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Abstract

To fully leverage the advantages of large-scale
pre-trained language models (PLMs) on down-
stream tasks, it has become a ubiquitous adap-
tation paradigm to fine-tune the entire parame-
ters of PLMs. However, this paradigm poses
issues of inefficient updating and resource
over-consuming for fine-tuning in data-scarce
and resource-limited scenarios, because of the
large scale of parameters in PLMs. To alle-
viate these concerns, in this paper, we pro-
pose a parameter-efficient fine-tuning method
HiFi, that is, only the highly informative
and strongly correlated attention heads for the
specific task are fine-tuned. To search for
those significant attention heads, we develop a
novel framework to analyze the effectiveness
of heads. Specifically, we first model the rela-
tionship between heads into a graph from two
perspectives of information richness and cor-
relation, and then apply PageRank algorithm
to determine the relative importance of each
head. Extensive experiments on the GLUE
benchmark demonstrate the effectiveness of
our method, and show that HiFi obtains state-
of-the-art performance over the prior base-
lines.

1 Introduction

Recently large-scale pre-trained language models
(PLMs) have triggered a technological revolution in
natural language processing (NLP), as the satisfac-
tory performance could be achieved by fully fine-
tuning parameters of PLMs (Devlin et al., 2019;
Brown et al., 2020; Wei et al., 2021). In data-
scarce and resource-limited scenarios, however,
this methodology poses several concerns. On one
hand, full fine-tuning leads to inefficient updating
and catastrophic forgetting issues when the train-
ing set is insufficient (Houlsby et al., 2019; Wang
et al., 2021); on the other hand, this approach has
to duplicate a modified copy of full parameters per
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Figure 1: Comparison of diverse fine-tuning paradigms.
For an example of a set of head weights, full fine-tuning
updates all weights, whereas the non-structured meth-
ods randomly fine-tune a subset of parameters. For the
structured methods, Adapter-like models update the ex-
tra weights, while our proposed HiFi selects several vi-
tal heads for fine-tuning.

task, which presents the challenge of resource over-
consuming for the limited storage infrastructure.

Parameter-efficient fine-tuning (PEFT), as an al-
ternative paradigm, has attracted more attention
recently (He et al., 2022; Ding et al., 2022). Com-
pared to full fine-tuning, PEFT only fine-tunes the
minority of the original parameters (or extra intro-
duced parameters) instead of the entire parameters
of PLMs, as shown in Fig. 1. Although current
PEFTs effectively decrease the proportion of train-
able parameters, these methods also lead to vary-
ing aspects of concerns. For instance, Adapter
(Houlsby et al., 2019) not only breaks the model
structure by introducing additional parameters but
also causes inference delays (Hu et al., 2022). We
compare the representative models in Tab. 1.

Motivated by these issues, in this paper, we pro-
pose HiFi, a novel PEFT method by fine-tuning the
relatively significant heads in multi-head attention
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(MHA) modules, where we assume that our PLMs
are based on Transformer (Vaswani et al., 2017) ar-
chitecture and MHA is chosen since it plays a cru-
cial role in Transformer according to recent studies
(Voita et al., 2019; Baan et al., 2019; Michel et al.,
2019). There are several intractable challenges to
implementing our proposed method.

How to measure the individual importance of
a head? The core question of HiFi is to select rel-
ative importance heads in MHA. Toward this end,
we first analyze the importance of a single head.
Specifically, we decompose the output of each head
by singular value decomposition (SVD) to obtain
a sequence of singular values in descending order,
where if the cumulation of top-t terms account for
a percentage threshold (e.g., 90%), the index t is
treated as a measurement of information richness
of the head.

How to measure the relative importance be-
tween heads? Given that the collaboration among
multiple heads achieves success (Kovaleva et al.,
2019; Clark et al., 2019), the head-to-head corre-
lation also shall be considered. Therefore, we cal-
culate the covariance matrix between the outputs
of heads to measure the correlation across heads.
To further work out those highly informative and
strongly correlated heads, we model the relation-
ship between heads into a graph based on their in-
formation richness and correlation, and then derive
the relative importance of each head by PageRank
algorithm (Page et al., 1999). We illustrate our
method overview in Fig. 2.

To verify the effectiveness of our proposed
method, we conduct extensive experiments on the
GLUE benchmark (Wang et al., 2018), in both full-
shot1 and few-shot settings. The results show that
our model HiFi gains state-of-the-art performance
against strong baselines. For example, full fine-
tuning achieves the average score of 82.0% in the
full-shot setting, while HiFi obtains superior per-
formance (82.3%).

To summarize, our contributions are as follows:

• We develop a novel framework for analyzing
the relative importance of weights, and empiri-
cally demonstrate its robustness under diverse
experimental settings.

• Based on this framework, we propose a simple
yet effective PEFT method, HiFi. Our method
fulfills the performance requirement without

1It refers to vanilla fine-tuning setting, see Sec. 4.1.

Method Extra Param. Corrupt Struc. Infer. Delay Store Cons.

Full-FT % % % !

Adapter ! ! ! %

LoRA ! ! % %

Prompt-Tuning ! % ! %

Diff-Pruning ! % % !

Child-Tuning % % % !

HiFi (Ours) % % % %

Table 1: Compared with related methods, our pro-
posed HiFi does not raise additional concerns. “Ex-
tra Param.”: introduces new trainable parameters apart
from the original parameters. “Corrupt Struc.”: cor-
rupts the original structure of the model. “Infer. De-
lay”: causes inference delay. “Store Cons.”: saves all
parameters per task or the updated parameters are not
convenient to store2.

introducing additional concerns compared to
the previous baselines, as shown in Tab. 1.

• Our proposed HiFi outperforms the current
strong counterparts on the GLUE benchmark,
in both full-shot and few-shot settings. We
also verify the effectiveness of our methodol-
ogy by abundant analytical experiments.

2 Related Work

The existent research on PEFT can be generally di-
vided into two folds: structured and non-structured
methods. For the structured methods, the updated
parameters are modularized (i.e., the parameters
from the particular weight blocks are tuned), while
the location of those updated parameters in the non-
structured methods is irregular, as shown in Fig. 1.

Structured Methods. There are two types of up-
datable blocks. (i) Extra introduced blocks. For
example, Adapter (Houlsby et al., 2019) inserts
compact modules into PLMs, and LoRA (Hu et al.,
2022) introduces two low-rank MLPs into the query
and key weights in MHA. Similar models include
Compacter/Compacter++ (Mahabadi et al., 2021),
AdapterDrop (Rücklé et al., 2021), AdapterBias
(Fu et al., 2022), and MAM (He et al., 2022). In ad-
dition, Prompt-Tuning (Li and Liang, 2021; Lester
et al., 2021; Liu et al., 2022) is also a popular re-
search direction via prepending a sequence of con-
tinuous learnable vectors to the input. Generally,
we refer these models to Adapter-like methods in

2For the non-structured methods (e.g., Diff-Pruning (Guo
et al., 2021), Child-Tuning (Xu et al., 2021)), since the position
of updated parameters is unordered as shown in Fig. 1(c), we
cannot directly save them in a weight matrix.
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Figure 2: An overview of our method. For each layer, we first calculate the information richness of a single head
and the correlation between heads, then construct a graph by normalizing our proposed metrics. For a specific
downstream task, we search for the relative significant heads for fine-tuning using PageRank algorithm. The
darker ball on the right figure indicates more important head.

Fig. 1, because they introduce additional learnable
parameters apart from the original model param-
eters. (ii) Internal original blocks. BitFit (Ben-
Zaken et al., 2022), for instance, fine-tunes the all
bias terms of PLMs on downstream tasks. The
distinctions between our proposed HiFi and Bit-
Fit are as follows: 1) we tune the attention heads
rather than bias, given that the heads act a signifi-
cant role in Transformer (Voita et al., 2019; Baan
et al., 2019); 2) our selected heads are task-specific,
while BitFit does not consider the information of
downstream tasks.

Non-structured Methods. The core question in
this direction is that: how to identify a sparse sub-
network based on the importance of each parameter
in PLMs? Child-Tuning (Xu et al., 2021) calculates
the Fisher Information Matrix (FIM) of parameters
to determine a “child” network in the original net-
work. Diff-Pruning (Guo et al., 2021) learns a
perturbation variable per parameter by L0 norm
constraint so that the updatable parameters are se-
lected automatically. Similar work includes Ansell
et al. (2022).

3 Methodology

3.1 Notations

Supposing the PLM consists of L encoder lay-
ers, and MHA has H attention heads and the
corresponding weights3 are WQ

h ,W
K
h ,W

V
h ∈

RD×D′ , h ∈ {1, 2, · · · , H}, where D refers to the
hidden representation dimensions and D′ = D

H .

3We ignore the bias terms for simplicity.

Let the weight set of the h-th head be Wh =
{WQ

h ,W
K
h ,W

V
h }. For a sample x from the data

distribution D, Oh(x) ∈ RS×D′ represents the out-
put of x through the h-th head, where S indicates
the sequence length of x.

Besides, in our work, we notate that g(·) mea-
sures the individual importance of a head and r(·, ·)
indicates the correlation between two heads. The
design of metrics should satisfy the following prin-
ciples: task-relevant and robustness, because we
expect g(·), r(·, ·) to capture the intrinsic properties
of heads on a range of downstream tasks.

3.2 Information Richness

Inspired by leveraging the feature map to measure
the importance of the corresponding convolution
kernel in computer vision (Lin et al., 2020), we here
treat Oh equivalently as the “feature map” in our
scenario. Specifically, rather than focusing solely
on Wh, we analyze its output Oh to reflect the im-
portance of Wh and give the following definition:

g(Wh) = Ex∼D [g(Oh(x))] (1)

By calculating the expectation of Oh with respect
to x, we can measure the importance of the h-
th head based on a particular task. The more
critical the head, intuitively, the richer the cor-
responding output should be. To this end, we
characterize this property from the perspective
of singular value decomposition (SVD). Specif-
ically, we perform the SVD on the output, i.e.,
Oh(x) = UΣV > = U diag(σ1, σ2, · · · , σT ) V >,
where T = min{S,D′}, σ1 ≥ σ2 ≥ · · · ≥ σT .
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Figure 3: The robustness of information richness (Ih). Compared to the standard setting of ST, BS reduces the
batch size, LR increases the learning rate, SL reduces the sequence length, and SS increases the sample size. In
each subfigure, x-axis and y-axis represent the index of heads and corresponding Ih. The solid line and shading
area refer to the mean and standard deviation, respectively. See Sec. 5.1 for detailed experimental settings.

Based on the properties of SVD, we are aware
that if the sequence of singular values {σt} decays
slower, it means thatOh is informative and contains
more meaningful principal components. Therefore,
given the specific task information (x ∼ D), we
define the information richness of an attention head
as Ih(Wh|x):

Ih(Wh|x) = argmin
t

{∑t
i=1 σi∑T
j=1 σj

≥ ξ

}
(2)

where ξ is a hyperparameter threshold, we set ξ =
0.9 in our experiments. Note that Eq. (1) requires
solving the expectation on data x. In practice, we
approximate the solution using the Monte-Carlo
algorithm:

Ex∼D [g(Oh(x))] = Ex∼D [Ih(Wh|x)]

≈ 1

n

n∑
i=1

Ih(Wh|xi)
(3)

Although this operation is expensive when the
amount of training data is large, we fortunately
find that the stable results can be obtained using
a small n (e.g., 300) in actual experiments. Be-
sides, this metric also remains robust under diverse
settings as shown in Fig. 3.

3.3 Correlation
Applying a similar idea from the solution of Ih, the
correlation between weights is transformed into the
corresponding outputs. We define the correlation
r(Wh,Wh′) between two heads (h, h′) as:

r(Wh,Wh′) = Ex∼D [r(Oh, Oh′ |x)] (4)

where the outputs Oh, Oh′ ∈ RS×D′ . To calcu-
late r(Oh, Oh′ |x), we first average Oh over the
sequence axis, i.e., O′h = 1

S

∑S
s=1Oh(s, :), where

Oh(s, :) ∈ RD′ refers to the hidden representation
of the s-th token in the sequence.

Next, the correlation between two heads (h, h′)
is computed by the covariance:

r(O′h, O
′
h′ |x) =

∣∣∣cov(O′h(x), O′h′(x))
∣∣∣ (5)

Here, we are focusing on the degree of correlation,
where the correlation for strong positive and nega-
tive should be considered equally. Hence, we put
the absolute operation on Eq. (5). We apply the
unbiased estimation of covariance:

cov(O′h, O
′
h′) =

∑D′

d=1(oh,d − ōh)(oh′,d − ōh′)
D′ − 1

(6)

where oh,d and oh′,d represent the d-th element in
O′h and O′h′ , while ōh and ōh′ indicate the average
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Figure 4: The head-to-head correlation (rh,h′ ). In each subfigure, both x-axis and y-axis represent the index of
heads, and the value of correlation is normalized. See Sec. 5.1 for detailed experimental settings.

of O′h and O′h′ , respectively. Thus, the correlation
matrix of heads is defined as R = [rh,h′ ]H×H , the
entry of which is rh,h′

.
= Ex∼D [r(Oh, Oh′ |x)] and

rh,h = 0. For the calculation of Eq. (4), we also
adopt the Monte-Carlo algorithm to approximate
the solution:

Ex∼D [r(Oh, Oh′ |x)] ≈ 1

n

n∑
i=1

r(Oh, Oh′ |xi)

(7)

We show the head-to-head correlation heatmap in
Fig. 4. In addition, we report more comparisons
in appendix A.4 to illustrate its robustness under
different experimental settings.

3.4 Joint Optimization
To summarize, we can obtain Ih, which measures
the information richness of a head, and R, which
indicates the correlation matrix between heads. To
determine the relative importance of each head,
we first model the relationship between heads as a
directed fully-connected graph, as shown in Fig. 2.
In this graph, the initial probability p(0)h per node
(i.e., head) is defined as:

p
(0)
h =

Ih∑H
h′=1 Ih′

(8)

Then, we define mh,h′ , the probability of moving
from node h to another node h′, as:

mh,h′ =
rh,h′∑H

h′′ 6=h rh,h′′
(9)

Hence, we can obtain the initial probability vector
P (0) = [p

(0)
1 , p

(0)
2 , · · · , p(0)H ]> and the state transi-

tion probability matrix M = [mh,h′ ]H×H . Given
that H is generally small in practice (e.g., H = 16

in BERTLARGE), we employ the iterative method
of PageRank (Page et al., 1999) to search for the
optimal solution:

P (t+1) = dMP (t) +
1− d
H

I (10)

where d refers to the damping factor, and I is theH-
dimensional vector with all elements of 1. From the
perspective of PageRank (Page et al., 1999), when
the Markov chain reaches stationary distribution,
the PageRank value p∗h per node in the graph can be
obtained: P ∗ = lim

t→∞
P (t+1) = [p∗1, p

∗
2, · · · , p∗H ]>.

Finally, we utilize p∗h to evaluate the relative im-
portance of the h-th head, and then take the top-k
heads for fine-tuning. The detailed algorithm pro-
cedures are summarized in appendix A.5.

4 Experiments

4.1 Setup
Datasets & Evaluation Protocol. Following the
previous setting (Houlsby et al., 2019), we evaluate
our method on the GLUE benchmark (Wang et al.,
2018), which consists of eight datasets (i.e., CoLA,
SST-2, MPRC, QQP, STS-B, MNLI, QNLI, and
RTE). See A.1 in appendix for detailed descrip-
tion per dataset. In addition, Matthew’s (Matt.)
and Spearman’s (Spea.) correlation coefficient are
used to test CoLA and STS-B, respectively. MRPC
and QQP are measured by F1 score. As for other
datasets, the accuracy (Acc.) metric is applied.

Full-shot Learning. According to the vanilla
evaluation procedure, we utilize the datasets li-
brary4 to load the complete dataset for training,
and then save the best checkpoint based on the per-
formance on validation set, and finally report the

4https://github.com/huggingface/datasets

https://github.com/huggingface/datasets


Model QNLI SST-2 MNLIm MNLImm CoLA MRPC STS-B RTE QQP Avg.
(Acc.) (Acc.) (Acc.) (Acc.) (Matt.) (F1) (Spea.) (Acc.) (F1)

Full-shot Learning

Full-FT† 93.4 94.1 86.7 86.0 59.6 88.9 86.6 71.2 71.7 82.0

Diff-Pruning† 93.3 94.1 86.4 86.0 61.1 89.7 86.0 70.6 71.1 82.0
Child-Tuning 92.6±0.3 94.2±0.5 86.1±0.6 85.2±0.4 59.2±0.5 88.1±0.8 85.3±0.5 71.2±0.5 71.3±0.3 81.5

Adapter† 90.7 94.0 84.9 85.1 59.5 89.5 86.9 71.5 71.8 81.5

BitFit† 92.0 94.2 84.5 84.8 59.7 88.9 85.5 72.0 70.5 81.3
LoRA 91.2±0.5 93.2±0.3 84.2±0.7 84.1±0.5 60.2±0.9 88.8±0.7 85.9±0.2 70.3±0.3 71.0±0.5 81.0
Compacter 91.5±0.2 93.6±0.4 85.3±0.5 84.9±0.3 58.6±0.6 87.9±1.0 86.6±0.6 69.7±0.4 71.8±0.2 81.1
Prefix-Tuning 92.2±0.5 94.3±0.3 84.2±0.3 84.0±0.4 58.4±0.8 88.2±0.5 85.7±0.3 71.3±0.2 69.7±0.6 80.9

HiFimid-top 92.7±0.2 93.9±0.5 85.8±0.3 85.5±0.6 59.1±0.9 88.6±0.6 86.8±0.2 70.8±0.5 71.5±0.8 81.6
HiFilayer-wise 93.5±0.6 94.3±0.3 85.9±0.7 85.8±0.4 60.4±0.7 89.7±0.4 87.2±0.3 71.5±0.2 72.0±0.4 82.3

Few-shot Learning

Full-FT 67.9±3.8 72.4±6.7 44.1±5.4 45.1±5.6 28.5±5.5 73.3±6.3 - 54.5±4.5 59.5±4.8 55.7

Diff-Pruning 63.1±1.3 74.0±5.4 42.5±6.1 40.6±5.2 21.1±8.9 72.7±2.8 - 53.5±3.1 57.8±4.5 53.2
Child-Tuning 65.8±2.2 76.1±4.6 40.7±4.3 41.4±3.7 24.7±7.5 73.1±3.9 - 52.5±4.2 58.3±3.8 54.1

Adapter 67.2±3.3 78.3±4.6 42.2±5.0 44.5±5.7 26.6±4.2 73.0±7.6 - 55.0±2.2 59.2±2.9 55.8
BitFit 70.3±2.1 78.9±7.4 43.5±3.4 42.9±4.4 23.8±9.2 72.4±4.8 - 54.7±1.1 61.3±4.3 56.0
LoRA 68.8±1.9 80.3±5.2 41.3±2.7 42.9±3.0 27.1±7.2 75.8±5.9 - 55.2±1.9 60.5±6.1 56.5
Compacter 69.6±1.8 76.6±9.5 43.4±6.0 45.4±6.9 25.9±8.5 73.5±7.2 - 52.4±3.4 60.8±4.6 56.0
Prefix-Tuning 68.3±3.6 79.2±1.9 43.3±4.5 45.7±4.8 24.8±3.3 72.4±9.3 - 54.4±2.5 60.4±2.3 56.1

HiFimid-top 67.7±1.6 76.2±2.4 44.8±4.4 44.7±5.3 26.8±6.5 75.2±5.2 - 55.4±3.8 59.7±3.9 56.3
HiFilayer-wise 68.5±2.7 76.6±3.5 45.9±5.7 45.8±6.3 28.5±5.2 76.3±3.5 - 55.5±3.5 61.8±4.1 57.4

Table 2: The performance on the GLUE benchmark. The results are averaged from three seeds in the full-shot
learning6, while five seeds are used in the few-shot learning to produce solid results. The subscript is the standard
deviation. Bold and underline indicate the first and second best results in the corresponding regime. † refers to the
results directly from their original paper, in which Full-FT is derived from Guo et al. (2021).

results on test set by submitting our predictions to
the online evaluator5.

Few-shot Learning. Following the setting of
Sun et al. (2022), we randomly select 16 samples
per class to construct 16-shot training set Dtrain
and validation set Dval from the original training
set, respectively. In addition, the original valida-
tion set is regarded as the test set Dtest, where
|Dtrain| = |Dval| � |Dtest|. The STS-B dataset
is excluded since it is a regressive task.

Baselines. To make a comprehensive compari-
son, we first select full fine-tuning (Full-FT) as a
strong baseline, then choose five structured meth-
ods (i.e., Adapter (Houlsby et al., 2019), Com-
pactor (Mahabadi et al., 2021), Prefix-Tuning (Li
and Liang, 2021), LoRA (Hu et al., 2022) and
BitFit (Ben-Zaken et al., 2022)), and two non-

5https://gluebenchmark.com/
6The average score of † differs slightly from the original

paper due to the different averaging method, e.g., BitFit first
averages MNLIm and MNLImm, and then calculates the over-
all average score. Here, we directly calculate the average score
of all datasets on GLUE, in a unified manner.

structured methods (i.e., Diff-Pruning (Guo et al.,
2021), and Child-Tuning (Xu et al., 2021)) as the
other baselines. See A.2 in appendix for more de-
scription of each baseline.

Models & Implementation. Given that, in pre-
training, the lower layers of PLMs learn gen-
eral semantic features, which might be universal
across tasks (Houlsby et al., 2019; Rücklé et al.,
2021). Therefore, two models are proposed here:
HiFilayer-wise fine-tunes the selected top-k heads
at each layer; HiFimid-top only updates the layers
from middle to top, while keeping the layers from
bottom to middle frozen. k is set to 3 by default
and its implications are further explored in Sec. 5.3.
We leverage BERTLARGE as backbone and imple-
ment our models by Huggingface’s Transformers li-
brary (Wolf et al., 2020). The off-the-shelf Adapter-
Transformers library7 (Pfeiffer et al., 2020) is uti-
lized to perform the baselines. See A.3 in appendix
for more detailed experimental configurations.

7https://github.com/Adapter-Hub/
adapter-transformers

https://gluebenchmark.com/
https://github.com/Adapter-Hub/adapter-transformers
https://github.com/Adapter-Hub/adapter-transformers
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Figure 5: The effect of cumulative singular value on various datasets. We randomly select the output of a head in
different layers for illustration.

Model QNLI SST-2 MNLIm MNLImm CoLA MRPC STS-B RTE QQP Avg.

HiFi 93.2 94.5 85.9 85.8 61.5 92.6 88.1 73.3 87.8 84.7
HiFi (w/o corr) 92.2 93.2 85.4 85.1 61.1 92.0 88.0 72.8 87.2 84.1
HiFi (w/o corr + inv) 91.8 93.5 84.8 84.6 60.8 89.1 87.1 72.0 86.9 83.4
HiFi (w/o info) 92.6 93.4 84.4 84.2 61.1 91.4 87.8 72.2 87.5 83.8
HiFi (page inv) 92.4 93.6 84.3 84.5 60.4 91.2 87.6 72.8 86.8 83.7
HiFi (random) 90.2 92.4 83.5 83.1 59.3 88.5 86.5 70.6 86.0 82.4

Table 3: Ablation experiments.

4.2 Results

In Tab. 2, we show the results of our models and
baselines on the GLUE benchmark. From a wide
range of comparisons, we can obtain that: (i) Under
the full-shot setting, our proposed HiFilayer-wise ob-
tains the average of 82.3, which outperforms Full-
FT (82.0). Meanwhile, HiFimid-top also achieves
satisfactory performance (81.6), in the case of tun-
ing only half of the trainable parameters compared
to HiFilayer-wise. Besides, the non-structured meth-
ods achieve better performance than the prior struc-
tured methods and are closer to the results of Full-
FT, but none of them exceed Full-FT on average.
(ii) In the few-shot setting, the structured meth-
ods have significant advantages over Full-FT and
non-structured methods. Our models (including
the previous structured methods) achieve higher av-
erage score than Full-FT, while the non-structured
methods are substantially lower than Full-FT8.

In short, our proposed HiFi bridges the gap be-
tween structured and non-structured methods in the
full-shot setting, while maintaining a significant
lead in the few-shot setting. On one hand, as we
have discussed before, those heads we selected are
vital for downstream tasks and could greatly influ-
ence model decisions; on the other hand, it acts
as a regularizer to fine-tune only a subset of the
full parameters, which boosts the generalization
capacity. We further verify this hypothesis from
the perspective of loss landscape in Sec. 5.4.

8For an example of Diff-Pruning, the reason is that it proba-
bly fails to optimize the perturbation variable for each original

5 Analysis9

5.1 Robustness of Metrics

In this subsection, we study the following question:
whether we designed metrics (Ih, rh,h′) are robust
enough under diverse settings? To this end, we take
BERTBASE (12 layers) as an example to conduct
experiments on MRPC10, in terms of batch size,
sequence length, sample size (i.e., n) and learning
rate. Specifically, ST is a standard baseline, where
the batch size is 32, the learning rate is 2e−5, the
maximum sequence length is 128 and the sample
size is 300. Compared to ST, BS reduces the batch
size to 16, LR increases the learning rate to 5e−5,
SL reduces the maximum sequence length to 64,
and SS increases the number of samples to 1000.

The results are shown in Fig. 3, 4 (partially in
appendix A.4), we can draw the following findings:
(i) For the information richness (Ih), even if the ex-
perimental settings are diverse, Ih almost remains
consistent (e.g., in 2, 4, 6 layers). Note that Ih will
be normalized by Eq. (8), the absolute ranking of
Ih is inessential (e.g., in 10, 11 layers, the curves
are slightly moved up and down), as long as the
relative ranking across heads remains stable. (ii)
For the correlation (rh,h′), the head-to-head correla-
tion in the heatmap is varying across layers, which
means that this metric has good distinguishability.

parameter with such small training samples.
9In this section, we conduct the experiments based on

HiFilayer-wise, unless otherwise specified.
10In fact, the consistent observation emerges on BERTLARGE

and different datasets.
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Figure 6: The effect of the number of selected heads k
(Left) and the damping factor d (Right).

In addition, although the correlation region varies
slightly in diverse settings, the strongly correlated
heads are almost unchanged11. This demonstrates
that Ih and rh,h′ have good robustness and capture
some essential characteristics of heads.

5.2 Effectiveness of Methods

Here, we focus on investigating the possible ques-
tions: Q1: Does the correlation (rh,h′) between
heads really matter? Q2: Are the higher informa-
tion richness (Ih) of heads more important for the
model? Q3: Is it enough to only take the correla-
tion (rh,h′) into consideration, while ignoring the
information richness (Ih)? Q4: Does PageRank
algorithm really work?

To answer the above questions, we design the
following experiments for verification: (i) For Q1,
we exclude the correlation (rh,h′) compared to the
baseline, and update k heads corresponding the
top information richness. This experiment denotes
HiFi (w/o corr). (ii) For Q2, in contrast to Q1, we
merely update k heads with the lowest information
richness, without taking rh,h′ into account. This
experiment denotes HiFi (w/o corr + inv). (iii)
For Q3, the information richness is not included
and only k heads with the strongest correlation are
updated. This experiment denotes HiFi (w/o info).
(iv) For Q4, compared to the baseline, we inversely
select k heads with the lowest PageRank value.
This experiment denotes HiFi (page inv). In addi-
tion, to establish the effectiveness of our selected
heads, we also compare with a baseline that ran-
domly tunes k heads in each layer. This experiment
denotes HiFi (random). Here, the experiments are
conducted on the validation sets of GLUE, and the
comparison results are shown in Tab. 3. We observe
that the optimal performance is only obtained when
the information richness (Ih) and correlation (rh,h′)
are jointly addressed by PageRank algorithm.

11Compare Fig. 4 with Fig. 8-11 in appendix, where each
figure is produced in a setting.
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Figure 7: Visualization of loss contours and training
trajectories of Full-FT (first column) and HiFi (second
column), in both full-shot and few-shot scenarios.

5.3 Influence of Hyperparameters

In this subsection, we probe the following hyper-
parameters: the number of selected heads (k), the
proportion of the top-t singular values (ξ) and the
damping factor (d), based on MPRC, CoLA, RTE
and MNLI, respectively. (i) k is a key factor to
control the ratio of trainable parameters over the
all parameters. In Fig. 6, the optimal value of k is
around 3 and the corresponding ratio is 4.2%. If the
mid-top strategy is adopted, the ratio can be further
reduced to 2.1%12. (ii) The curves have greater
curvature when the y-axis reaches around 0.9, and
the growth subsequently becomes slow as shown in
Fig. 5, which indicates that the top-t principal com-
ponents are highly informative. Therefore, ξ = 0.9
is a good boundary. (iii) In Fig. 6, the number of
iterations grows as d increases. Nevertheless, we
find that the PageRank algorithm is fast (less than
0.4 second) in practical experiments. More analy-
sis about efficiency in appendix A.6. Besides, the
convergence consistency of PageRank (Page et al.,
1999) also guarantees the stability of our results,
once P (0) and M had been obtained.

5.4 Perspective of Loss Landscape

To further understand the effectiveness of HiFi com-
pared to Full-FT, we visualize the training trajec-
tories along with loss landscapes through tools (Li
et al., 2018; Hao et al., 2019) on MRPC. As shown
in Fig. 7, the loss contour of HiFi is smoother/flatter
than Full-FT in both full-shot and few-shot settings.
A smoother/flatter loss surface is often believed to

12In fact, this ratio can be further decreased as the model
scale increases because most parameters of Transformer block
are concentrated in the feedforward (66.7%), while MHA is
only 33.3%, in which we fine-tune several heads.



indicate enhanced standard and robust generaliza-
tion (He et al., 2019; Wu et al., 2020), where an
intuitive understanding is that if optimum basin is
flat enough, it is possible to avoid the model jump-
ing out the well-generalized region. Therefore, this
provides a possible perspective to explain that HiFi
has a more robust generalization capability than
Full-FT on downstream tasks.

6 Conclusion

In this paper, we propose a novel PEFT method
HiFi by modeling the relationship between atten-
tion heads as a graph and then using the PageRank
to determine the relative significant heads for fine-
tuning. HiFi obtains state-of-the-art performance
over the prior baselines on GLUE benchmark, in
both full-shot and few-shot scenarios.
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Limitations

In this work, we design a parameter-efficient fine-
tuning method and demonstrate its effectiveness
through extensive experiments. However, there are
some limitations: (i) It may be suboptimal to select
the same number of heads (k) in each layer. In
future work, we will continue to explore how to
design better selection strategies (e.g., an intuitive
idea is that k should be layer-specific). (ii) So far,
the models and datasets we tested all belong to
NLP. Due to time and resource limitations, we do
not evaluate the related models and datasets (e.g.,
ViT, CIFAR) in CV.
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A Appendix

A.1 More Description about Datasets
The GLUE benchmark covers various types of
tasks and can be divided into three folds in gen-
eral (detailed statistics are shown in Tab. 4):

• Single sentence classification task. CoLA
(The Corpus of Linguistic Acceptability) con-
sists of books and journals from language
theory, where each sentence is marked for
grammaticality. There are two labels, 0 and
1, where 0 indicates ungrammatical and 1 in-
dicates grammatical. SST-2 (The Stanford
Sentiment Treebank) contains human anno-
tations of sentences from movie reviews and
their emotions. This task is to determine the
emotion of a given sentence: positive or nega-
tive.

• Sentence pair paraphrase task. MRPC
(The Microsoft Research Paraphrase Corpus)
is a paraphrase identification task, where the
corpus automatically extracts the sentence
pairs from online news sources, and manually
annotates whether the sentence pairs are se-
mantically equivalent. QQP (The Quora Ques-
tion Pairs), a paraphrase identification task, is
a corpus of question pairs from the website
Quora. The target is also to determine whether
a pair of sentences is semantically equiva-
lent. STS-B (The Semantic Textual Similarity
Benchmark) is a collection of sentence pairs
extracted from news headlines, video titles,
image titles and natural language inference
data, and each pair is annotated by humans.
This task can be regarded as a fine-grained
five-way paraphrase identification task.

• Natural language inference task. MNLI
(The Multi-Genre Natural Language Infer-
ence Corpus), the natural language inference
task, is a collection of text implication annota-
tion for sentence pairs through crowdsourcing.
Given the premise and hypothesis, the aim is
to predict whether the premise contains the
assumption (entailment), contradicts the as-
sumption (contradiction) or neither (neutral).
QNLI (Question-answering NLI), a natural
language inference task, is converted from an-
other dataset (The Stanford Question Answer-
ing Dataset, SQuAD 1.0). QNLI are obtained
by combining each sentence in question and

context, and filtering out the sentence pair
with low lexical overlap. RTE (The Recog-
nizing Textual Entailment) is also a natural
language inference task, where the samples
are from news and Wikipedia. The target is to
judge whether a given sentence pair is entail-
ment or not.

A.2 More Description about Baselines
We give a brief introduction to baselines used in
this paper:

• Full Fine-Tuning (Full-FT) is the most
prevalent fine-tuning paradigm at present.
When obtaining the pre-trained model on a
large-scale corpus, full parameters are updated
on each specific downstream task.

• Adapter (Houlsby et al., 2019) reduces the
number of trainable parameters by updating
merely the additional MLPs (with bottleneck
architecture), which are inserted in each layer
of model.

• Diff-Pruning (Guo et al., 2021) learns a per-
turbation variable ∆θ for each parameter θ in
PLMs, i.e., θ := θ + ∆θ, where the L0-norm
constraint is imposed on the variable set {∆θ}
to ensure that this set is as sparse as possible.

• Child-Tuning (Xu et al., 2021) identifies a
sub-network from the original model by cal-
culating the parametric gradient of the Fisher
Information (FIM), and then the parameters of
the sub-network are updated during the fine-
tuning process.

• Compacter (Mahabadi et al., 2021) can be
regarded as a variant of Adapter, which fur-
ther reduces the number of training param-
eters by introducing Kronecker product and
shared weights.

• Prefix-Tuning (Li and Liang, 2021) concate-
nates the additional trainable parameters with
the K and V in MHA. These introduced pa-
rameters are treated as continuous prompts
from the perspective of prompt learning.

• LoRA (Hu et al., 2022), from the view of
low-rank decomposition, inserts two trainable
low-rank matrices into the weight matrices
WQ and WK per layer in a parallel manner,
so as to reduce the proportion of trainable
parameters and avoid inference delay.



• BitFit (Ben-Zaken et al., 2022) is an ex-
tremely simple structured fine-tuning method.
Only the bias terms of model are fine-tuned,
leaving the rest frozen.

A.3 More Details about Settings &
Environments

In the full-shot learning, for a range of baselines,
we first refer to the hyperparameters settings in
their original paper, and then perform the grid
search for the batch size and learning rate. The
optimal hyperparameter combinations are shown
in Tab. 5. Under the few-shot learning, we directly
use the size of the training set as the batch size
and adopt the optimal learning rate in the full-shot
learning. In addition, the sub-network structure of
Child-Tuning is consistent with that in the full-shot
setting to avoid too few samples to identify the
sub-network effectively. Similarly, we perform the
selection process of heads only once and keep them
unchanged in the full/few-shot settings. Finally, we
conduct the experiments on three NVIDIA GeForce
RTX 3090 (24G).

A.4 More Experiments about Correlation

To verify the robustness of the head-to-head correla-
tion, we here conduct more experiments on MRPC
based on BERTBASE. The experimental results are
shown in Fig. 8, 9, 10, and 11, under the settings
of BS, LR, SL, and SS, respectively.

A.5 More Detailed Algorithm Procedures

Algorithm 1 Solve for Information Richness and
Correlation
Input: Training data D = {(xi, yi)}Ni=1, the PLM
fθ(·) and θ represents the all parameters. The num-
ber of samples is n.
Output: The information richness Ih and correla-
tion rh,h′ .

1: for 1 ≤ i ≤ n do
2: Randomly sample the labelled data pair

(xi, yi) ∼ D
3: Obtain the output Oh(xi) of the h-th head

for each layer, based on fθ(xi).
4: Compute the Ih(·|xi).
5: Compute the r(·, ·|xi).
6: end for
7: Compute the average of Ih and rh,h′ .
8: return Ih, rh,h′ , ∀ h, h′ ∈ {1, 2, · · · , H}.

Algorithm 2 Joint Optimization with PageRank
Input: The information richness Ih and correlation
rh,h′ , where h, h′ ∈ {1, 2, · · · , H}. The upper
bound of the error is ε, and the number of updated
heads is k.
Output: The updated indicator δh per head.

1: Compute the initial node probability p(0)h by
Eq. (8) per head.

2: Compute the initial move probability from h
to h′ by Eq. (9).

3: Obtain the initial probability matrix P (0) and
the state transition probability matrix M .

4: Compute the first time probability P (1) by
Eq. (10).

5: while ‖ P (1) − P (0) ‖> ε do
6: P (0) := P (1)

7: P (1) := dMP (1) + 1−d
H I

8: end while
9: Obtain the PageRank value p∗h per head.

10: Let δh = 1 if h ∈ Topk{p∗h}, otherwise 0.
11: return δh, ∀ h ∈ {1, 2, · · · , H}.

Algorithm 3 Parameter-Efficient Fine-tuning with
HiFi
Input: Training data D = {(xi, yi)}Ni=1, the PLM
fθ(·) and θ = {U ,V}, where U/V represents the
updated/frozen weights set. L(·) indicates the loss
function and η is the learning rate.
Output: The fine-tuned heads weight set U ′.

1: // Step 1: Pre-processing
2: For each layer l, obtain the indicator δlh ∈
{0, 1} w.r.t the h-th head weights set W l

h =

{WQ
h ,W

K
h ,W

V
h } by Alg. 1 and 2.

3: Let W l
h ∈ U if δlh = 1, otherwise W l

h ∈ V .
4: Freeze the parameters of V .
5: // Step 2: Fine-tuning
6: while not converged do
7: Randomly sample the labelled data pair

(xi, yi) ∼ D.
8: Compute the loss L(θ) = L(fθ(xi), yi).
9: for W l

h ∈ U do
10: W l

h := W l
h − η

∂L(θ)
∂W l

h

11: end for
12: end while
13: return The fine-tuned heads weight set U ′.

A.6 More Analysis about Efficiency

As shown in Alg. 3, our approach consists of two
phases: pre-processing and fine-tuning. In the pre-



QNLI SST-2 MNLIm MNLImm CoLA MRPC STS-B RTE QQP

Full-shot Learning

# Train 104,743 67,349 392,702 392,702 8,551 3,668 5,749 2,490 363,846
# Valid 5,463 872 9,815 9,796 1,043 408 1,500 277 40,430
# Test 5,463 1,821 9,832 9,847 1,063 1,725 1,379 3,000 390,965

Few-shot Learning

# Train 16×2 16×2 16×3 16×3 16×2 16×2 - 16×2 16×2
# Valid 16×2 16×2 16×3 16×3 16×2 16×2 - 16×2 16×2
# Test 5,463 872 9,815 9,796 1,043 408 - 277 40,430

Table 4: Statistics of each dataset on GLUE in both full-shot and few-shot scenarios.

Model QNLI SST-2 MNLIm MNLImm CoLA MRPC STS-B RTE QQP

Full-FT 32/2e-5 32/1e-5 48/2e-5 48/2e-5 32/1e-5 32/2e-5 32/2e-5 32/2e-5 32/2e-5
Diff-Pruning 32/2e-5 32/5e-5 48/1e-5 48/1e-5 32/1e-5 32/1e-5 32/1e-5 32/1e-5 32/2e-5
Child-Tuning 16/2e-5 16/4e-5 16/2e-5 16/2e-5 16/4e-5 16/4e-5 16/4e-5 16/4e-5 16/4e-5
Adapter 32/3e-4 32/1e-4 48/3e-4 48/3e-4 32/3e-4 32/2e-4 32/2e-4 32/3e-4 32/3e-4
BitFit 32/2e-4 32/4e-4 48/1e-4 48/1e-4 32/4e-4 32/2e-3 32/1e-4 32/1e-4 32/4e-4
LoRA 32/3e-4 32/2e-4 32/2e-4 32/2e-4 32/3e-4 32/1e-4 32/3e-4 32/3e-4 32/2e-4
Compactor 32/3e-3 32/3e-3 48/3e-3 48/3e-3 32/8e-4 32/2e-3 32/3e-3 32/1e-3 32/3e-3
Prefix-Tuning 32/3e-4 32/3e-4 32/5e-4 32/5e-4 32/3e-4 32/2e-4 32/3e-4 32/3e-4 32/3e-4
HiFilayer-wise 32/2e-4 32/2e-4 32/2e-4 32/2e-4 16/1e-4 16/1e-4 16/2e-4 16/2e-4 32/1e-4
HiFimid-top 32/1e-4 32/2e-4 32/2e-4 32/2e-4 16/3e-4 16/2e-4 16/3e-4 16/2e-4 32/2e-4

Table 5: The settings of batch size / learning rate for varying baselines on a range of datasets.

processing stage, we need to calculate the infor-
mation richness and correlation, where SVD is the
most time-consuming operation in Alg. 1. Theo-
retically, for a m× n matrix, the time complexity
of SVD is O(n2 ×m + n ×m2), but we can ac-
celerate this process by using cuSOLVER (a GPU
optimization library)13 on CUDA. Besides, the cor-
relation can be solved almost in linear time. For the
PageRank algorithm in Alg. 2, the theoretical time
complexity isO(t(ε)×n2), where t(ε) and n refer
to the number of iterations and nodes, respectively.
As shown in the right of Fig. 6, t(ε) < 12 under di-
verse datasets, which indicates the fast convergence
of PageRank.

Overall, our pre-processing process is so effi-
cient that the time spent on it is almost negligible
compared to fine-tuning. Once the heads to be up-
dated are determined, the fine-tuning efficiency of
our method HiFi is similar to other methods, e.g.,
BitFit, Child-Tuning.

13https://pytorch.org/docs/stable/generated/
torch.svd.html

A.7 More Experimental Results on
Commonly-used Tasks

In addition to evaluating the natural language un-
derstanding tasks in the main text, we also con-
duct the comparison on two widely-used bench-
marks: SQuAD (Rajpurkar et al., 2016) and SWAG
(Zellers et al., 2018). For each method, we train
only 3 epochs on the training set and then report
the result on the validation set are shown in Tab. 6.

Method SQuAD (F1) SWAG (Acc.)

Full-FT 90.7 85.5

Diff-Pruning 89.0 84.2
Child-Tuning 88.5 83.7

Adapter 88.0 83.8
BitFit 82.1 81.4
LoRA 89.2 83.1
Compacter 87.1 83.8
Prefix-tuning 87.7 84.3
HiFi 89.8 84.9

Table 6: The experimental results on the validation
datasets of SQuAD and SWAG.

https://pytorch.org/docs/stable/generated/torch.svd.html
https://pytorch.org/docs/stable/generated/torch.svd.html
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Figure 8: The effect of input batch size for the correlation between heads.
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Figure 9: The effect of learning rate for the correlation between heads.
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Figure 10: The effect of input sequence length for the correlation between heads.

0 1 2 3 4 5 6 7 8 9 10 11

0
1
2
3
4
5
6
7
8
9

10
11

layer_index: 0

0 1 2 3 4 5 6 7 8 9 10 11

0
1
2
3
4
5
6
7
8
9

10
11

layer_index: 1

0 1 2 3 4 5 6 7 8 9 10 11

0
1
2
3
4
5
6
7
8
9

10
11

layer_index: 2

0 1 2 3 4 5 6 7 8 9 10 11

0
1
2
3
4
5
6
7
8
9

10
11

layer_index: 3

0 1 2 3 4 5 6 7 8 9 10 11

0
1
2
3
4
5
6
7
8
9

10
11

layer_index: 4

0 1 2 3 4 5 6 7 8 9 10 11

0
1
2
3
4
5
6
7
8
9

10
11

layer_index: 5

0 1 2 3 4 5 6 7 8 9 10 11

0
1
2
3
4
5
6
7
8
9

10
11

layer_index: 6

0 1 2 3 4 5 6 7 8 9 10 11

0
1
2
3
4
5
6
7
8
9

10
11

layer_index: 7

0 1 2 3 4 5 6 7 8 9 10 11

0
1
2
3
4
5
6
7
8
9

10
11

layer_index: 8

0 1 2 3 4 5 6 7 8 9 10 11

0
1
2
3
4
5
6
7
8
9

10
11

layer_index: 9

0 1 2 3 4 5 6 7 8 9 10 11

0
1
2
3
4
5
6
7
8
9

10
11

layer_index: 10

0 1 2 3 4 5 6 7 8 9 10 11

0
1
2
3
4
5
6
7
8
9

10
11

layer_index: 11

0.0

0.2

0.4

0.6

0.8

1.0

Figure 11: The effect of sample size for the correlation between heads.


