 0.87↑ 0.27↑

Event Trigger
(ACE05-Evt)

UIE 38.14 51.21 53.23 41.53 55.70 60.29
MetaRetriever 39.85 49.43 53.58 43.98 58.35 63.19
∆ 1.71↑ 1.78↓ 0.35↑ 2.45↑ 2.65↑ 2.90↑

Event Argument
(ACE05-Evt)

UIE 11.88 27.44 33.64 12.80 30.43 36.28
MetaRetriever 13.30 27.70 32.31 14.86 31.85 37.85
∆ 1.42↑ 0.26↑ 1.33↓ 2.06↑ 1.42↑ 1.57↑

Sentiment
(16res)

UIE 10.50 26.24 39.11 24.24 49.31 57.61
MetaRetriever 18.80 34.14 43.53 34.47 51.78 58.79
∆ 8.30↑ 7.90↑ 4.42↑ 10.23↑ 2.47↑ 1.18↑

Table 2: Few-Shot and Low-resource results. Results of UIE are reported from original paper (Lu et al., 2022).

4.4 Main Results

Table 1 and Table 2 summarize the results of our
proposed MetaRetriever compared to the previous
work, UIE, on 4 types of IE tasks. From the exper-
imental results, we have several observations (1)
Equipped with task-specific knowledge, MetaRe-
triever outperforms UIE on all fully-supervised,
few-shot, and low-resource scenarios. MetaRe-
triever surpasses UIE with an average of 0.7%,
2.5%, and 2.3% in F1 score respectively in the fully-
supervised, few-shot, and low-resource settings.
This strongly demonstrates that MetaRetriever can
utilize the retrieved knowledge to improve IE per-
formance. (2) Empowered by meta-pretraining,
MetaRetriever can effectively learn downstream
task-specific extraction targets. Despite the fact
that event extraction and sentiment extraction were
not present in the pretraining phase, MetaRetriever
still outperforms UIE in these tasks, validating that
MetaRetriever can quickly learn downstream IE
tasks through the meta-pretraining algorithm to sup-
port task-specific extraction. (3) Benefiting from
task-specific knowledge and meta-pretraining,
MetaRetriever exhibits significant superior per-
formance in data-scarce scenarios. MetaRe-
triever achieves large gains in the few-shot and
low-resource settings. This is attributed to two
factors: first, the meta-pretraining algorithm can

quickly learn downstream IE tasks, which reduces
the requirement for training data, and second, the
retrieved task-specific knowledge provides crucial
clues for the model to make correct predictions,
thus MetaRetriever can achieve impressive perfor-
mance in data-scarce scenarios.

5 Analysis

5.1 Effect of Meta-Pretraining Algorithm

CoNLL03 CoNLL04
Sup. Few. Low. Sup. Few. Low.

MetaRetriever 92.38 49.44 83.45 73.66 29.90 36.31
SimpleRetriever 92.14 43.72 82.66 73.33 24.47 32.43

Table 3: Effect of Meta-Pretraining Algorithm.

To examine the contribution of our Meta-
Pretraining Algorithm, we remove the inner loop in
Algorithm 1 and pretrain our model using only the
outer loop. Without the inner loop, the bi-level op-
timization is reduced to single-level optimization.
We name this pretrained model SimpleRetriever
and compare its performance with MetaRetriever
on CoNLL03 and CoNLL04 datasets in fully-
supervised, few-shot(1-shot) and low-resource(1%)
settings. The results are presented in Table 3 and it
can be observed that: Compared to MetaRetriever,
the performance of SimpleRetriever declines on
all datasets in all settings. Notably, in data-scarce
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scenarios, SimpleRetriever underperforms MetaRe-
triever by 3.92% on average. This demonstrates
that the meta-pretraining algorithm enables the
model to quickly learn downstream IE tasks and
thus improve performance.

5.2 Effect of Finetune Epoch

In order to demonstrate the efficiency of our
MetaRetriever in rapidly learning downstream in-
formation extraction tasks, we conducted a se-
ries of experiments. Specifically, we compare
the performance of MetaRetriever to that of UIE
across a range of finetuning epochs, from 1 to
5 on CoNLL03 dataset. The results of these ex-
periments, presented in Figure 3, clearly indicate
that MetaRetriever outperforms UIE from the very
first finetuning epoch. Furthermore, as the number
of finetuning epochs increases, the performance
of MetaRetriever consistently surpasses that of
UIE, with the greatest difference observed when
comparing MetaRetriever’s performance in 2 fine-
tuning epochs to UIE’s performance in 5 finetun-
ing epochs. These results strongly suggest that
MetaRetriever’s ability to rapidly learn downstream
tasks is significantly enhanced by its use of meta-
pretraining. Additionally, we also conducted ex-
periments on the CoNLL04 datasets, the results of
which are provided in Appendix E.

5.3 Effect of Structure Complexity

In order to determine the effectiveness of MetaRe-
triever in dealing with complex structures when
compared to UIE, we conduct an experiment using
the test set of CoNLL03, grouping the test instances
according to the number of entities present. We
report the performance gain of MetaRetriever com-
pared with UIE in different group in Figure 4. We
can obverse that, as the number of entities present
in a test instance increases, MetaRetriever’s per-
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Figure 4: Effect of Structure Complexity.

formance advantage over UIE also increases. This
demonstrates that MetaRetriever is able to effec-
tively leverage task-specific knowledge to handle
complex structures and improve information ex-
traction performance. We also conduct further ex-
periments on the CoNLL04 dataset, the results of
which can be found in Appendix F.

5.4 Effect of Pretraining Corpus Collection

UIE UIE-ours

CoNLL03 91.94 91.96
CoNLL04 73.48 71.60

ACE05 Trg. 71.33 73.39
ACE05 Arg. 50.62 51.87

16res 73.26 72.16

AVG 72.13 72.20

Table 4: Effect of Pretraining Corpus Collection.

To evaluate the quality of the corpus we have
collected for pretraining, we use this corpus to pre-
train a variant of UIE which we refer to as UIE-ours.
We then compared UIE-ours to the original UIE
on four representative datasets for each IE task in
fully-supervised settings. The results, presented in
Table 4, show that UIE-ours, which is pretrained
on our collected corpus, is comparable in perfor-
mance to the original UIE (with an average gain
of 0.07%). This indicates that our collected corpus
is of similar quality to that used for training the
original UIE and we plan to make it publicly avail-
able to promote future research. Additionally, this
also demonstrates that the improvement of MetaRe-
triever is due to our proposed method rather than
the corpus used for pretraining, further validating
the effectiveness of our proposed method.



(1) Gale-force winds were reported in California late Wednesday, where gusts reached 69 mph at Ontario and 57 mph at El Toro.

UIE ((LOC: California)(LOC: Ontario)(LOC: El Toro))
MetaRetriever ((LOC: California)(LOC: Ontario(Located_In: California))(LOC: El Toro(Located_In: California)))
RETRIEVED KNOLEDGE ((LOC: California)(LOC: Ontario)(LOC: El Toro(Located_In: California)))

(2) Alekseev, along with others in the Soviet diplomatic corps, were not receiving accurate information from Moscow.

UIE (PER: Alekseev (Live_In: Soviet)) (LOC: Soviet) (LOC: Moscow))
MetaRetriever (PER: Alekseev (Live_In: Soviet)) (LOC: Soviet) (LOC: Moscow(Located_In: Soviet)))
RETRIEVED KNOLEDGE (PER: Alekseev (Live_In: Soviet)) (LOC: Soviet) (LOC: Moscow(Located_In: Soviet)))

Table 5: Case Study.

5.5 Effect of Support-Query Construction for
Meta-Pretraining

Conventional meta-learning methods typically em-
ploy the episodic training technique to construct
"tasks" for meta-training (Vinyals et al., 2016; Finn
et al., 2017). This technique creates "tasks" by ran-
domly sampling instances based on their category,
which requires random access to all data. However,
since large-scale corpora cannot be stored in mem-
ory and must be accessed from external storage in-
stead, random-sampling operation will cause long
IO time. To address this, we design a support-query
pairing method which can significantly reduce IO
times. To illustrate the efficiency of our method,
we compared the time cost of our method with
episodic training on 10K instances. Episodic train-
ing required 100.42s to construct "IE tasks" while
our method only required 5.57s, demonstrating the
significant efficiency of our method.

5.6 Case Study

In this study, we compare the performance of our
MetaRetriever model with that of the UIE model us-
ing a selection of cases from the CoNLL04 dataset,
as illustrated in Table 5.

In the first case, our MetaRetriever, aided
by the retrieved task-specific knowledge, “(LOC:
El Toro (Located_In: California))”, cor-
rectly predict “(LOC: Ontario (Located_In:
California))”. In contrast, the UIE model was
unable to make a precise prediction without the ben-
efit of this task-specific knowledge. This demon-
strates that models can significantly benefit from
the incorporation of retrieved task-specific knowl-
edge to generate more accurate linearized SEL ex-
pressions.

In the second case, we observe that MetaRe-
triever makes a redundant prediction, “(LOC:
Moscow (Located_In: Soviet))”. Though this
relational triple is not labeled in the CoNLL04
dataset, it is a common sense knowledge that
Moscow is located in Russia, which is former So-

viet Union. MetaRetriever was able to predict this
based on the background knowledge acquired from
the pretraining corpus.

6 Related Work

Information Extraction (IE) aims at extracting text
spans or a tuple of text spans of interests from plain
texts. There exist many specific IE tasks: Named
Entity Recognition (Lample et al., 2016; Lin et al.,
2019), Relational Triple Extraction (Zheng et al.,
2017; Levy et al., 2017), Event Extraction (Lin
et al., 2018; Wadden et al., 2019; Du and Cardie,
2020; Li et al., 2022c,b,a), etc. For a long time,
researchers are devoted to propose task-customized
and isolated methods to achieve these different IE
tasks. In the recent years, with the rising of pre-
training technique, pretraining a universal model
for several NLP tasks has attracted a lot of atten-
tion (Devlin et al., 2019; Liu et al., 2019; Lewis
et al., 2020a; Raffel et al., 2020b; Xue et al., 2021).
Following this trend, several works make attempts
to unify diverse IE tasks. Yan et al. (2021b) first
propose a span-offset-based generation to solve var-
ious NER tasks in a universal manner. Yan et al.
(2021a) use a similar way to solve different aspect-
based sentiment analysis tasks. Lu et al. (2022)
propose UIE which designs Structured Extraction
Language to formulate all IE tasks in a unified form
but it will experience poor performance when there
exists complex structure to be extracted. Several
works have shown that retrieving knowledge from
external knowledge bases can empower models to
generate complex sequences (Lewis et al., 2020b;
Wang et al., 2021; Cai et al., 2022; Geng et al.,
2022) and a large number of knowledge stored in
pretrained language models can be “retrieved” ex-
plicitly (Petroni et al., 2019; Roberts et al., 2020;
Zhang et al., 2022; Yu et al., 2022). In this paper,
we propose MetaRetriever to retrieve task-specific
knowledge from PLMs to enhance universal IE.

Meta-learning aims to learn better learning algo-
rithms from a series of tasks, i.e., learning to learn.



In meta-learning, there exist diverse branches fo-
cusing on different aspects of the learning algo-
rithm: learning-to-initialize (Finn et al., 2017,
2018), learning-to-compare (Vinyals et al., 2016;
Snell et al., 2017), learning-to-optimize (Ravi and
Larochelle, 2017), etc. Existing works are most de-
voted to solve the few-shot problem, cross-domain
problem, etc. We make the first attempt to adapt
meta-learning into universal IE.

7 Conclusion

In this work, we present MetaRetriever, a novel
approach for enhancing universal information ex-
traction through the retrieval of task-specific knowl-
edge from within the model itself. To ensure that
the retrieved knowledge is truly task-specific and
to minimize the impact of irrelevant or "noise"
knowledge, we also propose a meta-pretraining
algorithm that enables MetaRetriever to quickly
adapt to downstream information extraction tasks.
Empirical results demonstrate the effectiveness of
our approach, with MetaRetriever achieving new
state-of-the-art performance on a range of infor-
mation extraction tasks across 12 datasets in fully-
supervised, low-resource, and few-shot scenarios.
Further analysis experiments also validate the con-
tributions and effectiveness of MetaRetriever.

8 Limitations

While our MetaRetriever has demonstrated its supe-
rior performance on 4 IE tasks, 12 datasets, in fully-
supervised, few-shot and low-resource scenarios,
it still has several limitations. First, since MetaRe-
triever will first retrieve task-specific knowledge
and then make predictions in the inference phase,
such a retrieve-then-extract manner will take longer
inference time than non-retrieve methods unavoid-
ably. Second, our proposed meta-pretraining al-
gorithm is based on bi-level optimization. In the
pretraining phase, it needs to calculate high-order
gradients to optimize parameters and calculating
high-order gradient requires more time, which will
cause longer time to pretrain MetaRetriever. De-
tailed discussions are shown in Appendix G.

9 Ethical Considerations

This paper constructs a new dataset for universal
information extraction, and we discuss some re-
lated ethical considerations here. (1) Intellectual
property. The Wikipedia corpus is shared under

the CC BY-SA 3.0 license5 and Wikidata is shared
under the CC0 1.0 license6. CROCODILE is li-
censed under the CC BY-SA-NC 4.0 license7. Our
data source and the construct tool are all free for re-
search use. (2) Controlling Potential Risks. Since
the texts in Wikipedia do not involve private infor-
mation and annotating entities and relations does
not require many judgments about social issues,
we believe our collected dataset does not create
additional risks. To ensure it, we manually checked
some randomly sampled data and did not note risky
issues. (3) Worker Treatments. Since the dataset
construction procedure is automatic without any
manual annotation, it does not create potential risk
about the worker treatments.
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A Details of Pretraining Corpus

We apply CROCODILE8 (Cabot and Navigli,
2021), which is a automatic distant supervised la-
beling tool developed for relation extraction, to col-
lect our pretraining corpus. CROCODILE utilizes
widely-used distant supervision technique (Mintz
et al., 2009) to build relation extraction dataset by

8https://github.com/Babelscape/crocodile

# Sentence 71,947,589
# Entity 208,261,778
# Triple 27,011,527
# Entity Types 45,062
# Relation Types 1,465
Average Length 33.43

Table 6: Statistics of Raw Pretraining Corpus.

# Sentence 6,951,695
# Entity 48,352,090
# Triple 12,497,480
# Entity Types 39,511
# Relation Types 1,255
Average Length 47.47

Table 7: Statistics of Filtered Pretraining Corpus.

aligning English Wikipedia9 texts and Wikidata10

knowledge base. Additionally, CROCODILE ap-
plies RoBERTa NLI model 11 to filter distant la-
beled data with low-confidence. Finally, we con-
struct 71M original pretraining corpus without NLI
filtering and obtain 6.9M high-quality pretraining
corpus with NLI filtering. The statistics of them are
shown in Table 6 and Table 7 respectively. Since
our collected corpus contains the 10-million-level
sentences covering about 40K entity types and over
1K relation types, we believe the collected corpus is
diverse enough in genre and topic, which exhibits a
good coverage for general domain . Both of these
pretraining corpus will be public after acceptance.

B Details of Meta-Pretraining Dataset
Construction Procedure

The goal of our meta-pretraining is to train MetaRe-
triever that can quickly learn the extraction target
semantics of various downstream IE tasks for re-
trieval using only a few training epochs. To ac-
complish this, MetaRetriever is pretrained on a
set of “IE tasks” based on the meta-learning tech-
nique (Finn et al., 2017), such that the trained
model can quickly learn new IE tasks using only
a small number of trials. To construct various “IE
tasks”, a intuitive way is to follow the episodic
training technique (Vinyals et al., 2016) which are
widely used in conventional meta-learning methods.
In episodic training, it randomly samples N classes

9https://www.wikipedia.org/
10https://www.wikidata.org/
11xlm-roberta-large-xnli

https://doi.org/10.18653/v1/2021.naacl-main.41
https://doi.org/10.18653/v1/2021.naacl-main.41
https://doi.org/10.18653/v1/2021.acl-long.188
https://doi.org/10.18653/v1/2021.acl-long.188
https://doi.org/10.18653/v1/2021.acl-long.451
https://doi.org/10.18653/v1/2021.acl-long.451
https://doi.org/10.18653/v1/P17-1113
https://doi.org/10.18653/v1/P17-1113
https://doi.org/10.18653/v1/P17-1113
https://huggingface.co/joeddav/xlm-roberta-large-xnli


from original class set as a N -classification “task”.
For each N -classification task, it will randomly
samples K instances as the support set to mimic
the training set for this task and then use remain
instances as the query set to mimic the test set, i.e.,
the N -way-K-shot setting. In each training epoch,
it will sample different N -way-K-shot tasks to
train models. However, when pretraining a model,
it is time-consuming and memory-consuming to
sample classes from a large-scale corpus. To meta-
pretrain MetaRetriever, we design Support-Query
Pairing Algorithm based on the graph maximum-
weighted matching algorithm (Galil, 1986). Our
Support-Query Pairing Algorithm can be divided
into three steps: (1) Partition by class; (2) Dedupli-
cation; (3) Graph Matching.

Partition by class Different from episodic train-
ing which treats each a support set and a query set
as a task, we construct a “task” with only two in-
stances. One acts as the support instance and the
other as the query instance, i.e., the size of our sup-
port set and query are both 1. To make the support
instance “support” the query instance, their classes
should be as nearly identical as possible so the
model can learn the semantics of the target classes
from the support instance to make predictions on
the query instance. To achieve this goal, we par-
tition all pretraining instances based on the class.
Specifically, we denote the raw training dataset
D = {(xi, yi)}Ni=1 where xi refers to the raw text,
yi refers to the golden linearized SEL expression,
and N refers to the number of the ;pretraining in-
stances. Given the training corpus D, we can get
the class set C which contains all SpotNames and
AssoNames of D. Then, we collect instances for
each classes Dc, c ∈ C where Dc refers to all in-
stances which contains c-type target information
piece. Therefore, we can get the partitioned dataset
DC.

Deduplication Getting the partitioned dataset
DC, there exists serious duplication phenomenon
because one instance will contain several classes
and thus it will be partitioned into multiple subset
Dc. Such a duplication will cause a severe data
imbalance since if one instance contains m classes,
it will be duplicated m times, hurting the model
performance. To alleviate this problem, we should
deduplicate the partitioned dataset DC. Specifi-
cally, we sort the class set C by the number of
instances of each class. From less to more, we re-

move these instances from the large subset which
have existed in the small subset. After that, we get
the deduplicated partitioned dataset D̂C.

Graph Matching Since we treat a support-query
instance pair as a task, we want to find a optimal
pairing solution that the classes of the support in-
stance could cover the classes of the query instance
as many as possible globally. To achieve this goal,
we first define a pairing score function to evaluate
a support-query pair. Given a support instance s
and a query instance q, we define the pairing score
function as follows,

ρ(s, q) =
|FC(s) ∩ FC(q)|

|FC(s)|
+

1

|FC(s)|
(13)

where FC(·) means the class set contained in the
given instance. In this score function, the first term
evaluates the ratio how the support instance covers
the query instance. The second term evaluates the
number of the classes of the support instance. We
wish the support instance should cover the query
instance exactly so the number of the classes of
the support instance should be as small as possi-
ble besides the class coverage. Then, we define
a matching score function to calculate the pairing
degree given any two instances x and y:

φ(x, y) = max {ρ(x, y), ρ(y, x)} (14)

Given a subset Dc, c ∈ C, we can construct a
weighted undirected complete graph Gc. In Gc,
each instance in Dc acts as a node and the arbitrary
two nodes x and y have a edge with φ(x, y) weight.
Next, we run the maximum-weighted graph match-
ing algorithm (Galil, 1986) to get a graph matching
result Mc. In Mc, each node matching pair repre-
sents a support-query pair. We run the aforemen-
tioned matching procedure for each class c ∈ C to
get all matching pairs MC = {Mc}, c ∈ C. We
use MC to meta-pretrain our MetaRetriever.

Through the procedure introduced above, the I/O
times of support-query pairing are 2. First, it reads
all data to get the categories of each instance to run
the support-query pairing algorithm. Second, given
the pairing results, it takes the second I/O time to
re-range all data to construct support-query pair.
For the episodic training, every random-sampling
will lead to a I/O time while our method can reduce
I/O times significantly.

C Details of Model Implementation

Since MetaRetriever works in a sequence-to-
squence manner, we use the encoder-decoder-style



|Ent| |Rel| |Evt| #Train #Val #Test

ACE04 7 - - 6,202 745 812
ACE05-Ent 7 - - 7,299 971 1,060
CoNLL03 4 - - 14,041 3,250 3,453

ACE05-Rel 7 6 - 10,051 2,420 2,050
CoNLL04 4 5 - 922 231 288
SciERC 6 7 - 1,861 275 551

ACE05-Evt - - 33 19,216 901 676
CASIE 21 - 5 11,189 1,778 3,208
14res 2 3 - 1,266 310 492
14lap 2 3 - 906 219 328
15res 2 3 - 605 148 322
16res 2 3 - 857 210 326

Table 8: Detailed datasets statistics of all downstream
IE tasks. |*| indicates the number of categories, and # is
the number of sentences in the specific subset.

architecture to achieve this procedure. We choose
T5-base architecture (Raffel et al., 2020a) as our
model with 220M parameters. We pretrain our
model on our constructed pretraining dataset. We
use Adam (Kingma and Ba, 2015) as the optimizer
with learning rate 1e− 4 with the linear scheduling
with a warming up proportion 6%. As previous
work (Lu et al., 2022), we randomly sample 10
SpotName and AssoName to preserve the general-
ization ability of the model when calculating Lretrv
and Lgen. For LLM, we set the corruption rate as
15% and the average corrupting span length as 3 as
T5 (Raffel et al., 2020b). We truncate the length
of the input sequence to 128 during pretraining. In
the pretraining phase, we set the step of the inner
loop as 1 and the inner step size α and the outer
step size β are set as 1e− 4. The inner-loop update
step J is set as 1. We adopt the filtered version of
our pretraining corpus (6.9M instances) to pretrain
MetaRetriever. We pretrain our model for both 4
epochs with batch size 512 on 8 NVIDIA A100
80G GPUs with 56 hours. For the downstream fine-
tuning, we apply the same grid searching strategy
for hyper-parameters as UIE (Lu et al., 2022) to
find the optimal results. In the inference phase, we
use the greedy search strategy to decode the final
predicted SEL sequence.

D Details of Downstream Task Datasets

We conduct evaluation experiments on 4 IE tasks,
12 datasets, and the detailed statistic of each dataset
is shown in Table 8.

E Details of Effect of Finetune Epoch

To verify that our MetaRetriever can fast learn the
downstream IE tasks, we conduct experiments on
both CoNLL03 and CoNLL04. Experimental re-
sults are shown in Figure 5. Results of CoNLL04
show the same trend as CoNLL03, which can prove
the effect of our proposed Meta-Pretraining Algo-
rithm.

F Details of Effect of Structure
Complexity

To validate that MetaRetriever own the superiority
when there exist complicated structures needed to
be extracted. We group the test set of CoNLL03
and CoNLL04 according to the number of entities
and the number of relational triples and calculate
the performance difference between MetaRetriever
and UIE in different group. Experimental results
are shown in Figure 6. From it, we can learn that
when there exist more entities and relational triples,
MetaRetriever performs better.

G Discussion of Efficiency

While our MetaRetriever has achieved the new
state-of-the-art on 4 IE tasks, 12 datasets, in fully-
supervised, few-shot and low-resource scenarios,
it still has several limitations on training efficiency
and inference efficiency.

UIE MetaRetriever

CoNLL04 0.83s 1.46s

Table 9: Inference time of MetaRetriever and UIE on
the test set of CoNLL04 dataset.

First, since MetaRetriever will first retrieve task-
specific knowledge and then make predictions in
the inference phase, such a retrieve-then-extract
manner will take longer inference time than non-
retrieve methods unavoidably. We conduct experi-
ments on the test set of CoNLL04 dataset to com-
pare overall inference time of MetaRetriever with
UIE. All hyper-parameters are set to be the same for
a fair comparison. Experimental results are shown
in Table 9 and we can find that MetaRetriever cost
nearly twice time as UIE to make predictions. As
MetaRetriever works in a retrieve-than-extract man-
ner, such a time cost is reasonable.

Second, our proposed meta-pretraining algo-
rithm is based on bi-level optimization. In the
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Figure 5: Effect of Finetune Epoch.
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Figure 6: Effect of Structure Complexity.

SimpleRetriever MetaRetriever

10K 2min 2min25s

Table 10: Pretraining time of MetaRetriever and Sim-
pleRetriever on 10K instances for one epoch.

pretraining phase, it needs to calculate high-order
gradients to optimize parameters and calculating
high-order gradient requires more time. Therefore,
it takes longer time to pretrain MetaRetriever. To
illustrate the time cost, we conduct experiments
on 10K instances to compare the pretraining time
of MetaRetriever with SimpleRetriever which is
pretrained without meta-pretraining algorithm. All
hyper-parameters are set to be the same for a fair
comparison. Table 10 gives the results. From it, we
can obverse that compared with SimpleRetriever,
MetaRetriever takes about 1/4 longer time than
SimpleRetriever. Finally, We spent 56 hours to pre-
train MetaRetriever on filtered pretraining corpus
(6.9M instances).


