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ABSTRACT
In the field of quantitative trading, it is common practice to trans-

form raw historical stock data into indicative signals for the market

trend. Such signals are called alpha factors. Alphas in formula forms

are more interpretable and thus favored by practitioners concerned

with risk. In practice, a set of formulaic alphas is often used together

for better modeling precision, so we need to find synergistic formu-

laic alpha sets that work well together. However, most traditional

alpha generators mine alphas one by one separately, overlooking

the fact that the alphas would be combined later. In this paper, we

propose a new alpha-mining framework that prioritizes mining a

synergistic set of alphas, i.e., it directly uses the performance of the

downstream combination model to optimize the alpha generator.

Our framework also leverages the strong exploratory capabilities of

reinforcement learning (RL) to better explore the vast search space

of formulaic alphas. The contribution to the combination models’

performance is assigned to be the return used in the RL process,

driving the alpha generator to find better alphas that improve upon

the current set. Experimental evaluations on real-world stock mar-

ket data demonstrate both the effectiveness and the efficiency of our

framework for stock trend forecasting. The investment simulation

results show that our framework is able to achieve higher returns

compared to previous approaches.

CCS CONCEPTS
•Computingmethodologies→Reinforcement learning; Search
methodologies; • Applied computing→ Economics.
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1 INTRODUCTION
Currently, it is almost a standard paradigm to transform raw histori-

cal stock data into indicative signals for the market trend in the field

of quantitative trading [14]. These signal patterns are called alpha
factors, or alphas in short [19]. Discovering alphas with high returns
has been a trendy topic among investors and researchers due to the

close relatedness between alphas and investment revenues.

The prevailing methods of discovering alphas can be in gen-

eral divided into two groups, namely machine learning-based and

formulaic alphas. Most recent research has focused on the former

ones. These more sophisticated alphas are often obtained via deep

learning models, e.g., using sequential models like LSTM [5], or

more complex ones integrating non-standard data like HIST [23]

and REST [24], etc. On the other end of the spectrum, we have

the alphas that can be represented in simple formula forms. Such

formulaic alphas are traditionally constructed by human experts

using their domain knowledge and experience, often expressing

clear economic principles. To name some, [7] demonstrates 101

alpha factors tested on the US stock market. Recently, research has

also been conducted on frameworks that generate such formulaic

alphas automatically [3, 9, 10, 27]. These approaches are able to

find loads of new alphas rapidly without human supervision, while

still maintaining relatively high interpretability compared to the

more sophisticated machine learning-alphas.

Despite the existing approaches achieving remarkable success,

however, they still have disadvantages in different aspects. Machine

learning-based alpha factors are inherently complex and sometimes

require more complex data other than the price/volume features.
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In addition, although they are often more expressive, they often

suffer from relatively low explainability and interpretability. As

a result, when the performance of these “black box” models un-

expectedly deteriorates, it is hard for human experts to tune the

models accordingly. These algorithms are thus not favored under

some circumstances due to concerns about risks. On the other hand,

while formulaic alphas are more interpretable, previous research

on this matter often focused on finding a single alpha factor that

predicts well on its own. Nonetheless, it is often impossible to

describe a complex and chaotic system such as the stock market

with simple rules that human researchers can comprehend. As a

compromise, a set of these alphas are oftentimes used together in

practice, instead of using them individually. However, when mul-

tiple of these independently mined formula alphas are combined,

the final prediction performance may not improve much because

not much consideration is put into the synergistic effect between

factors (see Section 4.2.2 for detail). In addition, these alphas are

often simple in their forms, and their underlying mechanisms are

often quite understandable. Once they are released to the public

and become well-known among practitioners, their performance

may deteriorate rapidly [7].

Therefore, the question we are facing is: Are we able to find a
way to automatically discover interpretable alpha factors, which work
well with downstream predictive models, without suffering possible
performance deterioration due to the alpha factors being widely known
to the general public?

To solve the above challenge, we formulate a new research prob-

lem in this paper, which is to find synergistic formulaic alpha factor
sets. Using raw stock price/volume data as the input, we aim to

search for a set of formulaic alpha factors instead of individual

ones. Recall that finding a single well-performing alpha on given

data is already a hard problem to resolve since the search space of

valid formulas is vast and hard to navigate. The search space for

alpha mining is often even larger than that of a typical symbolic

regression problem [13].

The most intuitive approach to this problem would be using

genetic programming (GP), performing mutations on expression

trees to generate new alphas. In fact, most previous work on this

matter is based on genetic programming (GP) [3, 9, 10, 27], which

is of course not a serendipitous choice since GP methods generally

excel at such problems with large search spaces. However, GP algo-

rithms often scale poorly due to the complexity of maintaining and

mutating a huge population [13]. In addition, the main challenge

remains that mining a set of synergistic alphas all at once is an

even harder problem with a much larger search space, the scale of

which makes most existing frameworks infeasible to solve.

Hence, previous works mostly tried to find ways to simplify the

problem of alpha set mining, by mining alphas one by one and

filtering out a subset of them with respect to some similarity metric.

The mutual information coefficient (IC) between the pairs of alpha

in the set is often employed as the similarity “metric” [3, 10, 27].

However, as we will demonstrate below, adding a new alpha that is

of high IC to the ones in an existing pool of alpha may still bring a

non-negligible boost of performance to the combined result, and

vice versa. This phenomenon still exists even when the combination

model is set to be a simple linear regressor. Therefore, the traditional

approach to determining whether a set of alpha could be synergistic

does not line up with the expected outcome.

To tackle the challenge that GP methods could be inefficient at

exploring the vast search space of formulaic alphas, our framework

utilizes reinforcement learning (RL) for achieving better results

in exploration. Combined with the strong expressiveness of deep

neural networks, RL with its excellent exploratory ability plays

a predominant role in numerous areas. To list a few examples,

game playing [16], natural language processing [11], symbolic op-

timization [13], and portfolio management [22]. We implement

a sequence generator with constraints to ensure valid formulaic

alpha generation and employ a policy gradient-based algorithm

to train the generator in the absence of a direct gradient. Since

traditional mutual-IC filtering methods do not align well with the

target of optimizing the combination model’s performance, we pro-

pose to use directly the performance as the optimization objective

of our alpha generator. Under this new optimization scheme, our

generator is able to produce a synergistic set of alpha which fits the

mine-and-combine procedure in a more suitable way. To evaluate

our alpha-mining framework, we conduct extensive experiments

over real-world stock data. Our experiment results demonstrate

that the formulaic alpha sets generated by our framework perform

better than those generated with previous approaches, shown both

on the prediction metrics and investment simulations.

Our contributions can be summarized as follows.

• We propose a new optimization scheme that produces a set

of alpha that suits downstream tasks better, regardless of

what actual form the combination model takes.

• We introduce a new framework for searching formulaic alpha

factors based on policy gradient algorithms, to utilize the

strong exploratory power of reinforcement learning.

• We present a series of experimental results demonstrating

the effectiveness of our proposed framework. Additional

experiments and case studies are also conducted to demon-

strate why mutual IC-based filtering techniques that are

previously commonly used may not work as expected when

considering the combined performance of an alpha set.

2 PROBLEM FORMULATION
2.1 Alpha Factor
We consider a stock market with 𝑛 stocks in a period of 𝑇 trading

days in total. On each trading day 𝑡 ∈ {1, 2, · · · ,𝑇 }, each stock 𝑖

corresponds to a feature vector 𝑥𝑡𝑖 ∈ R𝑚𝜏
, comprised of 𝑚 raw

features such as opening/closing price in the recent 𝜏 days1. Finally,

we define an alpha factor 𝑓 as a function mapping feature vectors

of all stocks on a trading day 𝑋 ∈ R𝑛×𝑚𝜏
into alpha values 𝑧 =

𝑓 (𝑋 ) ∈ R𝑛 . We will use the word “alpha” for both an alpha factor

and its corresponding values in the following sections.

2.2 Alpha Factor Mining
To measure the effectiveness of an alpha, we calculate the informa-

tion coefficient (IC) between the true stock trend it aims to predict

1
This “unrolling” of historical data introduces redundancy. Namely, feature vectors of

a stock on consecutive trading days have overlapping sections. This notation is chosen

for the convenience of demonstration.
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Figure 1: (A) An example of a formulaic alpha. (B) Its equiv-
alent expression tree. (C) Its reverse Polish notation (RPN).
Note that BEG and SEP are sequence indicators later men-
tioned in our framework. (D). Step-by-step computation of
this alpha on an example time series.

𝑦𝑡 ∈ R𝑛 and the factor values 𝑓 (𝑋𝑡 ). We denote the daily IC func-

tion as 𝜎 : R𝑛 × R𝑛 → [−1, 1], which is defined as the Pearson’s

correlation coefficient:

𝜎 (𝑢𝑡 , 𝑣𝑡 ) =
∑𝑛
𝑖=1
(𝑢𝑡𝑖 − 𝑢𝑡 ) (𝑣𝑡𝑖 − 𝑣𝑡 )√︃∑𝑛

𝑖=1
(𝑢𝑡𝑖 − 𝑢𝑡 )2

∑𝑛
𝑖=1
(𝑣𝑡𝑖 − 𝑣𝑡 )2

. (1)

Such value can be calculated on every trading day between an

alpha and the prediction target. For convenience, we denote the IC

values between two sets of vectors averaged over all trading days

as 𝜎 (𝑢, 𝑣) = E𝑡 [𝜎 (𝑢𝑡 , 𝑣𝑡 )].
We use the average IC between an alpha and the return to mea-

sure the effectiveness of an alpha factor on a stock trend series

𝑦 = {𝑦1, 𝑦2, · · · , 𝑦𝑇 }:

𝜎𝑦 (𝑓 ) = 𝜎 (𝑓 (𝑋 ), 𝑦). (2)

As mentioned above, the output of a combination model can

be seen as a “mega-alpha”, mapping raw inputs into alpha values.

Therefore, we denote the combination model as 𝑐 (𝑋 ;F , 𝜃 ), where
F = {𝑓1, 𝑓2, · · · , 𝑓𝑘 } is a set of alphas to combine, and 𝜃 denotes the

parameters of the combination model. We would like the combina-

tion model to be optimal w.r.t. a given alpha set F on the training

dataset 𝑦, that is:

𝑐∗ (𝑋 ;F ) = 𝑐 (𝑋 ;F , 𝜃∗), where

𝜃∗ = argmax

𝜃

𝜎𝑦 (𝑐 (·;F , 𝜃 )) . (3)

Conclusively, the task of mining a set of alphas can be defined

as the optimization problem argmaxF 𝑐
∗ (·;F ).

2.3 Formulaic Alpha
Formulaic alphas are expressed as mathematical expressions, con-

sisting of various operators and the raw input features mentioned

before. Some examples of the operators are the elementary func-

tions (like “+” and “log”) operated on one-day data, called cross-

section operators, and operators that require data from a series

of days, called time-series operators (e.g. “Min(close, 5)” gives the

lowest closing price of a stock in the recent 5 days). A list of all the

operators used in our framework is given in Appendix A.

Such formulas can be naturally represented by an expression tree,

with each non-leaf node representing an operator, and children of

a node representing the operands. To generate such an expression,

our model represents the expression tree by its postorder traverse,

with the children’s order also defined by the traversing order. In

other words, the model represents a formula as its reverse Polish

notation (RPN). It is easy to see that such notation is unambiguous

since the arities of the operators are all known constants. See Figure

1 for an example of a formulaic alpha expression together with its

corresponding tree and RPN representations.

3 METHODOLOGY
As illustrated in Figure 2, our alpha-mining framework consists

of two main components: 1) the Alpha Combination Model, which
combines multiple formulaic alphas to achieve optimal performance

in prediction, and 2) the RL-based Alpha Generator, which generates

formulaic alphas in the form of a token sequence. The performance

of the Alpha Combination Model is used as the reward signal to

train the RL policy in the Alpha Generator using policy gradient-

based algorithms, such as PPO [17]. Repeating this process, the

generator is continuously trained to generate alphas that boost

the combination model, thereby enhancing the overall predictive

power.

3.1 Alpha Combination Model
Considering the interpretability of the combined “mega-alpha”, the

combination model itself should also be interpretable. In this paper,

we use a linear model to combine the alphas.

The values evaluated from different alphas have drastically dif-

ferent scales, which might cause problems in the following opti-

mization steps. To counter this effect, we centralize and normalize

the alpha values with their average and standard deviation. Since

Pearson’s correlation coefficient is invariant up to linear transfor-

mation, this transformation does not affect the performance of the

alphas when they are considered separately. Formally, we introduce

a normalization operator N , that transforms a vector such that its

elements have a mean of 0, and the vector has a length of 1:

[N (𝑢)]𝑖 =
𝑢𝑖 − 𝑢√︃∑𝑛

𝑗=1

(
𝑢 𝑗 − 𝑢

)
2

. (4)

We will omit explicitly writing theN operator for simplicity. For

the rest of this paper, we will assume that all the 𝑓 (𝑋 ) evaluations
and the targets𝑦 are normalized to have a mean of 0 and a length of

1 before subsequent computations. In other words, treat 𝑓 asN ◦ 𝑓
and 𝑦 as N(𝑦).

Given a set of 𝑘 alpha factors F = {𝑓1, 𝑓2, · · · , 𝑓𝑘 } and their

weights 𝑤 = (𝑤1,𝑤2, · · · ,𝑤𝑘 ) ∈ R𝑘 , the combination model 𝑐 is

defined as follows:

𝑐 (𝑋 ;F ,𝑤) =
𝑘∑︁
𝑗=1

𝑤 𝑗 𝑓𝑗 (𝑋 ) = 𝑧. (5)
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Figure 2: An overview of our alpha-mining framework. (A) An alpha generator that generates expressions, optimized via a
policy gradient algorithm. (B) A combination model that maintains a weighted combination of principal factors and, in the
meantime, provides evaluative signals to guide the generator.

We define the loss of the combination model as the mean squared

error (MSE) between model outputs and true stock trend values:

L(𝑤) = 1

𝑛𝑇

𝑇∑︁
𝑡=1

∥𝑧𝑡 − 𝑦𝑡 ∥2 . (6)

To simplify the calculation of alpha combination, we have:

Theorem 3.1. Let F be a set of 𝑘 alphas and𝑤 be their respective
weights, the MSE loss L(𝑤) can be represented as:

L(𝑤) = 1

𝑛

©«1 − 2

𝑘∑︁
𝑖=1

𝑤𝑖𝜎𝑦 (𝑓𝑖 ) +
𝑘∑︁
𝑖=1

𝑘∑︁
𝑗=1

𝑤𝑖𝑤 𝑗𝜎 (𝑓𝑖 (𝑋 ), 𝑓𝑗 (𝑋 ))ª®¬ .
(7)

The proof of this theorem is provided in Appendix B. Notice

that there is no 𝑧𝑡 term on the RHS of Equation 7. Once we have

obtained 𝜎𝑦 (𝑓 ) for each alpha 𝑓 and their pairwise mutual correla-

tions 𝜎 (𝑓𝑖 (𝑋 ), 𝑓𝑗 (𝑋 )), we can then calculate the loss L(𝑤) solely
using these terms, saving time on calculating the relatively large 𝑧𝑡
in each gradient descent step.

Considering time and space complexity, it is impractical to com-

bine all generated alphas together, because to calculate mutual

correlation for each pair of factors we need O(𝑘2) evaluations of
mutual IC. The quadratic growth of this makes it expensive to apply

the current procedure to a large number of alphas. However, a few

dozen of alphas will suffice for practical uses. To a certain point,

more alphas would not bring much more increment in performance,

following the law of diminishing returns. We will demonstrate this

effect in Section 4.2.2.

After the alpha generator outputs a new alpha, the alpha is first

added to the candidate alpha set and assigned a random initial

weight. Gradient descent is then performed to optimize the weights

with respect to the extended alpha set. We also set a threshold to

Algorithm 1: Incremental Combination Model Optimiza-

tion

Input: Alpha set F = {𝑓1, · · · , 𝑓𝑘 }, weights
𝑤 = {𝑤1, · · · ,𝑤𝑘 } and a new alpha 𝑓new

Output: Optimal alpha subset F ∗ =
{
𝑓 ′
1
, · · · , 𝑓 ′

𝑘

}
, optimal

weights𝑤∗ =
(
𝑤 ′

1
, · · · ,𝑤 ′

𝑘

)
1 F ← F ∪ {𝑓new} ,𝑤 ← 𝑤 ∥rand();
2 foreach 𝑓 ∈ F do
3 Obtain 𝜎𝑦 (𝑓 ) from calculation or cache;

4 foreach 𝑓 ′ ∈ F do
5 Obtain 𝜎 (𝑓 (𝑋 ), 𝑓 ′ (𝑋 )) from calculation or cache;

6 for 𝑖 ← 1 to 𝑛𝑢𝑚_𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡_𝑠𝑡𝑒𝑝𝑠 do
7 Calculate L(𝑤) according to Equation 7;

𝑤 ← GradientDescent(L(𝑤));
8 𝑝 ← argmin𝑖 |𝑤𝑖 |;
9 F ← F\

{
𝑓𝑝
}
,𝑤 ←

(
𝑤1, · · · ,𝑤𝑝−1,𝑤𝑝+1, · · · ,𝑤𝑘

)
;

10 return F ,𝑤 ;

limit the size of the alpha set, leaving only the principal alphas

with the largest absolute weight. If the amount of alphas in the

extended set exceeds a certain threshold, the least principal alpha is

removed from the set together with its corresponding weight. The

pseudocode of the training procedure is shown in Algorithm 1.

3.2 Alpha Generator
The alpha generator models a distribution of mathematical expres-

sions. As each expression can be represented as a symbolic expres-

sion tree, we use the reverse Polish notation (RPN) to represent it as

a linear sequence, since traditional auto-regressive generators can
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Table 1: Tokens used in our framework.

Category Examples

Operators CS-Log, CS-Add, TS-Mean, , . . .
Features $open, $volume, . . .
Constants −30,−10,−5,−2,−1,−0.5,−0.01, 0.01, 0.5, 1, 2, 5, 10, 30

Time Deltas 10𝑑, 20𝑑, 30𝑑, 40𝑑, 50𝑑

Sequence Indicator BEG(begin), SEP(end of expression)

only deal with sequences. To control and evaluate the generation

process of valid expressions, we model the generation process as a

non-stationary Markov Decision Process (MDP). We will describe

the various components of the MDP below in the following para-

graphs. An overview of the MDP-based Alpha generator is shown

in Figure 3.

3.2.1 Tokens. The token is an important abstraction in our frame-

work. A token can be any of the operators, the features, or constant

values. Table 1 shows some examples of such tokens. For the full

list of operators, please refer to Section A; for the full list of features

we have chosen, please refer to Section 4.1.1.

Figure 3: An illustration of our alpha generation framework.

3.2.2 State Space. Each state in theMDP corresponds to a sequence

of tokens denoting the currently generated part of the expression.

The initial state is always BEG, so a valid state always starts with

BEG and is followed by previously chosen tokens. Since we aim for

interpretability of the alphas, and too long of a formula will instead

be less interpretable, we cap the length threshold of the formulas

at 20 tokens.

3.2.3 Action Space. An action is a token that follows the current

state (generated partial sequence). It is obvious that an arbitrarily

generated sequence is not guaranteed to be the RPN of an expres-

sion, so we only allow a subset of actions to be taken at a specific

state to guarantee the well-formedness of the RPN sequence. Please

refer to Appendix C for more details.

3.2.4 Dynamics. Given a state and an action, we can obtain the

next state deterministically. The next state is generated by tak-

ing the current state’s corresponding sequence and appending the

action token at the end.

3.2.5 Rewards and Returns. The MDP does not give immediate

rewards for partially formed sequences. At the end of each episode,

if the final state is valid, the state will be parsed to a formulaic func-

tion and evaluated in the combination model shown in Algorithm 1.

To encourage our generator to generate novel alphas, we will then

evaluate the new combination model with the new alpha added,

and use the model’s performance as the return of this episode. Since

the reward varies together with the components of the alpha pool,

the MDP is non-stationary.

Contrary to common RL task settings, for alpha expression gen-

eration we do not necessarily want to penalize longer episodes

(longer expressions). In fact, longer alphas that perform well are

harder to find than shorter ones, due to exponential explosion of

the search space. Consequently, we set the discount factor as 𝛾 = 1

(no discount).

Algorithm 2: Alpha Mining Pipeline

Input: Stock trend dataset 𝑌 = {𝑦𝑡 }
Output: Optimal alpha subset 𝐹 ∗ =

{
𝑓 ′
1
, · · · , 𝑓 ′

𝑘

}
, optimal

weights𝑤∗ =
{
𝑤 ′

1
, · · · ,𝑤 ′

𝑘

}
1 Initialize F and𝑤 ;

2 Initialize RL policy 𝜋𝜃 with parameters 𝜃 and replay buffer

D;

3 for each iteration do
4 for each environment step do
5 𝑎𝑡 ∼ 𝜋𝜃 (𝑎𝑡 |𝑠𝑡 );
6 𝑠𝑡+1 ← [𝑠𝑡 , 𝑎𝑡 ];
7 if 𝑎𝑡 = SEP 𝑜𝑟 𝑙𝑒𝑛(𝑠𝑡+1) ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then
8 𝑓 ← 𝑝𝑎𝑟𝑠𝑒 (𝑠𝑡+1);
9 Update F ,𝑤 using 𝑓 and Algorithm 1;

10 𝐼𝐶𝑛𝑒𝑤 ← 𝜎𝑦 (
∑𝑘
𝑖=1

𝑤𝑖 𝑓𝑖 );
11 𝑟𝑡 ← 𝐼𝐶𝑛𝑒𝑤 ;

12 else
13 𝑟𝑡 ← 0;

14 D ← D ∪ {(𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1)};
15 for each gradient step do
16 Use batch B ⊂ D to do gradient descent on PPO

objective L𝐶𝐿𝐼𝑃 (𝜃 ) to update 𝜃 ;

17 return F ,𝑤 ;

3.2.6 Reinforcement Algorithm. Based on the MDP defined above,

we use Proximal Policy Optimization (PPO) [17] to optimize a pol-

icy 𝜋𝜃 (𝑎𝑡 |𝑠𝑡 ) that takes a state as input and outputs a distribution
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of action. An actual action will be sampled from the output distri-

bution.

PPO is an on-policy RL algorithm based on the trust region

method. It proposed a clipped objective L𝐶𝐿𝐼𝑃 as follows:

L𝐶𝐿𝐼𝑃 (𝜃 ) = ˆE𝑡
[
min

{
𝑟𝑡 (𝜃 )𝐴𝑡 , clip (𝑟𝑡 (𝜃 ), 1 − 𝜖, 1 + 𝜖)𝐴𝑡

}]
, (8)

where 𝑟𝑡 (𝜃 ) = 𝜋𝜃 (𝑎𝑡 |𝑠𝑡 )
𝜋𝑜𝑙𝑑 (𝑎𝑡 |𝑠𝑡 ) and 𝐴𝑡 is an estimator of the advantage

function at timestep 𝑡 . Using the importance sampling mechanism,

PPO can effectively take the biggest possible improvement while

keeping the policy in a trust region that avoids accidental perfor-

mance collapse.

Since our MDP has complicated rules for the legality of actions,

an action sampled from the full discrete action distribution pre-

dicted by the learned policy is likely to be invalid as mentioned in

Section 3.2.3. We adopt the Invalid Action Masking mechanism [6]

to mask out invalid actions and just sample from the set of valid

actions.

3.3 Network Architecture
The PPO algorithm requires the agent to have a value network and

a policy network. Under our experiment settings, the two networks

share a base LSTM feature extractor that converts token sequences

into dense vector representations. Separate value and policy “heads”

are attached after the LSTM. The values of hyperparameters are

given in Appendix D.

3.4 Training with policy gradient-based
methods

For the task of alpha mining, we do not require the agent to achieve

relatively high average returns in each episode, but place more

importance on the trajectories the agent takes in the whole train-

ing process. For this reason, we maintain a pool of alphas without

resetting between episodes. We run the alpha generation proce-

dure mentioned in Section 3.2 and optimize the alpha combination

model according to Section 3.1 repeatedly. In this way, we train

the policy to continuously generate novel alpha factors that bring

improvement to the overall prediction performance.

The proposed alpha mining process is shown in Algorithm 2.

Our implementation is publicly available
2
.

4 EXPERIMENTS
Our experiments are designed to investigate the following ques-

tions:

• Q1: How does our proposed framework compare to prior

alpha mining methods?

• Q2: How well does our model scale as the alpha set size

increases?

• Q3: Compared to the more commonly used mutual correla-

tion, why is combination model IC a better metric?

• Q4: How does our framework perform under more realistic

trading settings?

2
https://github.com/RL-MLDM/alphagen/

4.1 Experiment Settings
4.1.1 Data. Our experiments are conducted on raw data from the

Chinese A-shares market
3
. We select 6 raw features as the inputs to

our alphas: {open, close, high, low, volume, vwap (volume-weighted

average price)}. The target is set to be the 20-day return of the

stocks, selling/buying at the closing price (Ref(close,−20)/close −
1). The dataset is split by date into a training set (2009/01/01 to

2018/12/31), a validation set (2019/01/01 to 2019/12/31), and a test

set (2020/01/01 to 2021/12/31). In the following experiments, we

will use the constituent stocks of the CSI300 and the CSI500 indices

of China A-shares as the stock set.

4.1.2 Compared Methods. To evaluate how well our framework

performs against traditional formulaic alpha generation approaches,

we implemented two methods that are designed to generate one

alpha at a time. GP is a genetic programming model using the

alpha’s IC as the fitness measure to generate expression trees. This

model is implemented upon the gplearn
4
framework. PPO is a rein-

forcement learning method, based on the same PPO [17] algorithm

and expression generator, and uses the single alpha’s IC as the

episode return instead of the combined performance used in our

full framework.

Since only using the top-most alpha to evaluate the frameworks

are extremely prone to overfitting on the training data, we also

constructed alpha sets with the ones generated by the two single

alpha generators. The same combination model is then applied

to these alpha sets. Note that the generators still emit alphas in a

one-by-one manner, and are agnostic to the combination model’s

performance. The first method to construct the set (top) is to simply

select the top-𝑘 alphas emitted by the generator with the highest

IC on the training set. The second method (filter) is to select the

top-𝑘 performing alphas with a constraint that any pair of alpha

from the set must not have a mutual IC higher than 0.7.

To better evaluate the model performance, we also compared

our approach to several end-to-end machine learning models imple-

mented in the open-source library Qlib [25]. The models receive 60

days’ worth of raw features as the input, and are trained to predict

the 20-day returns directly. Note that these models do not generate

formulaic alphas. The hyperparameters of these models are set

according to the benchmarks given by Qlib.

• XGBoost [2] is an efficient implementation of gradient boost-

ing algorithms, which ensembles decision trees to predict

stock trends directly.

• LightGBM [8] is another popular implementation of gradi-

ent boosting.

• MLP: A multilayer perceptron (MLP) is a type of fully-con-

nected feedforward artificial neural network.

To demonstrate the effect caused by stochasticity in the training

process, each experimental combination with an indeterministic

training process is evaluated with 10 different random seeds.

4.1.3 Evaluation Metrics. We choose two metrics to measure the

performance of our models as follows.

3
The stock price/volume data is retrieved from https://www.baostock.com. Regard-

ing dividend adjustment, the price/volume data are all forward-dividend-adjusted

respected to the adjustment factors on 2023/01/15.

4
https://github.com/trevorstephens/gplearn

https://github.com/RL-MLDM/alphagen/
https://www.baostock.com
https://github.com/trevorstephens/gplearn
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Table 2: Main results on CSI 300 and CSI 500. Values outside
parentheses are the means, and values inside parentheses
are the standard deviations across 10 runs.

Method CSI 300 CSI 500

IC(↑) Rank IC(↑) IC(↑) Rank IC(↑)

MLP

0.0250 0.0401 0.0188 0.0458

(0.0068) (0.0081) (0.0018) (0.0045)
XGBoost 0.0404 0.0576 0.0353 0.0639

LightGBM 0.0259 0.0324 0.0332 0.0609

PPO_top* −0.0166 −0.0144 0.0025 0.0295

(0.0028) (0.0075) (0.0076) (0.0135)

GP_top* 0.0078 0.0157 0.0200 0.0504

(0.0218) (0.0271) (0.0112) (0.0160)

PPO_filter* −0.0044 0.0101 0.0042 0.0506

(0.0107) (0.0107) (0.0042) (0.0052)

GP_filter* 0.0183 0.0298 0.0117 0.0562

(0.0190) (0.0227) (0.0083) (0.0105)

Ours* 0.0725 0.0806 0.0438 0.0727
(0.0105) (0.0106) (0.0064) (0.0112)

*Optimal combination size in {10, 20, 50, 100}

• IC, the Pearson’s correlation coefficient shown in Eq. 1.

• Rank IC, the rank information coefficient. The rank IC tells

how much the ranks of our alpha values are correlated with

the ranks of future returns. Rank IC is defined by replacing

Pearson’s correlation coefficient with Spearman’s correlation

coefficient. The rank IC is just the IC of ranked data, defined

as follows:

𝜎rank (𝑢, 𝑣) = 𝜎 (𝑟 (𝑢), 𝑟 (𝑣)), (9)

where 𝑟 (·) is the ranking operator. The ranks of repeated

values are assigned as the average ranks that they would

have been assigned to
5
.

Both of the metrics are the higher the better.

4.2 Main Results
4.2.1 Comparison across all alpha generators. To answer Q1, we
first compare our framework against several other alpha-mining

methods and direct stock trend forecasting baselines, including PPO,

GP, MLP, LightGBM, and XGBoost. Experiments are conducted on

CSI300 and CSI500 stocks respectively.

The results are shown in Table 2. Our framework is able to

achieve the highest IC and rank IC across all the methods we com-

pare to. Note that the framework is only explicitly optimized against

the IC metric. The non-formulaic alpha models come in the second

tier. The baseline formulaic alpha generators perform poorly on the

test set, especially the RL-based ones. The reinforcement learning

agent, when optimized only against single-alpha IC, is prone to

falling into local optima and thus overfitting on the training set,

and basically stops searching for new alphas after a certain amount

of steps. On the other hand, the GP-based methods maintaining

a large population can avoid the same problem, but still cannot

produce alphas that are synergistic when used together. The results

5
For example, 𝑟 ( (3, −2, 6, 4) ) = (2, 1, 4, 3) , while 𝑟 ( (3, −2, 4, 4) ) = (2, 1, 3.5, 3.5) .

Figure 4: The results of ablation study. A pool size of 1 refers
to settings that only evaluate the top-most alpha without
using a combination model.

also show that the filtering techniques cannot solve the synergy

problem consistently either.

4.2.2 Comparison of formulaic generators with varying pool ca-
pacity. To answer Q2, we study the four baseline formulaic al-

pha generators more extensively, and compare them to our pro-

posed framework. The models are evaluated under pool sizes of

𝑘 ∈ {1, 10, 20, 50, 100}. The results are shown in Figure 4.

Compared to the baselinemethod PPO_filter, ourmethod directly

uses the combination model’s performance as the reward to newly

generated alphas. This leads to a substantial improvement when

the pool size increases, meaning that our method can produce

alpha sets with great synergy. Our method shows scalability for

pool size: even when the pool size is large enough, it can still

continuously find synergistic alphas that boost the performance

over the existing pool. Conversely, the combined performance of

the alphas generated by other approaches barely improves upon

the case with just the top alpha, meaning that these alpha factors

have poor synergy. Furthermore, the ability to control the reward

of individual expressions under a certain alpha pool configuration

is granted by the flexibility of the RL scheme. The GP scheme of

maintaining a large population at the same time does not work well

with fine-grained fitness value control.

Also, we can see that for the CSI500 dataset, GP_filter performs

worse than GP_top on the IC metric when the pool size increases.

This phenomenon demonstrates that the traditionally used mutual-

IC filtering is not always effective, answering the question Q3.

4.3 Case Study
Table 3 shows an example combination of 10 alphas generated by

our framework, evaluated on the CSI300 constituent stock set. Most

of the alpha pairs in this specific set have mutual IC values over

0.7. Previous work [10][27] considered this to be too high for the

individual alphas to be regarded as “diverse”, yet these alphas are
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Table 3: An example combination of 10 alphas.

# Alpha Weight IC (CSI300)

1 Var(Greater(Greater(Var(low, 50), high), open), 30) −0.0295 0.0011

2 Max((Min(Max(close, 20) − 30, 20) + 100)/30, 20) 0.0515 0.0262

3 (Mad(high, 50) + 0.5)vwap/close 0.0343 0.0447

4 Ref (low, 50) 0.0260 0.0241

5 Min(high/close, 50) − Greater(−0.05/close,−10) 0.0437 −0.0211

6 Delta(high, 20) + high − 12 −0.0997 0.0165

7 Less(Min(2(vwap − volume), 30) + 30, 30vwap/low) − 5 0.0276 0.0025

8 Corr(Greater(Greater(vwap, volume),Greater(close,

Greater(Log(Var(volume, 10)), 10))/close), close, 10)
−0.0279 −0.0338

9 |low − 30| 0.0319 0.0073

10 Max(1 −Max(Corr(low, volume · Log(10
−4

Max(volume, 10)), 10), 10), 30) 0.0312 0.0488

Weighted Combination 0.0511

able to work well in a synergistic manner. For example, the alphas

#2 and #6 have a mutual IC of 0.9746, thus traditionally considered

too similar to be useful cooperatively. However, the combination

0.09317𝑓2 − 0.07163𝑓6 achieves an IC of 0.0458 on the test set, even

higher than the sum of the respective ICs, showing the synergy

effect.

Also, although alpha #1 only has an IC of 0.0011, it still plays

a vital role in the final combination. Once we remove alpha #1

from the combination and re-train the combination weights on the

remaining set, the combination’s IC drops to merely 0.0447. The

two observations above show that neither the single alpha IC nor

the mutual IC between alpha pairs is a good indicator of how well

the combined alpha would perform, answering Q3.
One possible explanation for these phenomena is that: Although

traditionally these alphas are similar due to the high mutual IC,

some linear combinations of the alphas could point to a completely

different direction from the original ones. Consider two unit vectors

in a linear space. The more similar these two vectors are, the less

similar either of these vectors is to the difference between the two

vectors, since the difference vector approaches to be perpendicular

to either of the original vectors as the vectors get closer.

4.4 Investment Simulation
To demonstrate the effectiveness of our factors in more realistic in-

vesting settings, we use a simple investment strategy and conducted

backtests in the testing period (2020/01/01 to 2021/12/31) on the

CSI300 dataset. We use a simple top-𝑘/drop-𝑛 strategy to simulate

the investment: On each trading day, we first sort the alpha values

of the stocks, and then select the top 𝑘 stocks in that sorted list. We

evenly invest across the 𝑘 stocks if possible, but restrict the strategy

to only buy/sell at most 𝑛 stocks on each day to reduce excessive

trading costs. In our experiment, 𝑘 is set to 50 and 𝑛 to 5.

We recorded the net worth of the respective strategies in the

testing period, of which a line chart is shown in Figure 5. Although

our framework does not explicitly optimize towards the absolute

returns, the framework still performs well in the backtest. Our

framework is able to gain the most profit compared to the other

methods.

5 RELATEDWORK
Formulaic alphas. The search space of formulaic alphas is enor-

mous, due to the large amount of possible operators and features

to choose from. To our best knowledge, all notable former work

uses genetic programming to explore this huge search space. [10]

augmented the gplearn library with formulaic-alpha-specific time-

series operators, upon which an alpha-mining framework is built.

[9] further improved the framework to also mine alphas with non-

linear relations with the returns by using mutual information as the

fitness measure. [27] used mutual IC to filter out alphas that are too

similar to existing ones, improving the diversity of resulting alpha

sets. PCA is carried out on the alpha values for reducing the algo-

rithmic complexity of computing the mutual ICs, and various other

tricks are also applied to aid the evolution process. AlphaEvolve [3]

evolves new alphas upon existing ones. It allows combinations of

much more complex operations (for example matrix-wise computa-

tions), and uses computation graphs instead of trees to represent the

alphas. This leads tomore sophisticated alphas and better prediction

accuracy, although at the risk of lowering the alphas’ interpretabil-

ity. Mutual IC is also used as a measure of alpha synergy in this

work.

Machine learning-based alphas. The development of deep

learning in recent years has brought about various new ideas on

how to accurately model stock trends. Early work on stock trend

forecasting treats the movement of each stock as a separate time

series, and applies time series models like LSTM [5] or Transformer

[21] to the data. Specific network structures catered to stock fore-

casting like the SFM [26] which uses a DFT-like mechanism have

also been developed. Recently, research has also been conducted on

methods to integrate non-standard data with the time series. REST

[24] fuses multi-granular time series data together with historical

event data to model the market as a whole. HIST [23] utilizes con-

cept graphs on top of the regular time series data to model shared

commonness between future trends of various stock groups. One

specific type of machine learning-based model is also worth men-

tioning. Decision tree models, notably XGBoost [2], LightGBM [8],

etc., are often considered interpretable, and they could also achieve

relatively good performance on stock trend forecasting tasks. How-

ever, whether a decision tree with extremely complex structure is
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Figure 5: Backtest results on CSI 300. The lines track the net worth of simulated trading agents utilizing the various alpha-
mining approaches.

considered “interpretable” is at least questionable. When these tree

models are applied to raw stock data, the high dimensionality of

input only exacerbates the aforementioned problem. Our formulaic

alphas use operators that apply to the input data in a more struc-

tured manner, making them more easily interpretable by curious

investors.

Symbolic regression. Symbolic regression (SR) concerns the

problem of discovering relations between variables represented

in closed-form mathematical formulas. SR problems are different

from our problem settings that there always exists a “groundtruth“

formula that precisely describes the data points in an SR problem,

while stock market trends are far too complex to be expressed in the

space of formulaic alphas. Nevertheless, there remain similarities

between the two fields since similar techniques can be used for

the expression generator and the optimization procedure. [15] sug-

gested using a custom neural network whose activation functions

are symbolic operators to solve the SR problem. [13] proposed a

novel symbolic regression framework based on an autoregressive

expression generator. The generator is optimized using an aug-

mented version of the policy gradient algorithm that values the top

performance of the agent more than the average. [12] developed a

method similar to [13], but also introduced GP into the optimization

loop, seeding the GP population with RL outputs. [20] applied the

language model pretraining scheme to symbolic regression, train-

ing a generative autoregressive “language model” of expressions

on a large dataset of synthetic expressions.

Discussions. Although the term “formulaic alpha” is often tied

down to investing, the concept of simple and interpretable formu-

laic predictors that could be combined into more expressive models

is not limited to quantitative trading scenarios. Our framework

can be adapted to solve other time-series forecasting problems, for

example, energy consumption prediction [4], anomaly detection

[1], biomedical settings [18], etc. In addition, we chose the linear

combination model in this paper for its simplicity. Meanwhile, in

theory, other types of interpretable combination models, for exam-

ple, decision trees can also be integrated into our framework. In

that sense, providing these combination models with these features

expressed in relatively straightforward formulas might help provide

investigators with more insights into how the models come to the

final results.

6 CONCLUSION
In this paper, we proposed a new framework for generating inter-

pretable formulaic alphas to aid investors in quantitative trading.

We proposed to directly use the performance boost brought about

by the newly added alpha to the existing alpha combination as the

metric for alpha synergy. As a result, our framework can produce

sets of alphas that could cooperate satisfactorily with a combination

model, notwithstanding the actual form of the combination model.

For the model to explore the vast search space of formulaic alphas

more effectively, we also formulated the alpha-searching procedure

as an MDP and applied reinforcement learning techniques to op-

timize the alpha generator. Extensive experiments are conducted

to demonstrate that the performance of our framework surpasses

those of all previous formulaic alpha-mining approaches, and that

our method can also perform well under more realistic trading

settings.
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A LIST OF OPERATORS
There are four types of operators used in our framework. The four

types break down into two groups: cross-section operators, and

time-series operators. Cross-section operators (denoted with “CS”

in the table) only deal with data on the current trading day, while

time-series operators (denoted with “TS”) take into consideration

data from a consecutive period of time. Each of the two groups

further separates into unary (denoted with “U”) and binary (denoted

with “B”) operators that apply to one or two series respectively.

B PROOF OF THEOREM 3.1
Proof. We know that the elements of a vector 𝑢 that is central-

ized and normalized (using the N operator mentioned above) have

a variance of 1/𝑛, since:
Var [𝑢] = E𝑖

[
𝑢2

𝑖

]
− E𝑖 [𝑢𝑖 ]2

=
1

𝑛
∥𝑢∥2 − 0

=
1

𝑛
.

(10)

Using the original definition of Pearson’s correlation coefficient,

we have:

𝜎 (𝑢, 𝑣) = Cov [𝑢, 𝑣]√︁
Var [𝑢] · Var [𝑣]

= E𝑖

[
(𝑢𝑖 − 𝑢)√︁
Var [𝑢]

· (𝑣𝑖 − 𝑣)√︁
Var [𝑣]

]
= E𝑖

[
[N (𝑢)]𝑖√︁

1/𝑛
· [N (𝑣)]𝑖√︁

1/𝑛

]
= 𝑛E𝑖 [[N (𝑢)]𝑖 [N (𝑣)]𝑖 ]
= ⟨N (𝑢),N(𝑣)⟩ .

(11)
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Table 4: All the operators used in our framework. CS: cross-section, TS: time-series, U: unary, B: binary.

Operator Category Descriptions

Abs(𝑥 ) CS–U The absolute value |𝑥 |.
Log(𝑥 ) CS–U Natural logarithmic function log(𝑥).
𝑥 + 𝑦, 𝑥 − 𝑦, 𝑥 · 𝑦, 𝑥/𝑦 CS–B Arithmetic operators.

Greater(𝑥,𝑦), Less(𝑥,𝑦) CS–B The larger/smaller one of the two values.

Ref (𝑥, 𝑡) TS–U The expression 𝑥 evaluated at 𝑡 days before the current day.

Mean(𝑥, 𝑡), Med(𝑥, 𝑡), Sum(𝑥, 𝑡) TS–U The mean/median/sum value of the expression 𝑥 evaluated on the recent 𝑡 days.

Std(𝑥, 𝑡), Var(𝑥, 𝑡) TS–U The standard deviation/variance of the expression 𝑥 evaluated on recent 𝑡 days.

Max(𝑥, 𝑡), Min(𝑥, 𝑡) TS–U The maximum/minimum value of the expression 𝑥 evaluated on the recent 𝑡 days.

Mad(𝑥, 𝑡) TS–U The mean absolute deviation E [|𝑥 − E [𝑥] |] of the expression 𝑥 evaluated on the

recent 𝑡 days.

Delta(𝑥, 𝑡) TS–U The relative difference of 𝑥 compared to 𝑡 days ago, 𝑥 − Ref (𝑥, 𝑡).
WMA(𝑥, 𝑡), EMA(𝑥, 𝑡) TS–U Weighted moving average and exponential moving average of the expression 𝑥

evaluated on the recent 𝑡 days.

Cov(𝑥,𝑦, 𝑡) TS–B The covariance between two time series 𝑥 and 𝑦 in the recent 𝑡 days.

Corr(𝑥,𝑦, 𝑡) TS–B The Pearson’s correlation coefficient between two time series 𝑥 and 𝑦 in recent 𝑡

days.

That is to say, the Pearson’s correlation coefficient between two

vectors equals the inner product of the two vectors centralized and

normalized.

Therefore the theorem can be proved as follows. Recall that

𝑓𝑖 (𝑥𝑡 ) and 𝑦𝑡 are normalized.

𝑛L(𝑤) = 1

𝑇

𝑇∑︁
𝑡=1

∥𝑧𝑡 − 𝑦𝑡 ∥22

= E𝑡
[
∥𝑧𝑡 ∥2 − 2 ⟨𝑧𝑡 , 𝑦𝑡 ⟩ + ∥𝑦𝑡 ∥2

]
= E𝑡


 𝑘∑︁
𝑖=1

𝑤𝑖 𝑓𝑖 (𝑋𝑡 )


2

− 2

〈
𝑘∑︁
𝑖=1

𝑤𝑖 𝑓𝑖 (𝑋𝑡 ), 𝑦𝑡

〉
+ 1


= E𝑡


𝑘∑︁
𝑖=1

𝑘∑︁
𝑗=1

𝑤𝑖𝑤 𝑗𝜎 (𝑓𝑖 (𝑋𝑡 ), 𝑓𝑗 (𝑋𝑡 ))

− 2

𝑘∑︁
𝑖=1

𝑤𝑖 ⟨𝑓𝑖 (𝑋𝑡 ), 𝑦𝑡 ⟩ + 1

]
=

𝑘∑︁
𝑖=1

𝑘∑︁
𝑗=1

𝑤𝑖𝑤 𝑗𝜎 (𝑓𝑖 (𝑋 ), 𝑓𝑗 (𝑋 )) − 2

𝑘∑︁
𝑖=1

𝑤𝑖𝜎𝑦 (𝑓𝑖 ) + 1.

(12)

□

C EXPRESSION LEGALITY GUARANTEE
The legality of expressions divides into two parts: Formal legality
and semantic legality.

C.1 Formal Legality
An RPN can be built with a stack of expressions, constants, or raw

features. The RPN building procedure follows the rules below, and

actions that may violate these rules will be masked.

• TS (time-series) operators must take a time-delta (e.g. 10d

for a time-difference of 10 days) as its last parameter;

• Excluding the aforementioned time-delta, each operatormust

take enough expressions as operands, according to the arity

of the operator (one for *-Unary, two for *-Binary);

• A multi-token expression should not be equivalent to a con-

stant;

• The special SEP token (end of expression) is only allowed

when the generated sequence is already a valid RPN.

For example, when the stack (state) is currently [$open, 0.5],

we can choose the “Add” token (a binary operator), building an

expression “Add($open, 0.5)”. Meanwhile, the operator “Log” is

not allowed here because “Log” will take “0.5” and “Log(0.5)” is a

constant; similarly, the operator “TS-Mean” is also invalid because

“Mean($open, 0.5)” is illegal.

C.2 Semantic Legality
Some expressions with correct forms might still fail to evaluate due

to more constraints imposed by the operators. For example, the

logarithm operator cannot be applied to a non-positive value. This

kind of semantic invalidity is not directly detected by the procedure

mentioned in the last section. In our experiments, these expressions

are given the reward of -1 (the minimum value of Pearson’s corre-

lation coefficient) to discourage the agent from generating these

expressions.

D HYPERPARAMETERS
The LSTM feature extractor used in the RL agent has a 2-layer

structure with a hidden layer dimension of 128. A dropout rate of

0.1 is used in the LSTM network. The separate value and policy

heads are MLPs with two hidden layers of 64 dimensions. PPO

clipping range 𝜖 is set to 0.2.
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