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Abstract

Combining end-to-end speech translation (ST)
and non-autoregressive (NAR) generation is
promising in language and speech processing
for their advantages of less error propagation
and low latency. In this paper, we investigate
the potential of connectionist temporal classi-
fication (CTC) for non-autoregressive speech
translation (NAST). In particular, we develop
a model consisting of two encoders that are
guided by CTC to predict the source and tar-
get texts, respectively. Introducing CTC into
NAST on both language sides has obvious chal-
lenges: 1) the conditional independent gen-
eration somewhat breaks the interdependency
among tokens, and 2) the monotonic alignment
assumption in standard CTC does not hold
in translation tasks. In response, we develop
a prediction-aware encoding approach and a
cross-layer attention approach to address these
issues. We also use curriculum learning to im-
prove convergence of training. Experiments
on the MuST-C ST benchmarks show that our
NAST model achieves an average BLEU score
of 29.5 with a speed-up of 5.67×, which is
comparable to the autoregressive counterpart
and even outperforms the previous best result
of 0.9 BLEU points1.

1 Introduction

End-to-end speech translation (E2E ST) has at-
tracted unprecedented attention and achieved dra-
matic development in recent years (Duong et al.,
2016; Berard et al., 2016; Weiss et al., 2017; Anas-
tasopoulos and Chiang, 2018; Wang et al., 2020b,c;
Xu et al., 2021; Zhang et al., 2022b). Stand-alone

*Corresponding author.
†Work was done while at ByteDance AI Lab.
1The code is available at https://github.com/xuchennlp/

S2T.

modeling reduces the inference latency by almost
half compared to cascaded systems, where the au-
tomatic speech recognition (ASR) model and the
machine translation (MT) model run serially. This
helps the application in real scenarios, especially
with limited computational resources.

However, this advantage only holds in the con-
text of autoregressive (AR) decoding, where each
token is generated depending on the previously pre-
dicted results. Non-autoregressive (NAR) genera-
tion (Gu et al., 2018), the recently popular decod-
ing method in ASR and MT, makes the inference
process fast by predicting the output sequence in
parallel, resulting in the E2E ST no longer being
superior in terms of inference speed-up.

A natural question arises: can we build a power-
ful non-autoregressive speech translation (NAST)
model? The NAR results in the latest literature are
still inferior to the AR counterparts with a large gap
of about 2 ∼ 3 BLEU points, even with the iterative
refinement process (Inaguma et al., 2021a). In this
work, we aim to develop a promising NAST model
for comparable performance to the AR model with-
out complex decoding.

We resort to the connectionist temporal classi-
fication (CTC, Graves et al., 2006) because of its
great success in ASR and MT and the convenience
of variable length prediction. CTC is well suited
for speech-to-text modeling, where the input se-
quence is longer than the output. Recent studies
show that CTC-based NAR models achieve com-
parable or even better performance than their AR
counterparts, providing insight into the design of
the powerful CTC-NAST model.

Our CTC-NAST model is decoder-free and con-
sists of two stacked encoders: an acoustic encoder
and a textual encoder. They are guided by CTC to

ar
X

iv
:2

30
5.

17
35

8v
1 

 [
cs

.C
L

] 
 2

7 
M

ay
 2

02
3

https://github.com/xuchennlp/S2T
https://github.com/xuchennlp/S2T


predict transcription and translation, respectively
(Chuang et al., 2021). Then, we carry out a careful
and systematic inspection of the underlying issues
and address the challenges of CTC-NAST. In par-
ticular,

• The conditional independence assumption al-
lows fast inference but omits interdependency
across the whole sequence. We identify the
prediction-aware encoding (PAE) method un-
derlying the success of a series of studies
(Nozaki and Komatsu, 2021; Huang et al.,
2022; Higuchi et al., 2021a), which observe
preliminary prediction and refine it in the final
generation. Following this idea, we predict
the CTC result in the intermediate layer and
then integrate it into the subsequent encoding.

• Another inherent property of CTC, the mono-
tonic assumption, is valid for ASR but does
not hold for translation tasks, where a future
word in the target text may be aligned with
the earlier part of the source text, especially
on distant language pairs (Hannun, 2017). A
critical requirement of the decoder-free design
is the reordering augmentation (Chuang et al.,
2021). As a remedy, we introduce an addi-
tional cross-layer attention module, which is
complementary to the self-attention module.

Even with the above efforts, NAST is still a diffi-
cult task that suffers from heavy modeling burdens.
A curriculum learning strategy that guides the train-
ing in an easy-to-hard way is significant for better
convergence. We replace part of the incorrect pre-
diction with ground truth in PAE to prompt the
generation of the whole sequence. In this way, the
model relieves the CTC learning burden by observ-
ing almost the whole sequence in the early stages,
while only a few tokens are replaced as CTC per-
formance improves, ensuring consistency between
training and inference.

Our CTC-NAST model is simple, completely
parallel, and works well for both similar and dis-
tant language pairs. The proposed methods yield a
remarkable gain of 3.0 BLEU points on MuST-C
En-De, achieving an average BLEU score of 29.5
with an inference speed-up of 5.67×, and even out-
performing the best previous AR results by 0.9
BLEU points. We also report competitive results
on the more challenging MuST-C En-Ja and Fisher-
Callhome corpus.

2 Background

2.1 Connectionist Temporal Classification

CTC (Graves et al., 2006) was originally proposed
for labeling unsegmented sequences. It learns
monotonic alignment between acoustic features
and transcriptions, which is valid for cross-modal
learning like ASR. CTC helps convergence and
allows re-scoring decoding through a lightweight
output layer, achieving great success in ASR as
an auxiliary loss on top of the encoder (Watanabe
et al., 2017; Karita et al., 2019). Given the encoder
representation h and the corresponding sequence
y, the CTC loss is defined as:

LCTC = −logPCTC(y|h) (1)

where the probability is calculated by marginaliz-
ing over all possible alignments Φ(y) between h
and y:

PCTC(y|h) =
∑

π∈Φ(y)

P(π|h) (2)

CTC has the same conditional independence
property as NAR generation, where the probabil-
ity of the path π is the product of the probability
P (πt|ht) at each time step t:

P(Y |X) ≈
T∏
t=1

P(πt|ht) (3)

where T is the length of h.

2.2 AR and NAR

Given a source sequence X = (x1, · · · , xT ′ ), a
sequence-to-sequence model predicts the target se-
quence Y = (y1, · · · , yT ) by conditional distribu-
tion:

P(Y |X; θ) =
T∏
t=1

PAR(yt|y<t, X; θ) (4)

where θ is the model parameters. This autoregres-
sive generation learns sequential dependency but
suffers from high inference latency.

Instead, NAR carries out the conditional inde-
pendent prediction for parallel inference (Gu et al.,
2018):

P(Y |X; θ) =

T∏
t=1

PNAR(yt|X; θ) (5)



Although the vanilla NAR model speeds up infer-
ence by about 15× (Gu et al., 2018), it is still infe-
rior to the AR counterpart by a large gap.

Researchers have proposed many series of meth-
ods to improve the generation quality and inves-
tigate a better trade-off between performance and
speed in the MT task, such as the iterative decod-
ing method (Lee et al., 2018; Stern et al., 2019;
Ghazvininejad et al., 2019; Kasai et al., 2020), la-
tent variable method (Gu et al., 2018; Song et al.,
2021; Gu and Kong, 2021), data manipulation
method (Zhou and Keung, 2020; Bao et al., 2022;
Ding et al., 2021), enhancement based method
(Guo et al., 2019; Wang et al., 2019), and semi-
autoregressive decoding (Ran et al., 2020). There
are also some studies to design the architecture
of the NAR models, such as the use of CTC for
prediction for its ability of variable length predic-
tion (Libovický and Helcl, 2018; Shu et al., 2020;
Saharia et al., 2020).

In addition, the NAR generation also shows
promising results in ASR task, especially the CTC-
based systems (Higuchi et al., 2020, 2021b; Lee
and Watanabe, 2021; Nozaki and Komatsu, 2021;
Kim et al., 2022).

2.3 Speech Translation

Recently, E2E ST has received a lot of attention
due to its direct modeling (Berard et al., 2016).
Unlike the conventional cascaded system that de-
couples the cross-modal and cross-lingual model-
ing into ASR and MT models respectively (Ney,
1999; Mathias and Byrne, 2006), the end-to-end
manner is more elegant and has the potential for
fast inference and error-free propagation.

One promising route to improve ST is to de-
velop more adaptive architectures according to the
task characteristics. Based on the idea of modeling
decoupling, the stacked encoding method divides
cross-modal and cross-lingual learning into acous-
tic and semantic encoders, respectively (Liu et al.,
2020; Xu et al., 2021). In this design, the CTC
loss for transcription is usually introduced to guide
the learning of the acoustic encoder, which signif-
icantly helps convergence. In addition, the latent
alignment learned in the CTC is used to bridge the
two encoders. Liu et al. (2020) shrink the sequence
length based on CTC prediction. Xu et al. (2021)
introduce an adapter to bridge two encoders by
integrating CTC prediction.

Several studies investigate the NAR generation

in ST (Inaguma et al., 2021a,b; Chuang et al., 2021).
However, current NAR systems are still inferior to
AR counterparts, especially CTC-based systems.
Researchers also continue to extend the use of CTC
to learn target text as an auxiliary loss of the en-
coder (Zhang et al., 2022a; Yan et al., 2022). But
there is no work to inspect the underlying issues
in the CTC modeling of target text in ST. To this
end, we study the challenges of building a powerful
CTC-based NAST model and then propose corre-
sponding methods. We also extend our method to
AR models for a comprehensive exploration.

3 CTC-NAST

Among many well-established NAR designs for
ASR or MT models, CTC is particularly suitable
for ST modeling because the input length is re-
markably longer than its output. In this section,
we present CTC-NAST in detail. We first describe
the base architecture, then identify and address
three underlying challenges. See Figure 1 for an
overview of our system.

3.1 Base Architecture
ST aims to translate audio in the source language to
text in the target language directly. Let (x; ys; yt)
be a training sample of ST, where x is the input
speech feature sequence, ys is the corresponding
transcription of x, and yt is the translation in the
target language. We assume that transcription is
always available in our work.

We drop the decoder network and rely only on
the CTC-based encoder. Following the design of
SATE (Xu et al., 2021; Chuang et al., 2021), we
decouple the encoding into an acoustic encoder
and a textual encoder in a stack architecture, as
shown in Figure 1(a). They are guided by CTC
loss for transcription and translation (denoted CTC
and XCTC for distinction), respectively.

Formally, given a representation ha of the acous-
tic encoder output, the CTC loss is calculated as:

LCTC = −logPCTC(y
s|ha) (6)

Similarly, the XCTC loss is calculated as:

LXCTC = −logPXCTC(y
t|ht) (7)

where ht is the representation of the textual encoder
output.

Then, the training objective is formulated as the
interpolation of the two CTC losses:

L = αA · LCTC + αT · LXCTC (8)
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Figure 1: Overview of our CTC-NAST model. (a) The base architecture consisting of two CTC-guided encoders, (b):
The cross-layer attention module, where the layer normalization is omitted for simplification, (c) Prediction-aware
encoding, and its variant of curriculum learning mixing.

where αA and αT are the coefficients of the CTC
and XCTC losses, respectively.

Although CTC works well for the NAR ASR
model, extending CTC naively to the more chal-
lenging ST task is fragile. We claim that CTC-
NAST can be improved by addressing three issues:

• Conditional independence assumption is an
inherent property of CTC, which ignores in-
terdependency with past or future contexts,
leading to poor generation (Chan et al., 2020),
like repetition and omission errors.

• Although the self-attention network has the
modest reordering capability (Chuang et al.,
2021), our encoder-only architecture is hard to
handle the monotonic assumption, especially
for distant language pairs.

• E2E ST already suffers from the heavy bur-
den of cross-modal and cross-lingual mapping,
while NAR modeling further aggravates the
difficulty and results in poor convergence.

3.2 Prediction-aware Encoding
NAR generation enlarges the search space in infer-
ence due to conditional independence (Ran et al.,
2021), especially with the long speech sequence
of hundreds and thousands of units. A commonly-
used solution, incorporating latent variables that
contain the initial prediction into modeling, has

been demonstrated to be effective (Lee et al., 2018).
In this way, the NAR generation is decoupled as
the multiple-step refinement of the target sequence,
enabling the model to be aware of the previous
prediction.

Inspired by the prior efforts in MT (Huang et al.,
2022) and ASR (Nozaki and Komatsu, 2021), we
introduce prediction-aware encoding (PAE). The
detailed illustration is shown in Figure 1(c). Specif-
ically, given one representation hl outputted by the
intermediate encoder layer l, PAE integrates the
prediction information (corresponding 1⃝ in the
Figure) into the following encoding explicitly by
weighting the embedding matrix W over the cur-
rent CTC distribution (called InterCTC) (Xu et al.,
2021):

PAE(hl) = hl + PInterCTC(π|hl) ·W (9)

where the weights W are shared in the whole net-
work. Note that we use PAE to augment the learn-
ing of both CTC and XCTC.

Since the poor prediction leads to the risk of
error propagation, we also optimize the InterCTC
loss for guaranteed prediction:

LInterCTC = −logPInterCTC(y|h) (10)

In this way, we ensure that CTC predicts well.
However, the worse result for XCTC limits the ben-
efits of PAE, which may result in negative effects.
We alleviate this issue in Section 3.4.



Now, we re-formulate the training loss in Eq. 8
as:

L = αA · LCTC + αT · LXCTC

+ βA · 1

M

m∑
m=1

Lm
InterCTC

+ βT · 1

N

N∑
n=1

Ln
InterXCTC (11)

where M and N are the numbers of the intermedi-
ate CTC and XCTC, βA and βT are the correspond-
ing coefficients.

3.3 Reordering Augmentation
Vanilla Transformer generates each token by dis-
tributing the weight of the encoder-decoder atten-
tion module to the corresponding source part to
be translated, which easily handles the order gap
between languages. However, CTC modeling faces
the intractable issue of reordering the representa-
tion into the target language order during encoding.
Although previous studies have demonstrated that
the MT or ST encoder can capture the global infor-
mation (Yang et al., 2018; Xu et al., 2021), it is still
difficult to rely only on the self-attention module
to search the positions that contribute significantly
to decoding (Chuang et al., 2021).

To enhance the reordering capability of CTC-
NAST, we mimic the design of the decoder and in-
troduce cross-layer attention (CLA) module, which
is inserted between the self-attention module and
the feed-forward module in the specific layers of
the textual encoder, as shown in Figure 1(b). Let
SA(·, ·, ·) and CLA(·, ·, ·) denote the self-attention
and CLA modules, the new Transformer layer j
can be formulated as:

h
′

= hj−1 + SA(hj−1, hj−1, hj−1) (12)

h
′

= h
′
+ CLA(h

′
, hk, hk) (13)

hj = h
′
+ FFN(h

′
) (14)

where hk is the representation output from the layer
k(k < j).

In this way, CLA offers a remedy for the lacking
attention, that captures the information from the
bottom layer directly and is complementary to the
self-attention module. Now the textual encoder
acts as both a stack of the encoder and the decoder
of the vanilla encoder-decoder model.

In order to further enhance the ability of CLA,
we introduce the drop-net technique. In each layer

containing the CLA module, we drop the self-
attention module with a probability pdrop ∈ [0, 1].
Note that the self-attention module always keeps
during inference.

3.4 Curriculum Learning Strategy
Even with the auxiliary encoding and improved de-
sign architecture, the CTC-NAST model still faces
the difficulty of a heavy modeling burden, leading
to poor convergence. Inspired by Qian et al. (2021),
a curriculum learning strategy is remarkably impor-
tant to reduce the dependency in the early stage and
increase the difficulty along the training process.

As illustrated in Figure 1(c), we replace part of
the prediction (corresponding 1⃝ in the Figure) in
Eq. 9 with the ground truth (corresponding 2⃝ in
the Figure), which mitigates the negative effects
of error propagation caused by the poor XCTC
performance in PAE and prompts the generation
of the whole sequence. Unlike the same lengths
between input and output in the decoder, the length
of the input acoustic feature is remarkably longer
than the corresponding text in CTC. Therefore, we
take the best alignment computed by the model as
the ground truth (Gu and Kong, 2021; Huang et al.,
2022):

π̂ = arg max
π∈Φ(y)

P(π|s; θ′
) (15)

where θ
′

is the current model parameter. Note that
the length of π̂ is the same as the input.

Denote the replacement ratio as r ∈ [0, 1], we
uniformly sample a random variable U from [0, 1]:

P̂t = I(U >= r) ∗ pt + I(U < r) ∗ π̂t (16)

where I(·) is the indicator function.
However, this strategy results in the inconsis-

tency between training and decoding, where the
ground truth is unavailable during decoding. To
address this issue, Qian et al. (2021) adaptively
determine the replacement ratio depending on the
current prediction accuracy. But it does not work
for CTC-NAST, as shown in Appendix B.3.

Considering the long input sequence in ST, a
lower ratio may not provide sufficient prompt,
but a higher ratio may result in a severe gap be-
tween training and decoding. Therefore, we limit
that only the positions where a wrong prediction
(argmax pt ̸= π̂t) occurs are replaced. In this way,
we enable the large ratio throughout the whole train-
ing process. As the accuracy increases, more and



Model De Es Fr It Nl Pt Ro Ru Ja Avg. Speed-up

MT Transformer (Ours) 30.8 35.6 43.3 31.6 35.8 37.9 30.1 20.0 16.5 33.1 -

AR

Transformer (Inaguma et al., 2021b) 23.1 - 33.8 - - - - - - - -
+ Seq-KD 24.4 - 34.6 - - - - - - - -

Transformer (Inaguma et al., 2021a) 22.8 27.8 33.3 23.3 27.3 - - - - - -
+ Seq-KD 24.3 28.9 34.5 24.2 28.4 - - - - - -

Conformer (Inaguma et al., 2021a) 25.0 30.5 35.5 25.4 29.7 - - - - - -
+ Seq-KD 26.3 31.0 36.4 25.9 30.6 - - - - - -

Fairseq ST (Wang et al., 2020a) 22.7 27.2 32.9 22.7 27.3 28.1 21.9 15.3 - 24.8 -
NeurST (Zhao et al., 2021) 22.8 27.4 33.3 22.9 27.2 28.7 22.2 15.1 - 24.9 -
XSTNet (Ye et al., 2021) 25.5 29.6 36.0 25.5 30.0 31.3 25.1 16.9 - 27.5 -
STEMM (Fang et al., 2022) 25.6 30.3 36.1 25.6 30.1 31.0 24.3 17.1 - 27.5 -
ConST (Ye et al., 2022) 25.7 30.4 36.8 26.3 30.6 32.0 24.8 17.3 - 28.0 -
M3ST (Cheng et al., 2022) 26.4 31.0 37.2 26.6 30.9 32.8 25.4 18.3 - 28.6 -

CTC-Aug ST (Ours) 26.9 31.5 38.1 27.4 31.9 33.4 25.8 18.7 16.1 29.2 1.0×
+ Seq-KD 27.7 31.6 39.5 27.5 32.3 33.7 26.6 18.7 16.4 29.7 1.0×

NAR

CTC (Inaguma et al., 2021b) 19.4 - 27.4 - - - - - - - 20.84×
Orthros (Inaguma et al., 2021b) 23.9 - 33.1 - - - - - - - 2.39×
CTC (Inaguma et al., 2021a) 24.1 29.0 34.6 24.3 28.5 - - - - - 13.83×
Orthros - CTC (Inaguma et al., 2021a) 25.3 30.4 36.2 25.4 29.9 - - - - - 1.14×
Orthros - CMLM (Inaguma et al., 2021a) 24.1 29.2 35.1 24.4 28.6 - - - - - 2.73×
CTC-NAST (Ours) 27.3 31.8 38.9 27.7 32.3 33.3 26.1 18.9 16.2 29.5 5.67×

Table 1: BLEU scores on MuST-C corpora. The speed-up is calculated on the En-De corpus.

more positions rely on the model’s predictions, and
the guidance to the fewer positions with errors al-
ways remains stable for better convergence. We call
this method curriculum learning mixing (CLM).

Finally, we smooth the ground truth to obtain a
distribution similar to the CTC prediction, where
the dominant probability is concentrated on the
ground truth position, and the rest is evenly dis-
tributed among other tokens.

3.5 Inference

CTC-NAST is a fully parallel decoding model. The
inference resembles the training process, except
the CLM method is not used. We employ greedy
decoding, where CTC picks the tokens with maxi-
mum probability in each time-step, then removes
the blanks and repeated tokens for final translation.

4 Extension on AR model

Now a natural question arises: can our method pro-
posed for the NAR model be used to improve the
AR model? Our method produces better encoder
representations for CTC prediction, but there is no
evidence to demonstrate that the optimization of
the CTC and the cross-entropy in the decoder are
completely consistent. Excessive optimization of
the encoder may interfere with the learning of the
decoder.

To answer it, we adopt these techniques to the

encoder-decoder counterpart (called CTC-Aug ST),
to investigate the effects of different architectures.
And the training loss is formulated as:

L = LS2S + αA · LCTC + αT · LXCTC

+ βA · 1

M

m∑
m=1

Lm
InterCTC

+ βT · 1

N

N∑
n=1

Ln
InterXCTC (17)

where LS2S is the cross-entropy loss of the decoder.

5 Experiments

We evaluate our method on the MuST-C and Fisher-
Callhome benchmarks. Details about the datasets
and model settings are described in Appendix A.

5.1 Main Results
The results on the MuST-C corpora in Table 1 show
that our method significantly outperforms previous
AR and NAR models. We achieve remarkable gains
for all language pairs. Here we highlight several
major breakthroughs: i) CTC-Aug ST is shown
to be effective for the AR models, which gains an
average of 0.6 BLEU points over the previous best
work even without the augmentation of sequence-
level knowledge distillation (Seq-KD) data. Note
that not all proposed methods are used in CTC-
Aug ST (see Section 5.2.2). ii) Our CTC-NAST



Model
Fisher Callhome

Speed-up
dev dev2 test devtest evltest

MT Transformer (Ours) 64.50 65.20 63.35 32.21 31.58 -

AR

Transformer + Seq-KD (Inaguma et al., 2021b) - - 50.32 - 19.81 -
Transformer + Seq-KD (Inaguma et al., 2021a) 51.10 51.40 50.80 19.60 19.20 -
Conformer + Seq-KD (Inaguma et al., 2021a) 54.70 55.40 54.10 21.50 21.00 -
Transformer + MTL + ASR init. (Chuang et al., 2021) 48.27 49.17 48.40 17.26 17.45 -

CTC-Aug ST (Ours) 53.61 54.07 53.69 22.16 21.33 1.0×
+ Seq-KD 55.39 55.88 55.09 23.09 22.92 1.0×

NAR

CTC (Inaguma et al., 2021b) - - 45.97 - 15.91 20.84×
Conformer - CTC (Inaguma et al., 2021a) 51.00 51.60 50.80 18.00 18.70 11.80×
Orthros - CTC (Inaguma et al., 2021a) 54.00 54.80 54.10 21.00 20.80 1.09×
Orthros - CMLM (Inaguma et al., 2021a) 51.30 52.20 51.20 20.90 20.40 2.70×
Transformer - CTC (Chuang et al., 2021) 42.61 43.91 43.50 13.02 13.52 28.9×
CTC + MTL (Chuang et al., 2021) 44.45 45.23 44.92 14.20 14.19 28.9×
Mask - CTC (Higuchi et al., 2021a) 51.10 51.70 50.60 17.90 18.30 -
Intermediate CTC (Higuchi et al., 2021a) 51.30 51.40 51.00 19.00 19.00 -
Self-conditioned CTC (Higuchi et al., 2021a) 50.70 51.20 50.50 19.10 19.20 -

CTC-NAST (Ours) 55.21 55.92 54.71 23.43 23.30 4.10×

Table 2: BLEU scores on Fisher-Callhome corpus.

models achieve comparable or better performance
to the powerful AR counterparts on all 9 language
pairs, with a high speed-up of 5.67×. Note that
CTC-NAST achieves a higher speed-up under large
batch sizes (see Section 5.2.4). iii) Referring to
Appendix B.1, the En-Ja translation has a strong
demand for reordering capability. Our method also
works well on this challenging distant language
pair, demonstrating the potential of CTC-NAST.

Similar results on Fisher-Callhome are shown
in Table 2. Interestingly, the NAST model outper-
forms the AR counterpart with 0.3 ∼ 0.4 BLEU
points on the out-of-domain Callhome sets. We
find that the AR models miss some segments when
translating the long sentences, while the CTC-
NAST models still guarantee good performance,
as shown in Appendix B.2. It demonstrates the
robustness of our CTC-NAST model.

5.2 Analysis
Next, we study several interesting problems on
MuST-C En-De and En-Ja datasets to investigate
the effects on similar and distant languages. We
present further analyses in Appendix B.

5.2.1 Performance over Sentence Lengths
Figure 2 shows the results of the AR and NAR
models with and without the proposed methods
on the MuST-C En-De corpus with respect to out-
put lengths. The base NAR model performs much

0 20 40 60 80
18

22
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B
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E
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Figure 2: BLEU scores over various output lengths.

worse than AR counterpart. But interestingly, un-
like the ST model, which has an outlier as sentence
length increases, the NAST model maintains sta-
ble performance. This is similar to the results on
Fisher-Callhome in Appendix B.2.

Our methods bring remarkable gains over differ-
ent lengths for both AR and NAR models, leading
to comparable translation quality when the length
is less than 60. In particular, CTC-NAST performs
even better than AR models when the length is
less than 30. However, the performance gap in-
creases with sentence length. We speculate that
very long input acoustic features make it more dif-
ficult to model semantic information. Future work
(Xu et al., 2023) can focus on enhancing the ability
to handle complex acoustic encoding.



Model
En-De En-Ja Inference

Params.Raw Seq-KD Raw Seq-KD AR Times NAR Times Speed-up
AR NAR AR NAR AR NAR AR NAR

Base 26.1 - 27.1 - 15.9 - 16.1 - 547.2 - - ∼ 130M
+ XCTC 26.7 17.3 27.0 24.3 16.3 7.3 16.3 13.7 555.0 79.9 6.95× ∼ 130M

+ PAE 26.9 19.6 27.7 25.7 16.1 8.5 16.4 14.9 545.0 84.1 6.48× ∼ 140M
+ CLA 26.8 19.1 27.3 26.2 16.6 10.0 16.4 15.3 565.6 91.8 6.16× ∼ 150M
+ CLM 26.6 25.7 27.5 27.4 14.4 14.3 16.6 16.1 543.1 82.3 6.60× ∼ 140M
+ CLA + CLM 27.0 25.8 27.6 27.3 13.6 14.5 16.2 16.2 575.0 96.2 5.98× ∼ 150M

Table 3: The effects of our methods on AR and NAR models.

5.2.2 Effects of Each Method

We compare the results of each method on AR
and NAR models in Table 3. More detailed ab-
lation studies of CLA and CLM are presented in
Appendix B.3. The base AR model is trained with
auxiliary loss, where CTC on top of the acoustic
encoder learns to predict the source text. Interest-
ingly, there are different effects on different mod-
els, languages, and training data. All methods are
lightweight in both computational cost and param-
eter quantity.

Introducing the XCTC loss and PAE method
achieves better performance in nearly all settings.
CLA does not work well on the similar En-De lan-
guage pair due to the less reordering requirement,
but stable improvements on the distant En-Ja lan-
guage pair. The remarkable results of CLM demon-
strate that an adaptive training strategy is important
for better convergence of NAR models (Qian et al.,
2021).

However, CLM leads to slightly worse or better
results for AR models trained on Seq-KD data. We
conclude that the optimization of XCTC loss in
the encoder interferes with the learning of cross-
entropy loss in the decoder. Although the XCTC
achieves good performance, it does not contribute
to the final inference in the encoder-decoder frame-
work. In addition, the performance of the AR
model trained on raw En-Ja data drops terribly.
Raw data distribution is difficult to learn by CTC,
especially for distant En-Ja language pair. In this
case, the CLM always provides ground truth in a
high ratio to mix, leading to overfitting on the train-
ing set and worse performance during inference.
Therefore, we only use XCTC and PAE on AR
models for stable improvements.

We also notice that the simplified data distribu-
tion is crucial for achieving optimal performance
with the NAST model. Specifically, the base NAR
models, when trained on raw data, significantly un-

Model
En-De En-Ja

sub del ins sub del ins

A
R Base 31.8 12.2 12.5 44.6 19.3 16.9

+ XCTC-Aug 31.4 12.0 12.5 43.9 19.6 15.9

N
A

R

Base 32.0 14.4 10.7 42.8 22.8 12.8
+ PAE 31.6 13.2 11.4 43.2 21.1 14.4

+ CLA 31.4 12.9 11.7 43.6 20.3 14.8
+ CLM 30.8 12.8 11.3 42.1 21.2 13.7
+ CLA + CLM 30.9 12.8 11.4 42.1 21.2 14.0

Table 4: Error analysis based on WERs that are split
into substitution (sub), deletion (del), and insertion (ins)
error rates.

derperform models trained on Seq-KD data, with
a gap of about 7 BLEU points. By combining pro-
posed methods, we develop a powerful NAR model
that narrows the gap to within 2 BLEU points.
This result highlights the robustness of CTC-NAST,
even in the presence of complex data distributions.

5.2.3 Error Analysis

To identify the weakness of NAR generation, we
measure the word error rates (WERs) of AR and
NAR models on the MuST-C En-De and En-Ja
datasets2. For a token in the target text, the sub
error indicates that it is incorrectly translated, and
the del error indicates that it is omitted. The ins
error indicates that the token not in the target text
is translated.

High del error rates show that the dominant dis-
advantage of the NAST model is missing transla-
tion. PAE relaxes the conditional independence
assumption, giving better results for En-De but in-
creased sub errors for En-Ja. We speculate that
this is because poor CTC prediction introduces
excessive errors. CLA is particularly effective at
reducing del errors, which is consistent with our
motivation to relax the monotonic assumption. And
CLM reduces error propagation and improves the

2Although WER is the metric for ASR, it helps to under-
stand the error types of the translation results.
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robustness of PAE, achieving consistent improve-
ments.

However, the combination of our methods does
not lead to a further reduction in del errors. A
possible reason is that the inconsistent learning
between CLA and CLM limits the effect of the
combination. We will explore better methods to
alleviate the missing translation in the future.

5.2.4 Speed-up vs. Batch Size
We examine the speed-up compared to AR models
under different batch sizes and beam sizes in Figure
3. Our CTC-NAST model consistently maintains
a high speed-up, even with a large batch size of
32. The performance of NAR and AR models is
comparable when using a beam size of 1, while our
NAR model is more than 5× faster. In addition, our
encoder-only design simplifies the inference pro-
cess, eliminating the need for length prediction or
iterative refinement. One promising direction is to
develop effective encoding methods that can bridge
the length gap between acoustic features and text.
This has the potential to reduce the computational
cost caused by long sequence modeling.

6 Conclusion

Aiming to combine E2E ST and NAR generation,
we propose CTC-NAST, which consists of only
two CTC-guided encoders for source and target text
prediction, respectively. We identify and address
several challenges of CTC-NAST: conditional inde-
pendence assumption, monotonic assumption, and
poor convergence. In this way, our CTC-NAST
model outperforms the previous best AR models by
0.9 BLEU points. We believe that we are the first
to present a NAST model that achieves comparable
or better performance than strong AR counterparts.

Limitations

Although our CTC-NAST model achieves excel-
lent performance, there are still some underlying
challenges that remain in the follow-up of our work.
Here are some limitations that we intend to resolve
in the future:

• The better designs of reordering augmentation
and training strategy. Although the proposed
CLA and CLM approaches achieve good re-
sults by alleviating the monotonic assumption
and relieving the modeling burden, combing
them can not bring remarkable improvement.
More importantly, these two methods fail to
stable improvements in encode-decoder archi-
tecture. This drives us to investigate the in-
terference of the optimizations between CTC
and cross-entropy.

• Combination with the pre-training or multi-
task learning. Although our methods bring
remarkable gains on both AR and NAR mod-
els, we do not explore the utilization of exter-
nal data resources. Although we can use the
pre-trained models directly, we expect more
effective methods in future work. Theoreti-
cally, we need to design NAR ASR and MT
models that share the same or similar archi-
tectures with the acoustic encoder and textual
encoder, respectively. In this way, the NAST
model bridges the gap between pre-training
and fine-tuning and has more potential for bet-
ter performance.

• The potential risk for unwritten languages.
In our work, we assume that transcription
is always available, which is consistent with
almost previous studies. Although some
datasets have no transcription, we can use a
well-trained ASR model to generate pseudo
labels. However, it is hard to handle speech
translation from unwritten source speech. The
supervision of source text is very important
for our model. Therefore, we need to develop
better methods for stable training.
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A Experimental Settings

A.1 Datasets and Preprocessing

We conduct experiments on the MuST-C (Gangi
et al., 2019) and Fisher-Callhome ST (Post et al.,
2013) datasets. MuST-C is a multilingual speech
translation corpus extracted from TED lectures. We
test our method on all MuST-C v1 corpora: English
(En) to German (De), Spanish (Es), French (Fr),
Italian (It), Dutch (Nl), Portuguese (Pt), Romanian
(Ro) and Russian (Ru). In addition, we also in-
vestigate the results of the distant language pair
English-Japanese (En-Ja) corpus in the MuST-C
v2 dataset. We select (and tune) the model on
the dev set (Dev) and report the results on the tst-
COMMON set (Test).

Fisher-Callhome is a Spanish-English speech-to-
text translation dataset with 138k text pairs. This
corpus contains 170 hours of Spanish conversa-
tional telephone speech, as well as Spanish tran-
scripts and English translations. Following the
recipe of ESPnet (Inaguma et al., 2020), we low-
ercase all texts, and remove all punctuation marks
except apostrophes. We select (and tune) the model
on the Fisher-dev set, and report the results on the
Fisher-{dev, dev2, test} and Callhome-{devtest,
evltest} sets.

Following the preprocessing recipes in the
fairseq toolkit3, we remove utterances with more
than 3,000 frames or less than 5 frames. We extract
the 80-channel Mel filter bank features by a win-
dow size of 25ms with a stride of 10ms. The text is
tokenized using the scripts of Moses (Koehn et al.,
2007) except that the Japanese text uses MeCab4.
We learn SentencePiece5 segmentation with a size
of 10,000 for MuST-C datasets. We use a shared
vocabulary for the source and target languages for
MuST-C v1 corpora, the independent vocabulary
for the En-Ja corpus. And we use a shared vocab-
ulary with a size of 1, 000 for Fisher-Callhome
datasets.

A.2 Model Settings

We implement our method based on the fairseq
toolkit (Ott et al., 2019). We use the Adam opti-
mizer with β1 = 0.9, β2 = 0.98, and adopt the
default learning schedule in fairseq. We apply
dropout with a rate of 0.15 and label smoothing
of 0.1 for regularization.

Following previous studies on NAR models, our
model is trained by sequence-level knowledge dis-
tillation (Seq-KD) (Kim and Rush, 2016) data gen-
erated by a small MT model with a beam size of 5.
Our NAST model consists of an acoustic encoder
with 12 Conformer layers and a textual encoder
with 12 Transformer layers. Each layer comprises
512 hidden units, 8 attention heads, and 2048 feed-
forward sizes. We use PAE in layers 6 and 9 in
both the acoustic encoder and the textual encoder.
In multitask learning, the weights of αA, αT , βA
and βT are all set to 1. We start the cross-layer
attention from layer 4 in the textual encoder and
take the representation output from layer 3 as the
key and value. The ratio for curriculum learning
mixing is set to 0.8.

We extend our method to the encoder-decoder
model with similar settings, where the textual en-
coder has 6 Transformer layers and the decoder
has 6 layers. In this way, we control the model
parameters to about 150M for fair comparisons.
The weights of αA and αT are set to 0.2, and the
weights of βA and βT are to 0.1. We use PAE in
layer 4 in the textual encoder. We start the cross-
layer attention from layer 3 and take the represen-
tation output from layer 2 as the key and value.

3https://github.com/pytorch/fairseq
4https://github.com/taku910/mecab
5https://github.com/google/sentencepiece
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En-xx Raw Seq-KD

De 7.23 5.10
Es 4.42 2.72
Fr 5.51 2.80
It 5.79 2.94
Nl 6.18 4.16
Pt 5.56 3.26
Ro 5.22 2.95
Ru 6.99 2.94
Ja 14.01 15.21

Table 5: Reordering difficulty of MuST-C datasets.

During inference, we average the model parame-
ters on the best 10 checkpoints based on the perfor-
mance of the development set. We use beam search
with a beam size of 5 for the AR model. The de-
coding speed is measured on the test set with a
batch size of 1 on an Nvidia A100 80GB GPU. We
run 5 times to calculate the average time. We re-
port case-sensitive SacreBLEU (Post, 2018) on the
MuST-C datasets and case-insensitive SacreBLEU
on the Fisher-Callhome dataset for standardization
comparison across papers.

B More Analysis

B.1 Reordering Difficulty

Following the metric in Chuang et al. (2021), we
measure the reordering difficulties Rπ on 9 lan-
guage pairs of MuST-C datasets in Table 5. The
higher the value of Rπ, the higher the reordering
difficulty between texts from two languages, indi-
cating the high demand for improved reordering
capability. The Seq-KD technique reduces the re-
ordering difficulty by simplifying the data distri-
bution, except for En-Ja. The reason is that noisy
data leads to poor MT performance on the En-Ja
dataset. On this distant language pair, our CTC-
NAST model still achieves a high BLEU score of
16.2, which is comparable to the AR model with a
small gap of only 0.2 BLEU points.

B.2 Results on Out-of-domain Data

We also measure the BLEU scores of AR and NAR
models under different output lengths on the Call-
home sets in Figure 4. Note that Callhome sets are
out-of-domain because we only use the Fisher set
for training. Here, BLEU scores of the NAR model
are better than those of the AR model in most cases
of output length. In particular, when the output
length is greater than 50, the performance of the
AR model drops sharply, while the performance of
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Figure 4: BLEU scores over various output lengths of
Callhome sets.

Model
En-De En-Ja

dev test dev test

Base 23.7 24.3 10.5 13.7
+ PAE 24.8 25.7 12.4 14.9

+ CLA 25.1 25.8 12.1 15.3
+ drop 0.1 25.4 26.2 12.7 15.3
+ drop 0.2 25.2 25.5 12.3 15.6

Table 6: Ablation study of the CLA module.

Model En-De En-Ja

0.5 0.8 0.5 0.8

Base 24.3 24.3 13.7 13.7
+ PAE 25.7 25.7 14.9 14.9

+ Mixing 26.7 26.6 15.6 15.7
+ Adaptive 26.2 26.3 15.2 15.4
+ Only error 26.7 27.1 15.8 15.9
+ Smooth 26.7 26.6 15.8 15.6
+ Only error + Smooth 26.8 27.4 16.0 16.1

Table 7: Ablation study of the CLM method under dif-
ferent mixing ratios and strategies.

the NAR model keeps stable. This demonstrates
that our CTC-NAST has better robustness.

B.3 Ablation Studies

To further verify the effectiveness of our proposed
methods, we construct a series of ablation studies
on MuST-C En-De and En-Ja datasets.
Effects of CLA Table 6 shows the results of the
CLA module. CLA improves the reordering capa-
bility and complements the self-attention module.
However, using the CLA module naively brings
only modest improvements. We randomly drop
the self-attention module with a probability of 0.1,
which provides better regularization and robust
improvements. Note that the high drop probabil-
ity may lead to insufficient training of the self-
attention module. These results demonstrate the
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Figure 5: BLEU scores of base mixing and our CLM
method.

effectiveness of the CLA module and drop-net tech-
nique.
Effects of CLM As shown in Table 7, the straight-
forward mixed training has produces remarkable
gains with a ratio of 0.5 or 0.8 on both En-De and
En-Ja datasets. The adaptive strategy in NAR MT
does not work in CTC-NAST. This is because the
sequence length of the input acoustic feature is very
lengthy, and the decreased mixing ratio cannot pro-
vide enough cues to facilitate training. For stable
training, we only replace positions where wrong
predictions arise. In this manner, accurate posi-
tions solely rely on self-prediction, guaranteeing
consistency between training and decoding. Fur-
thermore, we generate a smooth distribution akin
to CTC prediction, in which the ground truth token
has a high probability of 0.9, and the probabili-
ties of other tokens sum to 0.1. The combination
of these two approaches results in additional and
stable improvements.

We also calculate BLEU scores with various
mixing ratios in Figure 5. Our CLM approach
is superior to the naive mixing method, particularly
at a high ratio. In this case, our approach incorpo-
rates more revisions solely for incorrect predictions,
which facilitates the training process and guaran-
tees consistency.


