
GraphSHA: Synthesizing Harder Samples for Class-Imbalanced
Node Classification

Wen-Zhi Li
CSE, Sun Yat-sen University, Guangzhou, China
AI Thrust, HKUST (GZ), Guangzhou, China

liwzh63@mail2.sysu.edu.cn

Chang-Dong Wang∗
CSE, Sun Yat-sen University

Guangzhou, China
changdongwang@hotmail.com

Hui Xiong∗
AI Thrust, HKUST (GZ), Guangzhou, China

CSE, HKUST, Hong Kong, China
xionghui@ust.hk

Jian-Huang Lai
CSE, Sun Yat-sen University

Guangzhou, China
stsljh@mail.sysu.edu.cn

ABSTRACT

Class imbalance is the phenomenon that some classes have much
fewer instances than others, which is ubiquitous in real-world
graph-structured scenarios. Recent studies find that off-the-shelf
Graph Neural Networks (GNNs) would under-represent minor class
samples. We investigate this phenomenon and discover that the sub-
spaces of minor classes being squeezed by those of the major ones
in the latent space is the main cause of this failure. We are naturally
inspired to enlarge the decision boundaries of minor classes and
propose a general framework GraphSHA by Synthesizing HArder
minor samples. Furthermore, to avoid the enlarged minor bound-
ary violating the subspaces of neighbor classes, we also propose a
module called SemiMixup to transmit enlarged boundary informa-
tion to the interior of the minor classes while blocking information
propagation from minor classes to neighbor classes. Empirically,
GraphSHA shows its effectiveness in enlarging the decision bound-
aries of minor classes, as it outperforms various baseline methods in
class-imbalanced node classification with different GNN backbone
encoders over seven public benchmark datasets. Code is avilable at
https://github.com/wenzhilics/GraphSHA.

CCS CONCEPTS

• Computing methodologies→ Learning latent representa-

tions; • Mathematics of computing→ Graph algorithms.

KEYWORDS

node classification; class imbalance; graph neural network; hard
sample; data augmentation
ACM Reference Format:

Wen-Zhi Li, Chang-Dong Wang, Hui Xiong, and Jian-Huang Lai. 2023.
GraphSHA: Synthesizing Harder Samples for Class-Imbalanced Node Clas-
sification. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge

∗Corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD ’23, August 6–10, 2023, Long Beach, CA, USA.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0103-0/23/08. . . $15.00
https://doi.org/10.1145/3580305.3599374

0.0 0.2 0.4 0.6 0.8 1.0
Prob.

GCN

GraphSmote

ReNode

GraphENS

TAM

GraphSHA

Major
Minor

0.0 0.2 0.4 0.6 0.8 1.0
Prob.

Major
Minor

Figure 1: Probability distribution of misclassified samples

on Cora-LT (left) and CiteSeer-LT (right) datasets w.r.t. dif-

ferent methods. Both datasets are preprocessed to follow a

long-tailed distribution with an imbalance ratio of 100 as

in [31]. We treat the half classes with fewer instances as mi-

nor ones and the other half as major ones. We can see that

GCN suffers from the squeezed minority problem, as nearly

all false samples are classified as major classes. Though base-

line methods GraphSmote, ReNode, GraphENS, and TAM can

remit this problem to some extent, the minor subspaces are

still squeezed as their distributions are still highly biased.

Our GraphSHA, on the other hand, can significantly enalrge

the minor subspaces as the probability of misclassified sam-

ples being minor classes is close to 0.5 (black dotted line).

Discovery and Data Mining (KDD ’23), August 6–10, 2023, Long Beach, CA,

USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/3580305.
3599374

1 INTRODUCTION

Node classification is regarded as a vital task for graph analy-
sis [9, 18]. With the fast development of neural networks in the
past few years, Graph Neural Networks (GNNs) have become the
de-facto standard to handle this task and achieved remarkable per-
formances in many graph-related scenarios [24, 42, 46, 49]. Current
GNNs are implicitly based on the class balance assumption where
the numbers of training instances in all classes are roughly bal-
anced [53]. This assumption, however, barely holds for graph data
in-the-wild as they tend to be class-imbalanced intrinsically [4, 31].
In class-imbalanced graphs, some classes (minor ones) possessmuch
fewer instances than others (major ones). For example, in a large-
scale citation network [44], there are more papers on artificial

ar
X

iv
:2

30
6.

09
61

2v
1

 [
cs

.L
G

]
 1

6
Ju

n
20

23

https://github.com/wenzhilics/GraphSHA
https://doi.org/10.1145/3580305.3599374
https://doi.org/10.1145/3580305.3599374
https://doi.org/10.1145/3580305.3599374

KDD ’23, August 6–10, 2023, Long Beach, CA, USA. Wen-Zhi Li, Chang-Dong Wang, Hui Xiong, and Jian-Huang Lai

intelligence than on cryptography. Applying GNNs to these class-
imbalanced graphs would under-represent minor classes, leading
to non-ideal overall classification performance [39, 53].
Reseach Background. Like imbalance handling methods in other
domains, there are generally two aspects of work adapting GNNs to
class-imbalanced graphs. Generative approaches [7, 32, 37, 53] aim
to augment the original class-imbalanced graph by synthesizing
plausible minor nodes to make the class distribution balanced, while
loss-modifying approaches [4, 28, 39] aim to adjust the objective
function to pay more attention to minor class samples. We focus
on generative approaches in this paper as topology information
can also be synthesized to leverage the intrinsic property of graph
structure, thus leading to superior performance empirically [31, 53].

We revisit the class-imbalanced issue on graphs from the latent
space perspective with an empirical study in Figure 1, which shows
that GNNs suffer from the squeezed minority problem, where the la-
tent space determined by imbalanced training data is highly skewed
— minor subspaces are squeezed by major ones. As a result, the
minor test samples are hard to be included into their correct la-
tent subspaces, leading to unsatisfactory classification performance
during the inference phase eventually.

Faced with the squeezed minority problem, we argue that the
goal of generative approaches is to enlarge the minor decision bound-

aries in the latent space. With this insight, we are naturally inspired
to leverage hard samples that determine the decision boundary for
the synthesis. That is, if we can synthesize harder minor samples
beyond the hard minor ones, the squeezed minority problem can
thus be alleviated.
Main Challenge. Clear though the goal is, enlarging minor class
boundary is not trivial. As the boundary is shared by a minor
class and its neighbor class, naively synthesizing harder minor
samples would unavoidably violate the neighbor class subspace,
thus degenerating neighbor class, which is apparently not what
we expect. As a countermeasure, a proper augmentation method
is required to enlarge the subspaces of minor classes while avoiding

deteriorating those of the neighbor ones.
To tackle this challenge, we propose a fine-grained augmenta-

tion approach, GraphSHA, for Synthesizing HArder minor samples.
Specifically, the synthesis is based on an anchor node and an aux-
iliary node, where the anchor node is a hard minor sample, and
the auxiliary node is sampled from the anchor node’s neighbor
class. To remit degenerating neighbor classes, we propose a novel
module called SemiMixup for the synthesis of the harder minor
sample where its feature is generated via the mixup [50] between
the features of the anchor node and the auxiliary node, while the
edges connecting it are only sampled from the anchor node’s 1-hop
subgraph without mixup. As the auxiliary node’s 1-hop subgraph
whose nodes belong to neighbor class with high confidence ac-
cording to graph homophily [29, 54] is excluded, SemiMixup can
disable information propagation from the minor class to the neigh-
bor class while enabling the propagation of the information beyond
the raw minor boundary to the interior of the minor class, which
can enlarge the decision boundary of minor class properly without
deteriorating neighbor class.

We validate ourmethod on various real-world benchmark datasets,
including citation networks Cora, CiteSeer, PubMed [35], co-purchase
networks Amazon-Photo, Amazon-Computers [36], and co-author

network Coauthor-CS [36] in both long-tailed [31] and step class
imbalance settings [4] with diverse GNN backbones including
GCN [24], GAT [42], and GraphSAGE [15]. We also conduct exper-
iments on a large-scale naturally class-imbalanced dataset ogbn-
arXiv [19]. The experimental results show the generalizability of
GraphSHA and the effectiveness of the SemiMixup module in en-
larging the decision boundaries of minor classes by avoiding dete-
riorating the subspaces of neighbor ones.

To sum up, we highlight the main contributions of this work as:

• We find that the squeezed minority problem, where the sub-
spaces of minor classes are squeezed by major ones, is the
main cause for the unsatisfactory performance of minor
classes in class-imbalanced node classification.
• To enlarge the squeezedminor subspaces, we propose a novel
generative method, GraphSHA, to Synthesize HArder minor
samples. Moreover, we propose a module called SemiMixup
as the key component of GraphSHA to avert invading neigh-
bor subspaces when enlarging the minor subspaces.
• Extensive experiments and in-depth analysis demonstrate
the effectiveness of GraphSHA and the SemiMixup mod-
ule, as GraphSHA consistently outperforms state-of-the-art
baseline methods across various public benchmark datasets.

2 RELATEDWORK

In this section, we briefly review the prior work related to this
paper, including class imbalance handling methods and hard sample
mining methods.

2.1 Class Imbalance Problem

The class imbalance problem is widespread in real-world applica-
tions for various machine learning tasks [20, 21]. As major classes
have much more samples than minor classes in the training set, ma-
chine learning models are believed to easily under-represent minor
classes, which results in poor overall classification results [39].

Existing countermeasures to remit the class imbalance problem
can be roughly divided into two categories: loss-modifying and
generative approaches. Loss-modifying approaches [10, 30, 40] are
devoted to modifying the loss function to focus more on minor
classes. Generative approaches [23, 43, 52] are devoted to generating
minor samples to balance the training set. Directly applying these
approaches to graph data cannot achieve satisfactory results as
graphs possess edges between node samples intrinsically [39, 53].

For graph data, methods to handle class-imbalanced node classifi-
cation are primarily generative approaches, as edges can be synthe-
sized together with node samples. Among them, GraphSmote [53]
synthesizes minor nodes by interpolating between twominor nodes
in the same class in the SMOTE [3] manner, and an extra edge
predictor is leveraged to generate edges for the synthesized nodes.
DR-GCN [37] and ImGAGN [32] leverage neural network GAN [13]
to synthesize minor nodes. However, ImGAGN is only capable of bi-
nary classification tasks of distinguishing minor nodes from major
ones, which is non-trivial to be applied to multi-label classification
tasks in this paper. For these methods, the synthesized nodes are
generated based on existing minor nodes, which are still confined
to the raw minor subspaces and bring limited gain to the squeezed

GraphSHA: Synthesizing Harder Samples for Class-Imbalanced Node Classification KDD ’23, August 6–10, 2023, Long Beach, CA, USA.

major node original edgeminor node synthesized edge

nodes synthesized by GraphSmote, GraphENS, GraphSHA

decision boundaries of GraphSmote, GraphENS, GraphSHA

10/12, 大写->小写

Figure 2: Comparison of the synthesis for GraphSmote [53],

GraphENS [31], and GraphSHA. GraphSmote can only gener-

ate minor nodes within the subspace, which is not beneficial

to alleviating the squeezed minority problem. GraphENS,

on the other hand, generates minor nodes far beyond the

decision boundary, which degenerates major class accuracy.

Different from these methods, GraphSHA generates minor

nodes beyond the minor decision boundary properly, which

can effectively enlarge the subspace of minor class.

minor class. GraphENS [31], on the other hand, synthesizes ego net-
works for minor classes by combining an ego network centered on
a minor sample and another one centered on a random sample from
the entire graph, which certainly enlarges the decision boundary
of minor classes. However, the heuristic generation overdoes the
minor node generation, thus unavoidably increasing false positives
for major classes. To sum up, these generative methods cannot
enlarge the minor subspaces effectively and precisely to alleviate
the bias, which is the main focus of this work. The comparison of
GraphSmote, GraphENS, and GraphSHA is illustrated in Figure 2.

It is worth mentioning that there are also loss-modifying ap-
proaches for graph data like ReNode [4] and TAM [39]. However,
they mainly focus on the topological imbalance issue, i.e., the im-
balanced connectivity of nodes in the graph, which is beyond the
scope of our work. Nevertheless, we also compare these methods
in Section 5.

2.2 Hard Sample Mining

Hard samples, i.e., samples that are difficult for the current model
to discriminate, are believed to play a crucial role in classification
tasks [26]. They are often leveraged in self-supervised learning,
where the objectives are roughly defined as “maximizing the similar-
ity between positive pairs while minimizing the similarity between
negative pairs” [6]. As positive pairs are often limited while nega-
tive pairs are exhaustive, hard sample mining is typically referred to
as hard negative mining, to name a few [8, 22, 33, 47, 48, 51]. Similar
to the SemiMixup module in our work, FaceNet [34] also discovers
that naively selecting hard negative samples in face recognition
would practically lead to local minima, thus introducing semi-hard
samples. However, it differs from our work as we consider data
synthesis (FaceNet only chooses among existing negative samples)
in graph data (FaceNet deals with image data).

In the scope of class-imbalanced classification, some pioneering
work also leverage hard samples [26, 27, 38] to avoid easy negatives

overwhelming the training phase. However, they are generally loss-
modifying methods. As mentioned above, they cannot exploit the
topology information, whichmakes them hard to be applied to class-
imbalanced graphs. On the other hand, GraphSHA synthesizes hard
samples in the graph domain with edges, which enables it to tackle
the problem naturally.

3 PRELIMINARIES

3.1 Notations and Imbalance Settings

We focus on semi-supervised node classification task on an un-
weighted and undirected graphG = {V, E}, whereV = {𝑣1, · · · , 𝑣𝑁 }
is the node set with 𝑁 nodes and E ⊆ V×V is the edge set. The ad-
jacencymatrix and the featurematrix are denoted as𝑨 ∈ {0, 1}𝑁×𝑁
and 𝑿 ∈ R𝑁×𝑑 respectively, where 𝑨𝑖 𝑗 = 1 iff (𝑣𝑖 , 𝑣 𝑗) ∈ E, and
𝑿𝑖 ∈ R𝑑 is a 𝑑-dim raw feature of node 𝑣𝑖 .N𝑖 is the direct neighbor
set of node 𝑣𝑖 .

Every node 𝑣 corresponds with a class label 𝒀 (𝑣) ∈ {1, · · · ,𝐶}
with 𝐶 classes in total, and we denote all nodes in class 𝑐 as 𝒀𝑐 . In
class-imbalanced node classification, the labeled nodes in training
setV𝐿 ⊂ V are imbalanced, where the imbalance ratio is defined
as 𝜌 = max𝑖 |𝒀 𝑖 |/min𝑗 |𝒀 𝑗 |.

3.2 Graph Neural Networks

GNNs are the yardsticks for feature extraction of graph-based lit-
erature. They generally follow the “propagation-transformation”
paradigm to iteratively fuse neighbor node features as:

𝑯 (𝑙)𝑡 ← Transform

(
Propagate
∀𝑣𝑠 ∈N𝑡

(
𝑯 (𝑙−1)𝑠 ;𝑯 (𝑙−1)𝑡

))
, (1)

where 𝑯 (𝑙)𝑡 is the node embedding of node 𝑣𝑡 in the 𝑙-th layer. For
example, a two-layer GCN [24] can be formalized as

Propagate : 𝑴 (𝑙)𝑡 = �̂�𝑯 (𝑙−1)𝑡 ,

Transform : 𝑯 (𝑙)𝑡 = 𝑅𝑒𝐿𝑈 (𝑴 (𝑙)𝑡 𝑾 (𝑙)),
(2)

where �̂� is the normalized adjacency matrix, 𝑾 (𝑙) is learnable
weight matrix of the 𝑡-th layer, and 𝑅𝑒𝐿𝑈 (·) is the ReLU activation
function. We also consider several other GNN variants in this pa-
per, which vary from the Propagate(·) and Transform(·) functions
including GAT [42] and GraphSAGE [15].

3.3 Problem Definition

The goal of generative class imbalance handling approaches is to
augment the raw imbalanced graph G by synthesizing minor nodes
(including node features and edges) to make it balanced. Then, the
augmented balanced graph G′ is fed into a GNN encoder 𝑓𝜃 (·)
afterwards for traditional GNN-based node classification task.

4 METHODOLOGIES

In this section, we introduce the proposed GraphSHA model in de-
tail. We first describe each component of GraphSHA. Then, we pro-
vide the complexity analysis. The overall framework is illustrated
in Figure 3, and the training algorithm is elaborated in Algorithm 1.

KDD ’23, August 6–10, 2023, Long Beach, CA, USA. Wen-Zhi Li, Chang-Dong Wang, Hui Xiong, and Jian-Huang Lai

GNN

trained from

last epoch

1c

2c

3c

1v

2v

3v

4v

5v

6v

7v

8v

1c

confidence

1−

sp. 1ancv v=

2auxc c=

4auxv v=

SEMIMIXUP

1

24
5 6

ancv 4 auxv

 1 −

synv9

1-hop subgraph

for
ancv

Identifying source samples

nodes in different classes,

node confidence,

sp.

sp.

node hardness.probability,

original edge;nodes in different classes;

node confidence; raw node feature;

synthesized node, synthesized edge;

sp. sample; node hardness.probability;

raw node feature.

synthesized node and edge;

Augmented graph

8

1
2

3

4

5
7

6

9

enlarge

initial boundary;

enlarged boundary.

8

1
2

3

4

5
7

6

2c
3c 2 4 5 6

weighted adj.

for
ancv

sp.

基于1.27. 把注释中的；都改为，同时第二个sp.要把三者都框起来，同时对齐了注释

original edge, sp. sampling,

Figure 3: GraphSHA overview where 𝑐1 is minor class and 𝑐2, 𝑐3 are major classes. (Left): two source nodes 𝑣𝑎𝑛𝑐 and 𝑣𝑎𝑢𝑥 are

firstly identified via three samplings: sampling fromminor nodes in 𝑐1 according to their hardnessH to get 𝑣𝑎𝑛𝑐 ; sampling from

major classes 𝑐2, 𝑐3 according to 𝑣𝑎𝑛𝑐 ’s confidence on them to get neighbor class 𝑐𝑎𝑢𝑥 ; and sampling from nodes in neighbor

class 𝑐𝑎𝑢𝑥 according to their confidences on minor class 𝑐1 to get 𝑣𝑎𝑢𝑥 . (Middle): SemiMixup is conducted by mixuping 𝑣𝑎𝑛𝑐 ’s

1-hop subgraph and 𝑣𝑎𝑢𝑥 solely to get synthesized node 𝑣𝑠𝑦𝑛 . Here, the unweighted subgraph is transformed into a weighted

one via diffusion-based smoothing based on graph topology. (Right): the augmented graph is fed into a GNN for traditional

node classification task where the minor class decision boundary is enlarged properly without degenerating neighbor classes.

4.1 Identifying Source Samples

We are motivated to enlarge the minor decision boundary, which
is determined by hard minor anchor node 𝑣𝑎𝑛𝑐 . We also need an
auxiliary node 𝑣𝑎𝑢𝑥 from 𝑣𝑎𝑛𝑐 ’s neighbors in the latent space so
that the boundary is enlarged from 𝑣𝑎𝑛𝑐 towards 𝑣𝑎𝑢𝑥 .

Many methods can be leveraged to calculate node hardness in
the latent space, such as confidence [45] and 𝐾-Nearest Neighbor
(𝐾NN). Without loss of generalizability, we adopt confidence as the
hardness metric for its light-weighted computational overhead. Ex-
tra experiments with 𝐾NN-based node hardness are in Appendix B.

Definition 4.1 (confidence-based node hardness). For a𝐶-shot clas-
sification task, let 𝒁𝑖 ∈ R𝐶 be the logits for node 𝑣𝑖 , i.e., 𝒁𝑖 = 𝑓𝜃 (𝑣𝑖).
The hardness for node 𝑣𝑖 is defined as

H𝑖 = 1 − 𝜎𝑆𝑀
(
𝒁𝑖,𝒀 (𝑣𝑖)

)
, (3)

where 𝜎𝑆𝑀 (𝒁𝑖,·) = exp(𝒁𝑖,·/𝑇)∑𝐶
𝑗=1 exp(𝒁𝑖,𝑗 /𝑇)

is the softmax function with

temperature 𝑇 [16].

In practice, node logits 𝒁 ′ from the previous epoch can be lever-
aged to get their hardnessH . Thus we can identify minor anchor
nodes 𝑣𝑎𝑛𝑐 by sampling from a multinomial distribution with the
hardness as the probability.

In identifying auxiliary node 𝑣𝑎𝑢𝑥 , we first determine the neigh-
bor class 𝑐𝑎𝑢𝑥 of each anchor node by sampling from a multinomial
distribution with 𝜎𝑆𝑀 (𝒁𝑎𝑛𝑐) as the probability. Then, for nodes in
𝑐𝑎𝑢𝑥 , we sample from another multinomial distribution with their
confidence in class 𝒀 (𝑣𝑎𝑛𝑐) as the probability. In this way, we can
get two souce nodes 𝑣𝑎𝑛𝑐 and 𝑣𝑎𝑢𝑥 near the boundary of minor
class. An example in identifying 𝑣𝑎𝑛𝑐 and 𝑣𝑎𝑢𝑥 is given on the left
side of Figure 3.

4.2 SemiMixup for Harder Sample Synthesis

Based on the two source nodes 𝑣𝑎𝑛𝑐 and 𝑣𝑎𝑢𝑥 , harder minor node
𝑣𝑠𝑦𝑛 involves two folds of synthesis: node feature synthesis and
edge synthesis. The goal of the synthesized node is to enlarge the
minor class boundary while avoiding degenerating neighbor class
in the latent space, which is implemented via SemiMixup.

Synthesizing Node Features. The raw feature of 𝑣𝑠𝑦𝑛 can be
generated via a simple mixup [50] between node embeddings of
𝑣𝑎𝑛𝑐 and 𝑣𝑎𝑢𝑥 in the raw feature space as

𝑿𝑠𝑦𝑛 = 𝛿𝑿𝑎𝑛𝑐 + (1 − 𝛿)𝑿𝑎𝑢𝑥 , 𝛿 ∈ [0, 1] . (4)

Here, smaller 𝛿 will force the generated node feature to be more
analogous to the auxiliary node, which is expected to be more
beneficial to enlarge the minor decision boundary. We validate this
via an empirical study in Section 5.7 as smaller E(𝛿) will contribute
to better model performance.

Synthesizing Edges. As features are propagated via edges in GNN,
we expect the synthesized edges to enable propagating information
beyond the minor class boundary to the interior of the minor class
while blocking propagation from the minor class to the neighbor
class to avoid degenerating the neighbor class. To this end, instead
of connecting 𝑣𝑠𝑦𝑛 with the nodes in the union of 𝑣𝑎𝑛𝑐 ’s 1-hop
subgraph and 𝑣𝑎𝑢𝑥 ’s 1-hop subgraph, we make a simple adaptation
by only connecting 𝑣𝑠𝑦𝑛 with the nodes in 𝑣𝑎𝑛𝑐 ’s 1-hop subgraph, as
only 𝑣𝑎𝑛𝑐 ’s 1-hop subgraph tend to share the same minor label with
𝑣𝑎𝑛𝑐 according to graph homophily [29, 54]. In this way, message
passing in GNNs would enable the enlarged boundary information
— represented as the synthesized node feature — to be propagated
to the interior of the minor class.

However, 𝑣𝑎𝑛𝑐 ’s 1-hop sugraph may contain less nodes than we
want to sample. Furthermore, as the graph is unweighted, uniform

GraphSHA: Synthesizing Harder Samples for Class-Imbalanced Node Classification KDD ’23, August 6–10, 2023, Long Beach, CA, USA.

Algorithm 1 GraphSHA synthesis algorithm

Input: graph G = (𝑿 ,𝑨), training set nodesV𝐿 and their labels
𝒀𝐿 , number of classes 𝐶
Parameters: distribution D to sample 𝛿
1: Initialize GNN 𝑓𝜃
2: Calculate �̃� via graph diffusion and sparsification
3: Calculate degree distribution 𝑃𝑑𝑒𝑔𝑟𝑒𝑒 for G
4: Calculate the number of samples to synthesize 𝑛𝑐 for each

class 𝑐 ∈ 𝐶
5: while not converge do
6: Calculate node hardnessH for nodes inV𝐿 via Eq. (3)
7: Sample anchor nodes 𝑣𝑎𝑛𝑐 according to node hardnessH
8: Sample neighbor classes for anchor nodes
9: Sample auxiliary nodes 𝑣𝑎𝑢𝑥 from instances in neighbor

classes for anchor nodes
10: Sample 𝛿 from D
11: Mix each (𝑿𝑎𝑛𝑐 ,𝑿𝑎𝑢𝑥) pair via Eq. (4) to get

∑
𝑐 𝑛𝑐 node

features 𝑿𝑠𝑦𝑛

12: Sample the number of edges 𝑁𝑛𝑒𝑖
𝑠𝑦𝑛 from 𝑃𝑑𝑒𝑔𝑟𝑒𝑒 for 𝑣𝑠𝑦𝑛

13: Sample 𝑁𝑛𝑒𝑖
𝑠𝑦𝑛 nodes from the weighted subgraph �̃�𝑎𝑛𝑐 as the

neighbor set for 𝑣𝑠𝑦𝑛
14: Conduct GNN node classification on the augmented graph

with synthesized nodes 𝑣𝑠𝑦𝑛 and the corresponding edges
15: end while

16: return 𝑓𝜃

sampling from the subgraph may ignore important topology infor-
mation. Our countermeasure is to transform the unweighted hard
graph into a weighted soft one based solely on graph topology. Here,
we refer to graph diffusion-based smoothing proposed in GDC [25],
which recovers meaningful neighborhoods in a graph. Specifically,
the diffusion matrix is defined as 𝑺 =

∑∞
𝑟=0 𝜃𝑟𝑻

𝑟 , which has two
popular versions of Personalized PageRank (PPR) with 𝑻 = 𝑨𝑫−1,
𝜃𝑟 = 𝛼 (1 − 𝛼)𝑟 , and Heat Kernel (HK) with 𝑻 = 𝑨𝑫−1, 𝜃𝑟 = 𝑒−𝑡 𝑡

𝑟

𝑟 ! ,
where 𝑫 is the diagonal matrix of node degrees, i.e., 𝑫𝑖𝑖 =

∑
𝑗 𝑨𝑖 𝑗 ,

and 𝑡 is the diffusion time. After sparsifying 𝑺 as in [25], we get
a weighted and sparse graph adjacency matrix �̃� ∈ R𝑁×𝑁 , which
can be regarded as a weighted version of the adjacency matrix 𝑨.

Afterward, we can leverage �̃�𝑎𝑛𝑐 as the probability of a multi-
nomial distribution to sample neighbors of 𝑣𝑠𝑦𝑛 . The number of
neighbors is sampled from another degree distribution based on
the entire graph to keep degree statistics, as suggested in [31].

To sum up, the feature of the synthesized minor sample 𝑣𝑠𝑦𝑛
is generated via the mixup of the features of 𝑣𝑎𝑛𝑐 and 𝑣𝑎𝑢𝑥 , while
the edges connecting 𝑣𝑠𝑦𝑛 is generated from the 1-hop subgraph of
𝑣𝑎𝑛𝑐 without mixup. We give a formal definition of the synthesized
harder minor sample derived from SemiMixup below.

Definition 4.2 (harder minor sample generated by SemiMixup).

For nodes 𝑣𝑎𝑛𝑐 and 𝑣𝑎𝑢𝑥 described in Section 4.1, the synthesized
harder minor sample is defined as

𝑿𝑠𝑦𝑛 = 𝛿𝑿𝑎𝑛𝑐 + (1 − 𝛿)𝑿𝑎𝑢𝑥 ,

N𝑠𝑦𝑛 ∼ 𝑃𝑑𝑖 𝑓 𝑓1ℎ𝑜𝑝 (𝑣𝑎𝑛𝑐),
𝒀 (𝑣𝑠𝑦𝑛) = 𝒀 (𝑣𝑎𝑛𝑐),

(5)

Table 1: Statistics of datasets used in the paper.

Dataset #Nodes #Edges #Features #Classes

Cora 2,708 10,556 1,433 7
CiteSeer 3,327 9,104 3,703 6
PubMed 19,717 88,648 500 3
Photo 7,650 119,081 745 8
Computer 13,752 245,861 767 10
CS 18,333 81,894 6,805 15
arXiv 169,343 1,166,243 128 40

where 𝛿 is a random variable in [0, 1], and 𝑃𝑑𝑖 𝑓 𝑓1ℎ𝑜𝑝 (𝑣𝑎𝑛𝑐) is the 1-hop
neighbor distribution of 𝑣𝑎𝑛𝑐 with probability �̃�𝑎𝑛𝑐 generated via
graph diffusion-based smoothing [25].

4.3 Complexity Analysis

It is worth noting that the extra calculation of GraphSHA introduces
light computational overhead over the base GNN model. Let 𝑁𝑡𝑟 be
the number of training samples. Then, the number of synthesized
nodes for each class is O(𝑁𝑡𝑟). As logits can be obtained from the
previous epoch, we can get node hardness without extra computa-
tion [14]. We need O(𝑁 2

𝑡𝑟) extra time for sampling anchor nodes
and auxiliary nodes. For generating node features of synthesized
nodes, we need O(𝑁𝑡𝑟𝑑) extra time, where 𝑑 is the dimension of the
raw feature. For generating edges of synthesized nodes, we need
O(𝑁𝑡𝑟 /𝑁 · |E |) time. Overall, the extra computational overhead
over the base model is O(𝑁 2

𝑡𝑟 + 𝑁𝑡𝑟𝑑 + 𝑁𝑡𝑟 /𝑁 · |E |). As 𝑁𝑡𝑟 ≪ 𝑁

in traditional semi-supervised node classification, GraphSHA only
introduces lightweight computational overhead, which enables it
to be applied to large-scale graphs, as introduced in Section 5.3.

5 EXPERIMENTS

In this section, we conduct extensive experiments to evaluate the
effectiveness of GraphSHA for class-imbalanced node classification
by answering the following research questions:
RQ1: Does GraphSHA outperform existing baseline methods on

class-imbalanced node classification?
RQ2: Does GraphSHA solve the squeezed minority problem? Does

it actually enlarge the squeezed minor class boundary?
RQ3: Does the SemiMixup module avoid deteriorating the sub-

spaces of major classes in the latent space?

5.1 Experimental Setup

Datasets. We adopt seven benchmark datasets, including Cora,
CiteSeer, PubMed [35], Amazon-Photo (Photo), Amazon-Computers
(computer), Coauthor-CS (CS) [36] and ogbn-arXiv (arXiv) [19] to
conduct all the experiments. The statistics of these datasets are
provided in Table 1. A detailed description of them is provided in
Appendix A.1.

Compared Baselines. We compare GraphSHA with various im-
balance handling methods. For loss-modifying approaches, we com-
pare (1) Reweight, which reweights class weights to be proportional
to the numbers of class samples; (2) PC Softmax [17] and (3) Class-
Balanced Loss (CB Loss) [11], which are two general methods to
modify the loss function in handling the imbalance issue; (4) Focal

KDD ’23, August 6–10, 2023, Long Beach, CA, USA. Wen-Zhi Li, Chang-Dong Wang, Hui Xiong, and Jian-Huang Lai

Table 2: Node classification results (±std) on Cora, CiteSeer, and PubMed in long-tailed class-imbalanced setting with GCN, GAT,

and GraphSAGE backbones for 10 runs. The best is highlighted in boldface, and the runner-up is highlighted in underline.

Dataset Cora-LT CiteSeer-LT PubMed-LT

𝜌=100 Acc. bAcc. F1 Acc. bAcc. F1 Acc. bAcc. F1

G
CN

Vanilla 72.02±0.50 59.42±0.74 59.23±1.02 51.40±0.44 44.64±0.42 37.82±0.67 51.58±0.60 42.11±0.48 34.73±0.71

Reweight 78.42±0.10 72.66±0.17 73.75±0.15 63.61±0.22 56.80±0.20 55.18±0.18 77.02±0.14 72.45±0.17 72.12±0.15
PC Softmax 77.30±0.13 72.08±0.30 71.65±0.34 62.15±0.45 59.08±0.28 58.13±0.31 74.36±0.62 72.59±0.34 71.79±0.50
CB Loss 77.97±0.19 72.70±0.28 73.17±0.22 61.47±0.51 55.18±0.52 53.47±0.65 76.57±0.19 72.16±0.18 72.84±0.19
Focal Loss 78.43±0.19 73.17±0.23 73.76±0.20 59.66±0.38 53.39±0.33 51.80±0.39 75.67±0.20 71.34±0.24 72.03±0.21
ReNode 78.93±0.13 73.13±0.17 74.46±0.16 62.39±0.31 55.62±0.27 54.05±0.24 76.00±0.16 70.68±0.15 71.41±0.15

Upsample 75.52±0.11 66.68±0.14 68.35±0.15 55.05±0.11 48.41±0.11 45.22±0.14 71.58±0.06 63.79±0.06 64.62±0.07
GraphSmote 75.44±0.43 68.99±0.51 70.41±0.52 56.58±0.29 50.39±0.28 47.96±0.33 74.62±0.08 69.53±0.10 71.18±0.09
GraphENS 76.15±0.24 71.16±0.40 70.85±0.49 63.14±0.35 56.92±0.37 55.54±0.41 77.11±0.11 71.89±0.15 72.71±0.14
TAM (G-ENS) 77.30±0.23 72.10±0.29 72.25±0.29 63.40±0.34 57.15±0.35 55.68±0.40 78.07±0.15 72.63±0.23 72.96±0.22
GraphSHA 79.90±0.29 74.62±0.35 75.74±0.32 64.50±0.41 59.04±0.34 59.16±0.21 79.20±0.13 74.46±0.17 75.24±0.27

G
AT

Vanilla 67.52±0.58 54.20±0.79 55.34±0.74 49.16±0.19 42.58±0.18 35.75±0.29 47.83±1.57 39.09±1.27 29.62±2.15

Reweight 77.77±0.28 72.03±0.58 72.79±0.58 61.95±0.57 55.40±0.63 53.71±0.72 74.08±0.39 69.35±0.79 69.52±0.70
PC Softmax 68.75±0.77 64.07±0.86 64.17±0.74 56.70±1.61 56.31±1.30 55.31±1.53 76.70±0.32 73.22±0.15 73.25±0.28
CB Loss 77.29±0.36 72.07±0.63 72.79±0.43 61.44±0.52 55.17±0.52 53.63±0.54 74.81±0.25 69.54±0.64 70.55±0.59
Focal Loss 77.97±0.11 72.47±0.21 73.15±0.21 59.75±0.36 53.44±0.34 52.12±0.29 74.23±0.27 70.36±0.34 70.63±0.20
ReNode 78.09±0.24 71.78±0.34 73.41±0.34 60.87±0.37 54.01±0.37 51.98±0.44 74.09±0.28 69.02±0.34 69.55±0.32

Upsample 72.62±0.31 62.39±0.37 65.08±0.28 53.41±0.22 46.89±0.22 43.10±0.44 67.61±0.95 57.29±0.64 54.99±1.02
GraphSmote 74.65±0.29 67.71±0.37 69.10±0.39 57.45±0.26 51.33±0.31 49.38±0.54 74.04±0.38 69.04±0.35 70.62±0.42
GraphENS 77.08±0.26 72.07±0.38 72.09±0.48 61.91±0.34 55.88±0.32 54.38±0.41 76.65±0.11 70.43±0.20 71.25±0.20
TAM (G-ENS) 77.69±0.21 72.87±0.30 72.99±0.31 64.06±0.34 57.77±0.31 56.38±0.32 77.94±0.18 71.98±0.29 73.07±0.27
GraphSHA 79.07±0.18 74.08±0.26 75.02±0.18 63.94±0.44 58.14±0.35 57.71±0.40 78.40±0.20 73.82±0.17 74.66±0.21

SA
G
E

Vanilla 73.30±0.09 61.83±0.12 63.25±0.13 47.90±0.24 41.80±0.22 36.96±0.31 58.78±0.08 47.92±0.06 42.34±0.07

Reweight 76.81±0.15 68.74±0.31 70.22±0.37 57.30±0.53 50.90±0.46 49.15±0.49 65.94±0.53 59.83±1.24 58.89±1.14
PC Softmax 76.92±0.22 73.25±0.28 73.54±0.26 58.35±0.25 56.06±0.18 56.65±0.18 71.60±0.13 73.83±0.15 70.28±0.12
CB Loss 77.04±0.30 70.25±0.37 71.26±0.30 57.63±0.34 51.19±0.32 48.70±0.35 67.78±0.36 60.67±0.46 61.46±0.52
Focal Loss 77.17±0.16 69.78±0.27 70.76±0.25 57.02±0.72 50.77±0.66 48.42±0.79 70.59±0.35 65.69±0.45 66.25±0.44
ReNode 77.26±0.15 69.22±0.21 71.13±0.22 57.82±0.50 51.27±0.49 49.04±0.45 67.60±0.51 60.65±0.82 60.78±0.78

Upsample 73.80±0.12 63.45±0.20 65.83±0.16 50.32±0.11 44.24±0.11 41.46±0.17 64.08±0.06 54.64±0.07 53.39±0.10
GraphSmote 74.24±0.19 66.15±0.38 67.89±0.41 52.85±0.64 46.99±0.63 44.20±0.74 65.10±0.42 56.82±0.49 56.85±0.54
GraphENS 76.69±0.20 70.07±0.25 70.37±0.30 62.63±0.34 56.14±0.37 54.13±0.39 77.62±0.14 72.54±0.23 73.21±0.18
TAM (G-ENS) 77.31±0.30 71.02±0.34 71.14±0.36 62.93±0.21 56.44±0.19 54.50±0.21 78.12±0.31 72.80±0.76 73.69±0.67
GraphSHA 78.80±0.24 73.56±0.35 74.27±0.30 63.76±0.38 58.25±0.37 58.04±0.45 78.20±0.19 74.07±0.23 74.93±0.23

Loss [26], whichmodifies the loss function to focus on hard samples;
and (5) ReNode [4], which also considers topological imbalance in
the context of graph data based on the class imbalance. For gen-
erative approaches, we compare (1) Upsample, which directly du-
plicates minor nodes; (2) GraphSmote [53] and (3) GraphENS [31],
which have been introduced in Section 2. Furthermore, we also
compare the state-of-the-art method (4) TAM [39] based on the
best-performed GraphENS by default, which aims to decrease the
false positive cases considering the graph topology.
Configurations and Evaluation Protocols. We adopt various
GNNs, namely GCN [24], GAT [42], and GraphSAGE [15] as the
backbones of our model and baseline models. Their hidden layer
is set to 2, both in 64-dim by default. For GAT, the multi-head

number is set to 8. For our GraphSHA, 𝛿 for node feature synthesis is
sampled from a beta distribution as 𝛿 ∼ 𝑏𝑒𝑡𝑎(𝑏1, 𝑏2), and we present
the hyper-parameter analysis of the distribution in Section 5.7. For
diffusion matrix 𝑺 , we adopt the PPR version with 𝛼 = 0.05, and
we also adopt top-𝐾 with 𝐾 = 128 to select 𝐾 highest mass per
column of 𝑺 to get a sparsified �̃� , both of which are suggested
in [25]. The implementation details for baselines are described in
Appendix A.2. Samples are synthesized until each class reaches
the mean or maximum number of samples among all classes in
the training set as a hyper-parameter. We apply Accuracy (Acc.),
balancedAccuracy (bAcc.), andmacro F1 score (F1) as the evaluation
metrics following [31, 39], where bAcc. is defined as the average
recall for each class [2].

GraphSHA: Synthesizing Harder Samples for Class-Imbalanced Node Classification KDD ’23, August 6–10, 2023, Long Beach, CA, USA.

Table 3: Node classification results (±std) on Photo, Computer, and CS in step class-imbalanced setting with GraphSAGE.

Dataset Photo-ST Computer-ST CS-ST

𝜌=20 Acc. bAcc. F1 Acc. bAcc. F1 Acc. bAcc. F1

SA
G
E

Vanilla 59.19±2.32 59.98±1.82 47.11±2.95 63.88±0.05 46.96±0.04 30.08±0.11 74.81±0.35 79.69±0.19 64.68±0.52

Reweight 84.85±0.23 87.30±0.24 82.89±0.16 83.59±0.31 87.91±0.10 77.59±0.41 91.02±0.33 90.87±0.30 75.50±0.35
PC Softmax 86.16±0.13 86.93±0.15 83.55±0.09 81.38±0.17 80.50±0.76 72.30±0.57 92.58±0.23 92.11±0.37 78.00±0.53
CB Loss 83.02±0.29 85.79±0.21 80.48±0.31 83.75±0.21 87.38±0.10 77.08±0.20 90.85±0.14 90.77±0.10 79.04±0.85
Focal Loss 82.58±0.39 85.42±0.32 79.28±0.35 82.56±0.22 87.38±0.08 76.53±0.15 90.08±0.19 90.01±0.16 79.56±0.26
ReNode 84.83±0.15 86.43±0.20 81.85±0.22 81.29±0.34 87.33±0.17 76.60±0.28 90.98±0.31 91.17±0.35 81.22±0.43

Upsample 82.20±0.34 84.86±0.08 79.38±0.24 82.99±0.24 87.02±0.09 77.10±0.33 87.23±0.18 87.99±0.11 76.38±0.21
GraphSmote 80.21±0.27 84.68±0.31 79.05±0.38 83.62±0.25 88.15±0.21 76.02±0.30 86.30±0.12 85.66±0.09 69.19±0.14
GraphENS 88.02±0.09 90.55±0.11 86.70±0.10 83.28±0.38 88.54±0.10 76.77±0.52 92.13±0.16 92.53±0.22 78.23±0.20
TAM (G-ENS) 87.61±0.13 89.17±0.17 85.74±0.16 80.31±0.52 86.74±0.22 76.96±0.59 92.60±0.22 92.39±0.19 78.52±0.23
GraphSHA 89.14±0.22 90.60±0.10 87.25±0.18 84.21±0.50 89.49±0.10 77.93±0.91 92.93±0.05 92.78±0.13 79.68±0.16

5.2 Results on Manually Imbalanced Datasets

We consider both long-tailed class imbalance setting [31] on Cora,
CiteSeer, PubMed and step class imbalance setting [4, 53] on Photo,
Computer, and CS to conduct the experiments. In the long-tailed
setting, we adopt full data split [5] for the three datasets, and we
remove labeled nodes in the training set manually until they follow
a long-tailed distribution as in [11, 31]. The imbalance ratio 𝜌 is set
to an extreme condition of 100. In step setting, the datasets are split
into training/validation/test sets with proportions 10%/10%/80%
respectively as in [4, 53], where half of the classes are major classes
and share the same number of training samples 𝑛𝑚𝑎𝑗 , while the
other half are minor classes and share the same number of training
samples 𝑛𝑚𝑖𝑛 = 𝑛𝑚𝑎𝑗/𝜌 in the training set. The imbalance ratio
𝜌 is set to 20 in this setting. The results are shown in Table 2 and
Table 3 respectively for the two settings.

From both tables, we can find that GraphSHA shows significant
improvements compared with almost all other contenders with
different GNN backbones, which shows the effectiveness of the
overall framework of GraphSHA. We provide more observations as
follows. Firstly, the performances of different methods are similar
across different GNN backbones, which shows that the performance
gaps result from the models’ intrinsic properties. Secondly, gen-
erative approaches generally perform better than loss-modifying
approaches, which benefits from the augmented topological struc-
ture. The results in step setting with GCN and GAT backbones are
provided in Appendix B due to the space constraint.

5.3 Results on Naturally Imbalanced Datasets

Class-imbalance problem is believed to be a common issue on real-
world graphs [53], especially for those large-scale ones. We adopt
arXiv dataset from OGB benchmark [19], which is highly imbal-
anced with a training imbalance ratio of 775, validation imbalance
ratio of 2,282, test imbalance ratio of 2,148, and overall imbalance
ratio of 942. Though the dataset is highly imbalanced, this problem
is barely studied in previous work.

The result is shown in Table 4. As GraphENS suffers from Out-
Of-Memory, we conduct TAM based on ReNode. We report the
accuracy on validation and test sets with hidden layer size 256,

Table 4: Node classification results (±std) on large-scale nat-

urally class-imbalanced dataset ogbn-arXiv. OOM indicates

Out-Of-Memory on a 24GB GPU.

Method Val Acc. Test Acc. Test bAcc. Test F1

Vanilla (GCN) 73.02±0.14 71.81±0.26 50.96±0.21 50.42±0.18

Reweight 67.49±0.32 66.07±0.55 53.34±0.30 48.07±0.77
PC Softmax 72.19±0.11 71.49±0.25 48.14±0.14 50.59±0.13
CB Loss 65.75±0.23 64.73±0.86 52.66±0.72 47.24±1.25
Focal Loss 67.36±0.24 65.93±0.58 53.06±0.21 48.89±0.72
ReNode 66.44±0.51 65.91±0.20 53.39±0.40 48.18±0.52
TAM (ReNode) 67.91±0.27 66.63±0.66 53.40±0.24 48.71±0.49

Upsample 70.53±0.08 69.55±0.37 46.82±0.07 45.49±0.20
GraphSmote OOM OOM OOM OOM
GraphENS OOM OOM OOM OOM
GraphSHA 73.04±0.11 72.14±0.28 53.75±0.16 53.13±0.20

which is a common setting for this task as the dataset is split based
on chronological order. We also report balanced accuracy and F1
score on the test set. From the table we can see that (1) Nearly
all imbalance handling approaches can improve balance accuracy.
However, accuracy and F1 score are reduced compared with vanilla
GCN for the baselines, which we attribute to the decision boundary
of minor classes not being properly enlarged as the boundaries
of major classes are seriously degenerated. On the other hand,
our GraphSHA outperforms all baselines in terms of all metrics,
which verifies that it can enlarge the minor subspaces properly
via the SemiMixup module to avoid violating neighbor classes. (2)
Generative approaches GraphSmote and GraphENS both suffer
from the OOM issue, which results from the calculation of the
nearest sample in the latent space and adjacent node distribution,
respectively. On the other hand, Our GraphSHA introduces light
extra computational overhead by effectively choosing source nodes
via the confidence-based node hardness.

5.4 Influence of Imbalance Ratio

Furthermore, we analyze the performance of various baselines with
different imbalance ratios 𝜌 from 5 to the extreme condition of 100,

KDD ’23, August 6–10, 2023, Long Beach, CA, USA. Wen-Zhi Li, Chang-Dong Wang, Hui Xiong, and Jian-Huang Lai

Table 5: Ablation study of each component of GraphSHA evaluated on Cora-LT with GCN. “+” stands for synthesizing.

Method Acc. bAcc. F1 C0
(0.5%)

C1
(1.1%)

C2
(2.4%)

C3
(5.4%)

C4
(11.6%)

C5
(25.0%)

C6
(54.0%)

GCN 72.02±0.50 59.42±0.74 59.23±1.02 0.0 28.6 67.0 60.0 81.2 93.8 93.1
+easy samples 76.90±0.19 69.55±0.21 71.28±0.25 21.1 69.4 67.9 63.1 73.1 95.1 94.7
+harder samples w/o SemiMixup 75.84±0.38 71.38±0.58 71.44±0.59 54.7 71.7 63.1 58.4 74.2 92.5 82.6

+harder samples w/ SemiMixup 79.16±0.25 72.89±0.32 74.62±0.27 42.2 74.3 71.8 62.3 72.5 94.4 93.4
+harder samples w/ SemiMixup (HK) 79.60±0.17 74.37±0.18 75.17±0.15 48.4 75.8 68.3 63.2 77.8 93.5 92.8
+harder samples w/ SemiMixup (PPR) 79.90±0.29 74.62±0.35 75.74±0.32 51.6 76.9 66.0 65.4 76.5 93.8 92.1

5 10 20 40 60 80 100
imbalance ratio

55

60

65

70

75

80

85

F1
 (%

)

Vanilla
Upsample
GraphSmote

GraphENS
TAM
GraphSHA

Figure 4: Changing trend of F1-score with the increase of

imbalance ratio on Cora-LT with GCN.

as shown in Figure 4 on Cora-LT with GCN backbone. We can see
that the F1 scores of all methods are high when 𝜌 is small. With
the increase of 𝜌 , the performance of GraphSHA remains relatively
stable, and its superiority increases when 𝜌 becomes larger, which
indicates the effectiveness of GraphSHA in handling extreme class
imbalance problem on graphs.

5.5 Case Study

We also present a case study on per-class accuracy for the baseline
methods and GraphSHAwith GCN backbone on Cora-LT in Table 6.
For generative approaches, GraphSmote only shows a tiny improve-
ment for minor classes compared to Upsample, which verifies that
synthesizing within minor classes could hardly enlarge the decision
boundary. GraphENS, on the other hand, shows decent accuracy
for minor classes. However, it is at the cost of the performance
reduction for major classes, as the accuracy for 𝐶6 is the lowest,
which verifies that GraphENS overdoes the minor node generation.
Our GraphSHA can avoid both problems as it shows superior ac-
curacy for both minor and major classes, which benefits from the
SemiMixup module to synthesize harder minor samples to enlarge
the minor decision boundaries effectively.

5.6 Ablation Study

In this subsection, we conduct a series of experiments to demon-
strate the effectiveness of each component of GraphSHA, including
how synthesizing harder minor samples and the SemiMixupmodule
affect the model performance. Specifically, we compare GraphSHA
with several of its ablated variants starting from the vanilla GNN.
The results are shown in Table 5 on the Cora-LT dataset with GCN

Table 6: Classification accuracy for each class on Cora-LT.

Class

Distribution

𝐶0
(0.5%)

𝐶1
(1.1%)

𝐶2
(2.4%)

𝐶3
(5.4%)

𝐶4
(11.6%)

𝐶5
(25.0%)

𝐶6
(54.0%)

Vanilla (GCN) 0.0 28.6 67.0 60.0 81.2 93.8 93.1

Reweight 32.9 70.9 75.0 67.5 78.6 93.5 87.9
PC Softmax 29.7 78.0 70.9 66.2 81.2 93.8 82.5
CB Loss 31.3 74.7 72.8 69.2 81.9 94.0 83.4
Focal Loss 29.9 75.9 72.2 71.9 82.6 94.6 83.2
ReNode 35.9 73.6 72.8 66.9 83.9 95.1 88.1

Upsample 12.5 58.2 65.1 67.5 76.5 92.4 89.7
GraphSmote 22.2 66.4 68.9 62.1 79.4 93.4 89.4
GraphENS 37.7 72.2 73.2 63.5 74.6 94.7 82.3
TAM (G-ENS) 32.6 76.3 68.9 71.5 74.2 95.1 86.9
GraphSHA 51.6 76.9 66.0 65.4 76.5 93.8 92.1

backbone. Here, easy samples are those that are far from the class
boundary. Synthesizing easy samples is somewhat like GraphSmote
as they both generate samples within class subspace, and we can
see that they achieve similar results — only slightly better than
the Upsample baseline. Harder samples w/o SemiMixup are gener-
ated via the mixup between auxiliary nodes’ 1-hop subgraph and
the anchor nodes, i.e., substituting N𝑠𝑦𝑛 ∼ 𝑃𝑑𝑖 𝑓 𝑓1ℎ𝑜𝑝 (𝑣𝑎𝑛𝑐) in Eq. (5)

to N𝑠𝑦𝑛 ∼ 𝑃𝑑𝑖 𝑓 𝑓1ℎ𝑜𝑝 (𝑣𝑎𝑢𝑥) to take a more adventurous step. We can
see that the performance of minor classes improves. However, as
we analyzed before, it is at the cost of degrading major classes
— it performs the worst for the most major class. On the other
hand, Applying the SemiMixup module can alleviate the degra-
dation while maintaining the accuracy for minor classes. Further-
more, GraphSHA can achieve better performance when weighted
adjacency matrix is leveraged via Heat Kernel (HK) or Personal
PageRank (PPR), which shows the importance of distinguishing the
different importance of topological structure.

5.7 Hyper-parameter Analysis

In GraphSHA, random variable 𝛿 is used to control the hardness of
the synthesized sample as𝑿𝑠𝑦𝑛 = 𝛿𝑿𝑎𝑛𝑐 +(1−𝛿)𝑿𝑎𝑢𝑥 , and smaller
𝛿 indicates bias to harder samples. Here, we change the distribution
where 𝛿 is sampled from, and the classification performance in
terms of F1 is elaborated in Figure 5 on Cora-LT with GCN back-
bone. We can see that model performance drops as E(𝛿) increases,
which shows that synthesizing harder samples via the SemiMixup
module is more beneficial for the model, as it can enlarge the minor
subspaces to a greater extent.

GraphSHA: Synthesizing Harder Samples for Class-Imbalanced Node Classification KDD ’23, August 6–10, 2023, Long Beach, CA, USA.

(1, 100) (1, 10) U(0, 1) (10, 1) (100, 1)
Distribution where is sampled

74.0

74.5

75.0

75.5

76.0

76.5

F1
 (%

)

0 1
0

100
pdf of (1, 100)

0 1
0

10
pdf of (1, 10)

0 1
0.95

1.00

1.05
pdf of U(0, 1)

0 1
0

10
pdf of (10, 1)

0 1
0

100
pdf of (100, 1)

Figure 5: Left: Performance of GraphSHA w.r.t. different dis-

tributions where 𝛿 is sampled for 𝑿𝑠𝑦𝑛 = 𝛿𝑿𝑎𝑛𝑐 + (1 − 𝛿)𝑿𝑎𝑢𝑥

on Cora-LT with GCN. Right: corresponding probability den-

sity functions (pdf) of the distributions.

0.0 0.2 0.4 0.6 0.8 1.0
Prob.

easy samples

w/o SemiMixup

SemiMixup+ (100, 1)

SemiMixup+ (1, 100)

Major
Minor

0.0 0.2 0.4 0.6 0.8 1.0
Prob.

Major
Minor

Figure 6: probability distribution of misclassified samples on

Cora-LT (left) and CiteSeer-LT (right) with GCN backbone.

5.8 Analysis on Squeezed Minority Problem

We conduct an experiment to validate how GraphSHA remits the
squeezed minority problem by plotting the probability distribution
of misclassified samples on Cora-LT and CiteSeer-LT, with the same
setting as in Figure 1. The result is shown in Figure 6, from which
we have the following observations:
• Synthesizing easy samples cannot tackle the squeezed minority
problem, as these generated samples are confined in the raw latent
spaces of minor classes.
• Synthesizing harder samples without SemiMixup can tackle the
squeezed minority problem by enlarging the minor subspaces to a
large margin. However, it overdoes the enlargement as it is prone
to classify major classes as minor ones.
• Synthesizing via SemiMixup can remit the squeezed minority
problem properly, as the probability of misclassified samples be-
ing minor classes is close to 0.5. Furthermore, the closer the syn-
thesized node feature to the neighbor class (i.e., larger E(𝛿)), the
better the problem is remitted, as the minor subspaces are en-
larged to a greater extent. This observation is consistent with the
hyper-parameter analysis in Section 5.7.

5.9 Visualization

We also provide an intuitive understanding of the synthesis of
GraphSHA via t-SNE [41]-based visualization in Figure 7, where
each node is colored by its label in the latent space. From Fig-
ure 7(a), we can see that the class-imbalanced graph suffers from
the squeezed minority problem as the subspaces of minor classes

40 0 40 80

40

0

40

(a) Training set samples

40 0 40 80

40

0

40

(b) Synthesized samples

40 0 40 80

40

0

40

(c) Test set samples

40 0 40 80

40

0

40

(d) All samples from (a), (b), and (c)

Figure 7: Visualization of GraphSHA on Cora-LT with GCN,

where each node is colored by its label. In (a), the hardness

of each training node is marked via the node size.

are pretty small. And GraphSHA can recognize node hardness effec-
tively as the nodes near the minor decision boundary are prone to
be chosen as source nodes. In Figure 7(b), GraphSHA can factually
enlarge the minor class boundaries by synthesizing plausible harder
minor nodes. As the enlarged minor subspaces could include minor
samples in the test set to a large extent, GraphSHA can effectively
remit the squeezed minority problem, as shown in Figure 7(c), (d).

6 CONCLUSION AND FUTUREWORK

In this paper, we study class-imbalanced node classification and
find the squeezed minority problem, where the subspaces of minor
classes are squeezed by major ones. Inspired to enlarge the minor
subspaces, we propose GraphSHA to synthesize harder minor sam-
ples with semiMixup module to avoid invading the subspaces of
neighbor classes. GraphSHA demonstrates superior performance
on both manually and naturally imbalanced datasets compared
against ten baselines with three GNN backbones. Furthermore, in-
depth investigations also show the effectiveness of leveraging hard
samples and the semiMixup module to enlarge minor class bound-
aries. For future work, we expect GraphSHA to be generalized to
other quantity-imbalanced scenarios on graphs like heterogeneous
information network which has imbalanced node types.

ACKNOWLEDGMENTS

The authors would like to thank Zhilin Zhao from University of
Technology Sydney, Kunyu Lin from Sun Yat-sen University, and
Dazhong Shen from University of Science and Technology of China
for their insightful discussions. This work was supported by NSFC
(62276277), Guangdong Basic Applied Basic Research Foundation
(2022B1515120059), and the Foshan HKUST Projects (FSUST21-
FYTRI01A, FSUST21-FYTRI02A). Chang-DongWang andHui Xiong
are the corresponding authors.

KDD ’23, August 6–10, 2023, Long Beach, CA, USA. Wen-Zhi Li, Chang-Dong Wang, Hui Xiong, and Jian-Huang Lai

REFERENCES

[1] Aleksandar Bojchevski and Stephan Günnemann. 2018. Deep Gaussian Embed-
ding of Graphs: Unsupervised Inductive Learning via Ranking. In 6th International
Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April

30 - May 3, 2018, Conference Track Proceedings. OpenReview.net.
[2] Kay Henning Brodersen, Cheng Soon Ong, Klaas Enno Stephan, and Joachim M.

Buhmann. 2010. The Balanced Accuracy and Its Posterior Distribution. In 20th

International Conference on Pattern Recognition, ICPR 2010, Istanbul, Turkey, 23-26

August 2010. IEEE Computer Society, 3121–3124.
[3] Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip Kegelmeyer.

2002. SMOTE: Synthetic Minority Over-sampling Technique. J. Artif. Intell. Res.
16 (2002), 321–357.

[4] Deli Chen, Yankai Lin, Guangxiang Zhao, Xuancheng Ren, Peng Li, Jie Zhou,
and Xu Sun. 2021. Topology-Imbalance Learning for Semi-Supervised Node
Classification. In Advances in Neural Information Processing Systems.

[5] Jie Chen, Tengfei Ma, and Cao Xiao. 2018. FastGCN: Fast Learning with Graph
Convolutional Networks via Importance Sampling. In 6th International Conference
on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3,

2018, Conference Track Proceedings. OpenReview.net.
[6] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey E. Hinton. 2020.

A Simple Framework for Contrastive Learning of Visual Representations. In
Proceedings of the 37th International Conference on Machine Learning, ICML 2020,

13-18 July 2020, Virtual Event (Proceedings of Machine Learning Research, Vol. 119).
PMLR, 1597–1607.

[7] Zhixuan Chu, Stephen L. Rathbun, and Sheng Li. 2021. Graph InfomaxAdversarial
Learning for Treatment Effect Estimation with Networked Observational Data.
In KDD ’21: The 27th ACM SIGKDD Conference on Knowledge Discovery and Data

Mining, Virtual Event, Singapore, August 14-18, 2021. ACM, 176–184.
[8] Ching-Yao Chuang, Joshua Robinson, Yen-Chen Lin, Antonio Torralba, and Ste-

fanie Jegelka. 2020. Debiased Contrastive Learning. In Advances in Neural Infor-

mation Processing Systems 33: Annual Conference on Neural Information Process-

ing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, Hugo Larochelle,
Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin
(Eds.).

[9] Diane J Cook and Lawrence B Holder. 2006. Mining graph data. John Wiley &
Sons.

[10] Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and Serge J. Belongie. 2019. Class-
Balanced Loss Based on Effective Number of Samples. In IEEE Conference on

Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June

16-20, 2019. Computer Vision Foundation / IEEE, 9268–9277.
[11] Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and Serge J. Belongie. 2019. Class-

Balanced Loss Based on Effective Number of Samples. In IEEE Conference on

Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June

16-20, 2019. Computer Vision Foundation / IEEE, 9268–9277.
[12] Matthias Fey and Jan E. Lenssen. 2019. Fast Graph Representation Learning with

PyTorch Geometric. In ICLR Workshop on Representation Learning on Graphs and

Manifolds.
[13] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-

Farley, Sherjil Ozair, Aaron C. Courville, and Yoshua Bengio. 2014. Generative
Adversarial Networks. arXiv preprint arXiv:1406.2661 (2014).

[14] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. 2017. On Calibration
of Modern Neural Networks. In Proceedings of the 34th International Confer-

ence on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017

(Proceedings of Machine Learning Research, Vol. 70). PMLR, 1321–1330.
[15] William L. Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive Represen-

tation Learning on Large Graphs. In Advances in Neural Information Processing

Systems 30: Annual Conference on Neural Information Processing Systems 2017,

December 4-9, 2017, Long Beach, CA, USA. 1024–1034.
[16] Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. 2015. Distilling the Knowl-

edge in a Neural Network. arXiv preprint arXiv:1503.02531 abs/1503.02531 (2015).
[17] Youngkyu Hong, Seungju Han, Kwanghee Choi, Seokjun Seo, Beomsu Kim,

and Buru Chang. 2021. Disentangling Label Distribution for Long-Tailed Visual
Recognition. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR

2021, virtual, June 19-25, 2021. Computer Vision Foundation / IEEE, 6626–6636.
[18] Zhenyu Hou, Xiao Liu, Yukuo Cen, Yuxiao Dong, Hongxia Yang, Chunjie Wang,

and Jie Tang. 2022. GraphMAE: Self-Supervised Masked Graph Autoencoders. In
KDD ’22: The 28th ACM SIGKDD Conference on Knowledge Discovery and Data

Mining, Washington, DC, USA, August 14 - 18, 2022. ACM, 594–604.
[19] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen

Liu, Michele Catasta, and Jure Leskovec. 2020. Open Graph Benchmark: Datasets
for Machine Learning on Graphs. In Advances in Neural Information Processing

Systems 33: Annual Conference on Neural Information Processing Systems 2020,

NeurIPS 2020, December 6-12, 2020, virtual.
[20] Nathalie Japkowicz and Shaju Stephen. 2002. The class imbalance problem: A

systematic study. Intell. Data Anal. 6, 5 (2002), 429–449.
[21] Justin M. Johnson and Taghi M. Khoshgoftaar. 2019. Survey on deep learning

with class imbalance. J. Big Data 6 (2019), 27.

[22] Yannis Kalantidis, Mert Bülent Sariyildiz, Noé Pion, Philippe Weinzaepfel, and
Diane Larlus. 2020. Hard Negative Mixing for Contrastive Learning. In Ad-

vances in Neural Information Processing Systems 33: Annual Conference on Neural

Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual.
[23] Bingyi Kang, Saining Xie, Marcus Rohrbach, Zhicheng Yan, Albert Gordo, Jiashi

Feng, and Yannis Kalantidis. 2020. Decoupling Representation and Classifier for
Long-Tailed Recognition. In 8th International Conference on Learning Representa-

tions, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net.
[24] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with

Graph Convolutional Networks. In 5th International Conference on Learning

Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track

Proceedings. OpenReview.net.
[25] Johannes Klicpera, Stefan Weißenberger, and Stephan Günnemann. 2019. Dif-

fusion Improves Graph Learning. In Advances in Neural Information Processing

Systems 32: Annual Conference on Neural Information Processing Systems 2019,

NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada. 13333–13345.
[26] Tsung-Yi Lin, Priya Goyal, Ross B. Girshick, Kaiming He, and Piotr Dollár. 2017.

Focal Loss for Dense Object Detection. In IEEE International Conference on Com-

puter Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society,
2999–3007.

[27] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott E. Reed,
Cheng-Yang Fu, and Alexander C. Berg. 2016. SSD: Single Shot MultiBox Detector.
In Computer Vision - ECCV 2016 - 14th European Conference, Amsterdam, The

Netherlands, October 11-14, 2016, Proceedings, Part I (Lecture Notes in Computer

Science, Vol. 9905). Springer, 21–37.
[28] Zemin Liu, Trung-KienNguyen, and Yuan Fang. 2021. Tail-GNN: Tail-Node Graph

Neural Networks. In KDD ’21: The 27th ACM SIGKDD Conference on Knowledge

Discovery and Data Mining, Virtual Event, Singapore, August 14-18, 2021. ACM,
1109–1119.

[29] Miller McPherson, Lynn Smith-Lovin, and James M Cook. 2001. Birds of a feather:
Homophily in social networks. Annual review of sociology (2001), 415–444.

[30] Aditya Krishna Menon, Sadeep Jayasumana, Ankit Singh Rawat, Himanshu Jain,
Andreas Veit, and Sanjiv Kumar. 2021. Long-tail learning via logit adjustment.
In 9th International Conference on Learning Representations, ICLR 2021, Virtual

Event, Austria, May 3-7, 2021. OpenReview.net.
[31] Joonhyung Park, Jaeyun Song, and Eunho Yang. 2022. GraphENS: Neighbor-

Aware Ego Network Synthesis for Class-Imbalanced Node Classification. In
International Conference on Learning Representations.

[32] Liang Qu, Huaisheng Zhu, Ruiqi Zheng, Yuhui Shi, and Hongzhi Yin. 2021. Im-
GAGN: Imbalanced Network Embedding via Generative Adversarial Graph Net-
works. In KDD ’21: The 27th ACM SIGKDD Conference on Knowledge Discovery

and Data Mining, Virtual Event, Singapore, August 14-18, 2021. ACM, 1390–1398.
[33] Joshua David Robinson, Ching-Yao Chuang, Suvrit Sra, and Stefanie Jegelka.

2021. Contrastive Learning with Hard Negative Samples. In 9th International

Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May

3-7, 2021. OpenReview.net.
[34] Florian Schroff, Dmitry Kalenichenko, and James Philbin. 2015. FaceNet: A

unified embedding for face recognition and clustering. In IEEE Conference on

Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7-12,

2015. IEEE Computer Society, 815–823.
[35] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Gallagher, and

Tina Eliassi-Rad. 2008. Collective Classification in Network Data. AI Mag. 29, 3
(2008), 93–106.

[36] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan
Günnemann. 2018. Pitfalls of Graph Neural Network Evaluation. In Relational

Representation Learning Workshop@NeurIPS.
[37] Min Shi, Yufei Tang, Xingquan Zhu, David A. Wilson, and Jianxun Liu. 2020.

Multi-Class Imbalanced Graph Convolutional Network Learning. In Proceedings

of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI

2020. ijcai.org, 2879–2885.
[38] Abhinav Shrivastava, Abhinav Gupta, and Ross B. Girshick. 2016. Training

Region-Based Object Detectors with Online Hard Example Mining. In 2016 IEEE

Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV,

USA, June 27-30, 2016. IEEE Computer Society, 761–769.
[39] Jaeyun Song, Joonhyung Park, and Eunho Yang. 2022. TAM: Topology-Aware

Margin Loss for Class-Imbalanced Node Classification. In International Conference
on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA

(Proceedings of Machine Learning Research, Vol. 162). PMLR, 20369–20383.
[40] Kaihua Tang, Jianqiang Huang, and Hanwang Zhang. 2020. Long-Tailed Classifi-

cation by Keeping the Good and Removing the Bad Momentum Causal Effect.
In Advances in Neural Information Processing Systems 33: Annual Conference on

Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020,

virtual.
[41] Laurens Van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE.

J. Mach. Learn. Res. 9, 11 (2008).
[42] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In 6th International

Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April

30 - May 3, 2018, Conference Track Proceedings. OpenReview.net.

GraphSHA: Synthesizing Harder Samples for Class-Imbalanced Node Classification KDD ’23, August 6–10, 2023, Long Beach, CA, USA.

[43] Jianfeng Wang, Thomas Lukasiewicz, Xiaolin Hu, Jianfei Cai, and Zhenghua Xu.
2021. RSG: A Simple but Effective Module for Learning Imbalanced Datasets. In
IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2021, virtual,

June 19-25, 2021. Computer Vision Foundation / IEEE, 3784–3793.
[44] Kuansan Wang, Zhihong Shen, Chiyuan Huang, Chieh-Han Wu, Yuxiao Dong,

and Anshul Kanakia. 2020. Microsoft Academic Graph: When experts are not
enough. Quant. Sci. Stud. 1, 1 (2020), 396–413.

[45] Xiao Wang, Hongrui Liu, Chuan Shi, and Cheng Yang. 2021. Be Confident!
Towards Trustworthy Graph Neural Networks via Confidence Calibration. In
Advances in Neural Information Processing Systems 34: Annual Conference on

Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021,

virtual. 23768–23779.
[46] Felix Wu, Amauri H. Souza Jr., Tianyi Zhang, Christopher Fifty, Tao Yu, and

Kilian Q. Weinberger. 2019. Simplifying Graph Convolutional Networks. In
Proceedings of the 36th International Conference on Machine Learning, ICML 2019,

9-15 June 2019, Long Beach, California, USA (Proceedings of Machine Learning

Research, Vol. 97). PMLR, 6861–6871.
[47] Mike Wu, Milan Mosse, Chengxu Zhuang, Daniel Yamins, and Noah D. Goodman.

2021. Conditional Negative Sampling for Contrastive Learning of Visual Rep-
resentations. In 9th International Conference on Learning Representations, ICLR

2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net.
[48] Jun Xia, Lirong Wu, Ge Wang, Jintao Chen, and Stan Z. Li. 2022. ProGCL:

Rethinking Hard NegativeMining in Graph Contrastive Learning. In International
Conference on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland,

USA (Proceedings of Machine Learning Research, Vol. 162). PMLR, 24332–24346.
[49] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How Pow-

erful are Graph Neural Networks?. In 7th International Conference on Learning

Representations, ICLR 2019, NewOrleans, LA, USA, May 6-9, 2019. OpenReview.net.
[50] Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. 2018.

mixup: Beyond Empirical Risk Minimization. In 6th International Conference on

Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3,

2018, Conference Track Proceedings. OpenReview.net.
[51] Shaofeng Zhang, Meng Liu, Junchi Yan, Hengrui Zhang, Lingxiao Huang, Xi-

aokang Yang, and Pinyan Lu. 2022. M-Mix: Generating Hard Negatives via Multi-
sample Mixing for Contrastive Learning. In KDD ’22: The 28th ACM SIGKDD

Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, Au-

gust 14 - 18, 2022. ACM, 2461–2470.
[52] Yongshun Zhang, Xiu-ShenWei, Boyan Zhou, and JianxinWu. 2021. Bag of Tricks

for Long-Tailed Visual Recognition with Deep Convolutional Neural Networks.
In Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Thirty-Third

Conference on Innovative Applications of Artificial Intelligence, IAAI 2021, The

Eleventh Symposium on Educational Advances in Artificial Intelligence, EAAI 2021,

Virtual Event, February 2-9, 2021. AAAI Press, 3447–3455.
[53] Tianxiang Zhao, Xiang Zhang, and Suhang Wang. 2021. GraphSMOTE: Imbal-

anced Node Classification on Graphs with Graph Neural Networks. InWSDM

’21, The Fourteenth ACM International Conference on Web Search and Data Mining,

Virtual Event, Israel, March 8-12, 2021. ACM, 833–841.
[54] Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai

Koutra. 2020. Beyond Homophily in Graph Neural Networks: Current Limitations
and Effective Designs. In Advances in Neural Information Processing Systems 33:

Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020,

December 6-12, 2020, virtual.

KDD ’23, August 6–10, 2023, Long Beach, CA, USA. Wen-Zhi Li, Chang-Dong Wang, Hui Xiong, and Jian-Huang Lai

APPENDIX

A DETAILED EXPERIMENTAL SETTINGS

We introduce the detailed experimental settings, including the de-
scriptions of datasets and implementation details for baselines in
this section.

A.1 Datasets

We adopt six widely-used datasets in the community, including
Cora, CiteSeer, PubMed, Amazon-Photo, Amazon-Computers, and
Coauthor-CS to conduct all the experiments throughout the pa-
per. These datasets are collected from real-world scenarios of cita-
tion networks and co-purchase networks. Please note that all the
datasets are accessible via PyTorch Geometric library [12].
• Cora, CiteSeer, and PubMed [35] are three citation networks
where nodes represent papers and edges represent citation rela-
tions. Each node in Cora and CiteSeer is described by a 0/1-valued
word vector indicating the absence/presence of the correspond-
ing word from the dictionary, while each node in PubMed is
described by a TF/IDF weighted word vector from the dictio-
nary. The nodes are categorized by their related research area
for the three datasets. These datasets are accessible via https:
//github.com/kimiyoung/planetoid/raw/master/data.
• Amazon-Photo andAmazon-Computers [36] are two co-purchase
networks constructed from Amazon where nodes represent prod-
ucts and edges represent co-purchase relations. Each node is de-
scribed by a raw bag-of-words feature encoding product reviews
and is labeled with its category. These datasets are accessible
via https://github.com/shchur/gnn-benchmark/raw/master/data/
npz/.
• Coauthor-CS [36] is an academic networkwhere nodes represent
authors and edges represent co-author relations. Each node is
described by a raw bag-of-words feature encoding keywords of
his/her publication and is labeled with the most related research
field. The dataset is accessible via https://github.com/shchur/gnn-
benchmark/raw/master/data/npz/.
• ogbn-arXiv [19] is a citation network between all Computer
Science arXiv papers indexed by Microsoft academic graph [44],
where nodes represent papers and edges represent citation rela-
tions. Each node is described by a 128-dimensional feature vector
obtained by averaging the skip-gram word embeddings in its title
and abstract. The nodes are categorized by their related research
area. According to the benchmark, the data split is based on the
publication dates of the papers where the training set is papers
published until 2017, the validation set is papers published in 2018,
and the test set is papers published since 2019. The dataset is ac-
cessible via https://ogb.stanford.edu/docs/nodeprop/#ogbn-arxiv.

A.2 Implementation Details for Baselines

We give detailed configurations for baseline methods. Please note
we adopt same 2-layer GNN (GCN [24], GAT [42], GraphSAGE [15])
with hidden dimension 64 as the encoder for all the methods (except
for arXiv where we set the hidden dimension as 256 to make a fair
comparision on the leaderboard), including proposed GraphSHA,
for a fair comparison.

For Reweight, the loss weight for each class is proportional to the
number of samples. For CB Loss, hyper-parameter 𝛽 is set to 0.999.

For Focal, hyper-parameter 𝛼 is set to 2.0. For ReNode, we combine
the reweighting method for topological imbalance with Focal loss,
and the lower and upper bounds for the topological imbalance are
set to 0.5 and 1.5, respectively. For Upsample, we duplicate minor
nodes along with their edges until the number of each class sample
reaches the mean number of class samples. For GraphSmote, we
choose the GraphSmote𝑂 variant, which predicts discrete values
without pretraining, as it shows superior performance among mul-
tiple versions. For GraphENS, we set the feature masking rate 𝑘 as
0.01 and temperature 𝜏 as 1, as suggested in the released codes. For
TAM, we choose the GraphENS-based version as it performs the
best according to the paper, where the coefficient for ACM 𝛼 , the
coefficient for ADM 𝛽 , and the coefficient for classwise temperature
𝜙 are set to 2.5, 0.5, 1.2 respectively, which are the default settings
in the released codes.

B EXTRA EXPERIMENTS

We first present an extra experiment on CoraFull [1] which has
a larger class set (70 classes). As the dataset follows a long-tailed
distribution intrinsically, we sample the same number of nodes
from each class for validation/test sets randomly and assign the
remaining nodes as the training set. The imbalance ratio is set to
100 and GraphSAGE is adopted as the backbone encoder. As the test
set is balanced, the Acc. and bAcc. metrics are the same. The result
is shown in Table 7, from which We can see that the superiority
of GraphSHA is still significant, which shows the generalization
and effectiveness of GraphSHA in handling class-imbalanced node
classification tasks.

We also present experiments in the step class imbalance setting
with GCN and GAT as GNN backbones. The result is shown in
Table 8, from which we can see that GraphSHA still achieves the
best performance overall.

In addation to confidence-based node hardness discussed in Sec-
tion 4.1, we also consider 𝐾NN-based hardness, which is defined as
H𝑖 = |{𝑣 𝑗 |𝑯 𝑗 ∈ RF𝑘 (𝑯 𝑖), 𝒀 (𝑖) ≠ 𝒀 (𝑗)}|/𝑘 where RF𝑘 (𝑯 𝑖) is the
𝐾NN receptive field for node 𝑣𝑖 in the latent space. For sampling
𝑣𝑎𝑛𝑐 and 𝑣𝑎𝑢𝑥 near the minor decision boundary, we can get 𝑣𝑎𝑛𝑐

Table 7: Node classification results (±std) on CoraFull which

has 70 classes.

𝜌=100 Acc./bAcc. F1

Vanilla (SAGE) 56.40±0.71 51.84±0.78

Reweight 68.17±0.96 67.14±0.96
PC Softmax 66.06±0.38 64.74±0.33
CB Loss 69.89±1.11 69.18±1.21
Focal Loss 67.83±1.20 66.54±1.33
ReNode 59.52±0.58 57.94±0.52

Upsample 63.14±0.77 61.70±0.72
GraphSmote 58.86±0.59 56.95±0.66
GraphENS 63.14±0.92 62.28±0.88
TAM (G-ENS) 64.86±0.78 63.73±0.72
GraphSHA 73.43±0.42 72.50±0.43

https://github.com/kimiyoung/planetoid/raw/master/data
https://github.com/kimiyoung/planetoid/raw/master/data
https://github.com/shchur/gnn-benchmark/raw/master/data/npz/
https://github.com/shchur/gnn-benchmark/raw/master/data/npz/
https://github.com/shchur/gnn-benchmark/raw/master/data/npz/
https://github.com/shchur/gnn-benchmark/raw/master/data/npz/
https://ogb.stanford.edu/docs/nodeprop/#ogbn-arxiv

GraphSHA: Synthesizing Harder Samples for Class-Imbalanced Node Classification KDD ’23, August 6–10, 2023, Long Beach, CA, USA.

Table 8: Node classification results (±std) on Photo, Computer, and CS in step class-imbalanced setting with GCN and GAT

backbones.

Dataset Photo-ST Computer-ST CS-ST

𝜌=20 Acc. bAcc. F1 Acc. bAcc. F1 Acc. bAcc. F1

G
CN

Vanilla 37.79±0.22 46.77±0.11 27.15±0.43 56.12±1.41 41.49±0.63 27.76±0.53 37.36±0.97 54.35±0.72 30.47±1.19

Reweight 85.81±0.13 88.62±0.06 83.30±0.14 78.77±0.25 85.30±0.10 74.31±0.23 91.86±0.06 91.62±0.06 82.46±0.15
PC Softmax 64.66±1.73 71.56±1.16 61.31±1.25 73.33±1.22 60.07±1.82 55.09±2.27 87.38±0.49 87.46±0.39 74.24±0.77
CB Loss 86.85±0.05 88.69±0.05 84.78±0.12 82.22±0.13 86.71±0.05 75.80±0.13 91.43±0.05 91.25±0.07 77.72±0.85
Focal Loss 86.14±0.17 88.44±0.11 84.12±0.23 81.01±0.19 86.89±0.07 75.50±0.17 91.01±0.08 90.72±0.04 79.80±0.77
ReNode 86.08±0.18 87.34±0.34 82.51±0.29 72.92±0.97 78.12±0.84 67.04±1.13 92.02±0.21 91.08±0.19 82.87±0.97

Upsample 85.40±0.18 87.32±0.15 82.79±0.22 80.07±0.31 85.10±0.11 74.85±0.21 86.11±0.14 86.82±0.10 75.55±0.13
GraphSmote 83.99±0.20 86.53±0.19 81.86±0.21 76.76±0.18 84.10±0.17 69.40±0.19 86.20±0.17 85.44±0.15 69.04±0.64
GraphENS 87.00±0.07 89.19±0.06 84.66±0.09 79.71±0.08 86.50±0.08 74.55±0.10 92.17±0.10 91.94±0.11 82.90±0.43
TAM (G-ENS) 84.37±0.11 86.41±0.09 81.91±0.10 76.26±0.23 83.38±0.26 73.85±0.22 92.15±0.22 91.92±0.24 83.13±0.53
GraphSHA 87.40±0.09 88.92±0.09 85.18±0.11 81.75±0.14 86.75±0.09 76.86±0.30 92.38±0.09 92.01±0.06 83.33±0.45

G
AT

Vanilla 37.54±0.34 45.95±0.32 28.87±0.49 58.00±0.69 42.82±0.39 26.79±0.19 34.48±0.42 50.08±0.65 24.92±1.00

Reweight 80.34±1.02 83.08±0.50 76.64±0.92 72.65±0.40 76.81±0.37 64.00±0.35 88.31±0.38 87.33±0.39 71.67±0.59
PC Softmax 51.74±3.22 61.48±1.90 51.17±2.44 31.56±2.89 51.83±2.52 37.70±2.25 78.84±0.58 77.80±0.61 65.46±0.64
CB Loss 82.82±0.79 86.44±0.58 79.57±0.93 79.60±0.71 84.78±0.23 74.11±0.66 89.74±0.26 89.68±0.22 75.00±0.83
Focal Loss 83.03±0.58 85.86±0.43 79.39±0.73 79.49±0.45 85.04±0.23 74.10±0.48 88.73±0.20 88.03±0.22 73.08±0.73
ReNode 76.49±1.00 81.35±0.95 73.33±0.86 71.71±0.65 75.20±0.36 63.94±0.77 87.86±0.29 85.55±0.34 69.80±0.47

Upsample 77.89±0.83 81.16±0.33 73.91±0.59 74.86±0.69 78.18±0.45 66.28±0.81 82.23±0.18 82.70±0.10 65.74±0.17
GraphSmote 80.71±0.33 81.48±0.38 76.96±0.30 79.38±0.25 84.66±0.20 70.75±0.27 83.46±0.18 82.75±0.18 67.02±0.22
GraphENS 84.22±0.36 86.45±0.19 80.02±0.30 80.78±0.18 84.82±0.19 75.13±0.43 89.93±0.30 89.71±0.29 79.66±0.38
TAM (G-ENS) 80.94±0.42 83.09±0.36 78.89±0.45 77.68±0.24 82.97±0.18 74.22±0.39 91.86±0.36 90.96±0.33 80.41±0.35
GraphSHA 84.09±0.90 86.61±0.81 80.85±0.72 80.01±0.42 84.89±0.27 71.64±0.55 91.79±0.13 91.46±0.10 76.66±0.18

Table 9: Node classification results (±std) on Cora, CiteSeer, and PubMed in long-tailed class-imbalanced setting with𝐾NN-based

node hardness.

Dataset Cora-LT CiteSeer-LT PubMed-LT

𝜌=100 Acc. bAcc. F1 Acc. bAcc. F1 Acc. bAcc. F1

GraphSHA+GCN 79.21±0.12 74.13±0.15 75.21±0.13 64.00±0.29 58.82±0.28 58.80±0.31 78.00±0.16 72.98±0.27 73.43±0.25
GraphSHA+GAT 78.87±0.25 74.06±0.34 74.89±0.27 64.03±0.32 58.29±0.31 57.49±0.30 78.86±0.25 73.97±0.25 74.92±0.27
GraphSHA+SAGE 78.72±0.25 73.36±0.35 74.20±0.22 63.98±0.28 58.62±0.28 58.27±0.31 78.66±0.29 73.71±0.33 74.89±0.30

Table 10: Node classification results (±std) on Photo, Computer, and CS in step class-imbalanced setting with 𝐾NN-based node

hardness.

Dataset Photo-ST Computer-ST CS-ST

𝜌=20 Acc. bAcc. F1 Acc. bAcc. F1 Acc. bAcc. F1

GraphSHA+GCN 87.32±0.13 88.96±0.07 85.09±0.15 81.56±0.26 86.79±0.10 76.96±0.25 92.19±0.18 92.08±0.15 83.12±0.33
GraphSHA+GAT 84.32±0.28 86.62±0.20 80.78±0.30 80.05±0.43 84.85±0.33 71.63±0.52 91.60±0.25 91.26±0.27 76.18±0.32
GraphSHA+SAGE 89.04±0.18 90.64±0.18 87.27±0.20 84.61±0.18 89.40±0.08 78.13±0.27 93.05±0.08 92.76±0.12 82.47±0.24

according to node hardness as in Section 4.1, and sample 𝑣𝑎𝑢𝑥 in
RF𝑘 (𝑯𝑎𝑛𝑐) directly. The experimental results are shown in Table 9
for the LT setting and Table 10 for the ST setting, respectively. We

can see that leveraging 𝐾NN-based hardness can also achieve re-
markable performance, which validates that GraphSHA is agnostic
to the way of calculating node hardness.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Class Imbalance Problem
	2.2 Hard Sample Mining

	3 Preliminaries
	3.1 Notations and Imbalance Settings
	3.2 Graph Neural Networks
	3.3 Problem Definition

	4 Methodologies
	4.1 Identifying Source Samples
	4.2 SemiMixup for Harder Sample Synthesis
	4.3 Complexity Analysis

	5 Experiments
	5.1 Experimental Setup
	5.2 Results on Manually Imbalanced Datasets
	5.3 Results on Naturally Imbalanced Datasets
	5.4 Influence of Imbalance Ratio
	5.5 Case Study
	5.6 Ablation Study
	5.7 Hyper-parameter Analysis
	5.8 Analysis on Squeezed Minority Problem
	5.9 Visualization

	6 Conclusion and Future Work
	Acknowledgments
	References
	A Detailed Experimental Settings
	A.1 Datasets
	A.2 Implementation Details for Baselines

	B Extra Experiments

