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Abstract

Recent generative approaches for multi-hop
question answering (QA) utilize the fusion-in-
decoder method (Izacard and Grave, 2021) to
generate a single sequence output which in-
cludes both a final answer and a reasoning path
taken to arrive at that answer, such as passage
titles and key facts from those passages. While
such models can lead to better interpretability
and high quantitative scores, they often have
difficulty accurately identifying the passages
corresponding to key entities in the context, re-
sulting in incorrect passage hops and a lack
of faithfulness in the reasoning path. To ad-
dress this, we propose a single-sequence pre-
diction method over a local reasoning graph
(SEQGRAPH)1 that integrates a graph structure
connecting key entities in each context passage
to relevant subsequent passages for each ques-
tion. We use a graph neural network to encode
this graph structure and fuse the resulting rep-
resentations into the entity representations of
the model. Our experiments show significant
improvements in answer exact-match/F1 scores
and faithfulness of grounding in the reasoning
path on the HotpotQA dataset and achieve state-
of-the-art numbers on the Musique dataset with
only up to a 4% increase in model parameters.

1 Introduction

Multi-hop Question Answering (QA) involves rea-
soning over multiple passages and understanding
the relationships between those pieces of informa-
tion to answer a question. Compared with single-
hop QA, which often extracts answers from a single
passage, multi-hop QA is more challenging as it
requires a model to determine the relevant facts
from multiple passages and connect those facts for
reasoning to infer the final answer.

To tackle multi-hop QA, recent works have inves-
tigated large pretrained generative models (Lewis
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"An American Werewolf in Paris was a partial sequel to the comedy film starring whom?"

An American Werewolf in Paris

[f1] It follows the general concept of, and is a loose sequel to, John
Landis' 1981 film "An American Werewolf in London".

David Naughton #1

David Naughton #2

An American Werewolf in London
[f1] An American Werewolf in London is a 1981 horror comedy film. [f2]
It was written and directed by John Landis and starring David
Naughton, Jenny Agutter and Griffin Dunne.

[f1] Naughton first became widely known as a result of his 4-year stint
(1977–1981) singing and using appearances to promote Dr Pepper.

[f1] David Walsh Naughton (born February 13, 1951) is an American
actor and singer known for his starring roles in the 1981 horror film, "
An American Werewolf in London", and the 1980 Disney comedy,
"Midnight Madness".

Question:

Reasoning Path:
[title-1] An American Werewolf in Paris [facts-1] [f1] [title-2] An American Werewolf 

in London [facts-2] [f2] [answer] David Naughton, Jenny Agutter and Griffin Dunne
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Passage 5

Passage 3

Passage N
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Entity Spans Passage Titles

Figure 1: Localized graph construction connecting en-
tity spans to corresponding passages in the context. If
there are multiple passages with the same title, we con-
nect the entity span to all such passages.

et al., 2020b; Roberts et al., 2020; Brown et al.,
2020) and demonstrated their effectiveness over
traditional extractive models (Chen et al., 2017).
Compared with extractive models, the ability of
generative models to effectively aggregate and com-
bine evidence from multiple passages proves ad-
vantageous for multi-hop QA. In particular, Izacard
and Grave (2021) propose a method called FID
(Fusion-in-Decoder), which leverages passage re-
trieval with a generative model, such as T5 (Raf-
fel et al., 2020) or BART (Lewis et al., 2020a),
to achieve state-of-the-art performance on various
single-hop QA tasks. However, this approach does
not extend well to multi-hop QA tasks (Yavuz et al.,
2022), as it sorely relies on a black-box genera-
tive model to generate answers directly without
explicitly modeling the multi-hop reasoning pro-
cess. Additionally, FID encodes multiple context
passages independently for multi-hop QA, ignoring
the structural and semantic relationship between
these passages (Yu et al., 2022). Building on FID,
PATH-FID (Yavuz et al., 2022) addresses the in-
terpretability issue by training a model to gener-
ate a reasoning path that contains supporting pas-
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sage titles, facts, and the final answer. However,
our analysis of PATH-FID outputs shows discon-
nected reasoning with incorrect passage hops in the
model’s reasoning path which affects final answer
generation. Recently, there have been multiple tech-
niques (Jiang and Bansal, 2019; Lee et al., 2021;
Ye et al., 2021) to counter disconnected reasoning
which operate at the dataset level, using adversarial
training, adding extra annotations or using dataset
rebalancing for training. While these approaches
optimize models to mitigate disconnected reason-
ing (Trivedi et al., 2020), the performance on the
original test set often suffers from a significant de-
crease.

In this paper, we propose a single-sequence
prediction method over a local reasoning graph
(SEQGRAPH) that integrates a graph structure con-
necting key entities in each context passage to
relevant subsequent passages for each question.
Different from the prior works, our method not
only mitigates the disconnected reasoning issue
but also maintains robust performance on the orig-
inal dataset. Intuitively, for each multi-hop ques-
tion, our method leverages the structural relation-
ship between different passages to learn structured
representations through a graph neural network
(GNN) (Hamilton et al., 2017; Kipf and Welling,
2017). The structured representations are fused
to bias the generative model toward predicting
a faithful, connected reasoning path which im-
proves answer predictions. Our experiments on
the HOTPOT-QA dataset (Yang et al., 2018) show
clear improvements in exact-match(EM)/F1 scores
compared to generative baselines in the distractor
setting while minimizing disconnected reasoning
quantified by the DIRE score (Trivedi et al., 2020).
We also achieve the state-of-the-art performance
on the MUSIQUE-Answerable test dataset (Trivedi
et al., 2022) with a 17-point improvement in an-
swer F1 over the current best-performing model in
the end-to-end (E2E) category.

To summarize, our contributions are as follows:

• We propose an interpretable single-sequence pre-
diction approach over local reasoning graphs,
SEQGRAPH, to bias the model representations

• SEQGRAPH achieves notable performance im-
provements on two multi-hop QA benchmarks,
HOTPOT-QA and MUSIQUE (SOTA), with only
a minimal increase in the model size.

• SEQGRAPH reduces disconnected reasoning as
measured by DIRE score while maintaining

strong performance gains on the original dataset.

2 Preliminaries

Problem Setup: In a multi-hop QA task, each
QA pair in a labeled dataset D is given along with
a set of N passages, Pq = {p1, p2, ..., pN}, i.e.,
(q, a,Pq) ∈ D, where a passage has its title and
content pi = (ti, ci). The task is to learn a model
parameterized θ to generate an answer string a for
the given question q and Pq.

In this paper, we focus on the distractor setting,
where Pq is given for each question and contains
m distractors that are not useful to the answer pre-
diction. Thus, this task requires a model to reason
over multiple hops of the remaining N −m rele-
vant passages. In addition to predicting the final
answer a, we also aim to train a model to predict a
reasoning path R of important elements (e.g., rele-
vant passage titles, supporting facts in a passage)
that lead to the final answer.

Multi-hop QA as Single Sequence Generation:
Recent generative question answering (QA) ap-
proaches (e.g., FID (Izacard and Grave, 2021),
PATH-FID (Yavuz et al., 2022)) utilize an encoder-
decoder model as the backbone to generate answers
in a single text sequence. In particular, FID is one
of the popular formulations.

Specifically, for each passage pi = (ti, ci) ∈ Pq

of a question q, FID encodes a combined sequence
of the question, the passage title and contents into
an embedding. These embeddings for all passages
are concatenated as inputs to the decoder for gener-
ating the final answer.

PATH-FID builds upon this by explicitly model-
ing a reasoning path as part of the generation output
in addition to the answer. Specifically, special in-
dex tokens [fi] are added to demarcate all sentences
in each passage context. The sentences supporting
the prediction of a final answer are considered facts.
The decoder is then trained to generate the reason-
ing path R as a linearized sequence consisting of
the passage titles and the index tokens of facts used
within those passages to obtain the final answer.
Figure 1 shows an example of a reasoning path.

Disconnected Reasoning in PATH-FID: Since
the model predictions now include the reasoning
path, we can analyze which facts in the passage
are utilized by the model to determine the next
passage to hop to and arrive at the final answer.
For a perfectly faithful model, all predictions with



correct answers should have correctly identified
passages and facts. However, due to the presence
of shortcuts in the datasets as well as the model’s
predicted reasoning path not being faithful, we ob-
serve model predictions containing correct final an-
swers but incorrect identification of passage titles
or facts. This unfaithful prediction issue is referred
to as disconnected reasoning (Trivedi et al., 2020).
Different from PATH-FID, we use the presence of a
local graph structure between different passages in
the context to bias the representations of the model
and help alleviate this problem.

3 Method

In this section, we describe our proposed method
for solving disconnected reasoning for multi-hop
QA in the distractor setting.

Overview: Our method first constructs a local
graph over passage contexts for each question
(§3.1), and integrates the graph information with
the key entities to improve the generation of reason-
ing paths (§3.2). Different from prior works that
encode all the passages independently, we connect
the passages through the key pivot entities into a
local graph for a question, which allows us to en-
code structural representations across passages by
a graph neural network. These graph structured rep-
resentations are then fused with the contextualized
text representations from a text encoder, guiding
the model to leverage structural information to al-
leviate disconnected reasoning over passages.

3.1 Graph Construction
In contrast to the full-wiki setting where a model
must retrieve relevant passages from Wikipedia or
a large corpus, the distractor setting provides the
model with a list of N passages Pq consisting of
N − m relevant passages and m distractors for
each question q. Conventionally, these passages
are collected from Wikipedia, as Wikipedia re-
mains one of the largest faithful knowledge sources
available for public usage. Even for text passages
out of Wikipedia, there are existing out-of-box en-
tity linkers (e.g., SLING (Ringgaard et al., 2017),
BLINK (Wu et al., 2020)) that can identify key en-
tities from texts and link them to their Wikipedia
pages. As a result, each provided passage may con-
tain pivot entities with hyperlinks connecting to
their corresponding Wikipedia pages. We exploit
such entity hyperlinks to construct a local directed
graph G = (N ,L) containing two types of nodes

(i.e., entities and passage titles) and links between
these nodes. Specifically, for each pivot entity e in
a passage pi, we create a link from e to the title tj
of another passage pj (denoted as le→tj ) whenever
the entity span e points to a Wikipedia article that
contains the passage pj .

For example, an entity span “David Noughton”
appears in the passage context: “An American
Werewolf in London is a 1981 horror comedy film
starring David Noughton, Jenny Agutter. ...”

This entity would be connected to a passage
with the title of “David Walsh Noughton”, forming
the link (David Noughton[Entity] → David Walsh
Noughton[Passage]). If there are multiple passages
with the title “David Walsh Noughton” among the
N passages, the entity span would be connected to
all of them with distinct links. Figure 1 shows an
example of an entity-passage graph.

3.2 Entity-to-Passage Fusion
Next, we describe how we encode such a local
directed graph into vector representations for all
nodes and fuse these node representations with
the contextualized text representations of the corre-
sponding entities from the language model.

We utilize the same model as PATH-FID with
a pre-trained T5 model as our backbone architec-
ture. The input for this method consists of the N
sequences, where each sequence is a concatenation
of the question q, the title and contents of a passage
pi from the collection pi ∈ Pq together with their
indicator tokens, denoted as Si below:

Si := [Question] q [Title] ti [Content] ci (1)

Given the T5’s encoder of M transformer layers,
we first encode Si through the first L layers to ob-
tain the intermediate hidden representations ZL

i in
Eq. (2), which capture the shallow contextualized
information of the input sequence.

ZL
i = TextEncoder(Si, L) (2)

We utilize these shallow representations to ini-
tialize the node embeddings for a graph neural
network. Specifically, we extract the represen-
tations of the entity spans or passage title spans
(i.e., nodes in the graph G) from ZL

i according to
their span positions [a, b] in Si. Next, for a text
span Si,a:b representing either an entity or a title
in Si, we average the extracted representations of
the text span to obtain an initial node embedding,
i.e., n = avg(ZL

i,a:b). Finally, we stack the initial
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Passage 1: An American Werewolf in Paris

T5 Encoder
First L layers
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Graph
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T5 Encoder
remaining 

layers

T5 Decoder[title-1] An American Werewolf in Paris [facts-1] [f1] [title-2] An American Werewolf  
in London [facts-2] [f2] [answer] David Naughton, Jenny Agutter and Griffin Dunne" 

Concat

Input sequence 1 

Input sequence 2 

Input sequence N 

Passage 1
Passage 2

Passage N

Question:

   [f1] It follows the ... An American Werewolf in     
   London  
   [f2] The film is a... the United States and France.

Entity span

Passage title span

"An American Werewolf in Paris was a partial sequel to the comedy film starring whom?"

Input Sequence 1

   Question: An American ... whom? Title: An           
   American Werewolf ... Context: [f1]: It follows ...    
  [f2] The film is a ... the United States and France.

Fusion

Figure 2: Given a question and the supporting passages, we construct a localized entity-passage graph. The
representations from the Lth layer of the language model is used to initialize the weights of a graph neural
network(GNN) and it is used to perform message passing on the constructed local graph. The representations for
the entity spans and titles from the GNN are added to the LM representations and passed through the remaining
M − L layers of the encoder. The T5 decoder performs cross-attention on the final hidden states from the encoder
and generates the reasoning path with the final answer.

embeddings for all nodes denoted as N and apply
a graph neural network (GNN) to further encode
the structural embeddings on the graph G:

ZG = GraphEncoder(N,G) (3)

As we record the text span position [a, b] for each
node in G, we can leverage the node embeddings
ZG to construct a new structured representation
ZG
i (with the same size as ZL

i ) for each sequence
Si where we fill in the node embeddings from ZG

to their corresponding text span positions [a, b] in
Si and fill in 0 to the other non-span positions.

Finally, we fuse the contextualized text represen-
tations ZL

i from the text encoder and the structured
node representations ZG

i by an aggregation opera-
tor ⊕, and pass them to the remaining layers of the
text encoder to obtained the fused representations
Si for each input sequence Si:

Si = TextEncoder(ZG
i ⊕ ZL

i ,M − L) (4)

In this work, the aggregation operator used is a
simple addition. Complex aggregation mechanisms
such as learning a weighted combination of the
representations can be explored in future work.

We concatenate the fused representations Si

from all of the N context sequences to form S =
[S1;S2 · · · ;SN ].

Subsequently, S is passed as inputs to the T5
decoder that estimates the conditional probability
Pθ(R|S) of predicting a reasoning path R. De-
pending on the annotations in different datasets, a
reasoning path R can take various formats. For
example, the reasoning path takes the form “R :=
[title] ti [facts] fi [answer] a” for HOTPOT-QA
and “R := [title] ti [intermediate_answer]
ansi [answer] a” for MUSIQUE. We also inves-
tigate variants of reasoning paths for MUSIQUE in
our experiments. As we can construct ground-truth
reasoning paths R∗ during training, the model is
optimized using a cross-entropy loss between the
conditional probability Pθ(R|S) and R∗.



4 Experimental Setting

In this section, we elaborate on the datasets, the
baseline models and the variants of SEQGRAPH

we consider for our experiment settings. We con-
sider two multi-hop QA datasets, HOTPOT-QA and
MUSIQUE. Since SEQGRAPH is primarily focused
only on improving the efficacy of encoding, we con-
sider only the distractor setting for both datasets.
Table 4 shows the standard train/dev/test statistics.

HOTPOT-QA: The final answer to each question
in the distractor setting is extracted from 10 pas-
sages. The dataset includes two main types of ques-
tions: bridge (80%) and comparison (20%). Bridge
questions often require identifying a bridge entity
in the first passage to correctly hop to the second
passage that contains the answer, while compari-
son questions do not have this requirement. Each
question is also provided with annotations of 2 sup-
porting passages (2-hop) and up to 5 corresponding
relevant sentences as their supporting facts.

MUSIQUE: MUSIQUE has questions that range
in difficulty from 2 to 4-hops and six types of rea-
soning chains. MUSIQUE uses a stringent filtering
process as well as a bottom-up technique to itera-
tively combine single-hop questions from several
datasets into a k-hop benchmark that is more diffi-
cult than each individual dataset and significantly
less susceptible to the disconnected-reasoning prob-
lem. Unlike HOTPOT-QA, MUSIQUE does not
provide annotations of relevant sentences but pro-
vides supporting passage titles, question decompo-
sition(decomposition of a multi-hop question into
simpler 1-hop sub-questions) and also intermedi-
ate answers to the decomposed questions. Given
this variety, we use the following reasoning path
variants to train the model to generate:

• DA: Question decomposition and final answer
• SA: Supporting titles and final answer
• SIA: Supporting titles, intermediate answers

and final answer
• DSIA: Question decomposition, supporting ti-

tles, intermediate answers and final answer

Table 6 shows an example of different reasoning
paths. While the last variant (predicting every de-
composition/intermediate answer or support title)
is more interpretable, it encounters the challenge
of producing a long sequence. SIA is our best-
performing reasoning path variant which is used
for all of our results and analysis.

4.1 Models in Comparison

Our main baselines are generative approaches to
multi-hop QA that include and build upon the FID
approach. For all of the models, we use the pre-
trained T5 encoder-decoder as the backbone and
consider two sizes—base and large variants.

• FID: Model generation includes only the final
answer.

• PATH-FID: Model generation includes the rea-
soning path as well as the final answer.

• SEQGRAPH: Model that utilizes a fusion of rep-
resentations from the language model and the
Graph Neural Network. Similar to PATH-FID,
we train the model to generate the reasoning
path in addition to the final answer.

4.2 Evaluation Metrics

For both HOTPOT-QA and MUSIQUE, we use the
standard quantitative metrics of exact-match and
F1 scores to evaluate the quality of predicted an-
swers. For models that predict the reasoning path
in addition to the final answer, we can quantify how
accurately they can identify the supporting facts (or
supporting titles for MUSIQUE) using the Support-
EM and Support-F1 scores Yang et al. (2018).

To quantify the level of disconnected reasoning,
we compute dire F1 scores on the answer spans
(Answer), supporting paragraphs (Suppp), support-
ing sentences (Supps), joint metrics (Ans+Suppp,
Ans+Supps) of the Dire HOTPOT-QA subset.

4.3 Implementation details

We train all models using an effective batch size of
64. We use an initial learning rate of 1e-4, a lin-
ear rate scheduler, a warmup of 2,000 steps (1,000
steps for MUSIQUE), and finetune the models for 10
epochs. For SEQGRAPH, we use GAT (Veličković
et al., 2017) for our GNN layers. A maximum
sequence length of 256 tokens is used for construct-
ing the input. All experiments have been conducted
on a machine with either 4×40G A100 GPUs or
4×80G A100 GPUs. A detailed list of hyperparam-
eters can be found in Appendix E.

5 Results and Analysis

In this section, we present the main results of the
baselines and our proposed approach on HOTPOT-
QA and MUSIQUE (§5.1), and then perform fine-
grained analysis thereafter.



Model HOTPOT-QA MUSIQUE

Answer Support Answer Support
EM F1 EM F1 EM F1 EM F1

FID-Base 61.84 75.20 - - 29.38 39.97 - -
PATH-FID-Base 62.03 75.69 60.45 86.00 34.71 44.93 57.30 80.18
SEQGRAPH-Base 64.19 77.60 62.44 87.72 37.36 47.11 58.05 80.39

FID-Large 65.59 79.39 - - 36.04 46.66 - -
PATH-FID-Large∗ 65.80 78.90 59.30 85.70 - - - -
PATH-FID-Large 65.33 79.00 61.52 86.88 42.28 53.86 62.14 82.45
SEQGRAPH-Large 66.51 81.62 63.24 88.28 46.01 56.88 65.12 83.65

Table 1: Performance on the dev set of HOTPOT-QA and MUSIQUE. Since FID does not predict a reasoning path,
we do not compute the Support EM and F1 scores. PATH-FID-Large∗ indicates the numbers reported from Yavuz
et al. (2022), while the other numbers are from our reimplementation

5.1 Multi-hop Performance

The quantitative performance of the models in
terms of exact-match and F1 scores for both the
final answer and the predicted supports are shown
in Table 1. We find that across both model sizes
(BASE and LARGE), explicitly predicting the rea-
soning path helps PATH-FID in improving the an-
swer EM and F1 scores over the vanilla FID ap-
proach. By biasing the model with graph represen-
tations, SEQGRAPH outperforms the baselines on
both the HOTPOT-QA and the MUSIQUE datasets.

SEQGRAPH achieves a 2-point improvement in
both answer and support EM when considering the
base variant and 1.5 point improvement for the
large variant on the dev set of HOTPOT-QA.

On the more challenging MUSIQUE dataset, we
observe stronger results from SEQGRAPH where
it records up to a 4-point improvement in both an-
swer and support scores across both model sizes
on the dev set. On the test set (in Table 8 of the
appendix), the current best performing approach
is a two stage ROBERTA/ LONGFORMER-Large
model, Select-Answer, where the passage selec-
tion/ranking and answer generation stage is op-
timized separately using different models. SEQ-
GRAPH-Large achieves state-of-the-art numbers
on Answer-F1 with a 5-point improvement over
the Select-Answer model2 even though it is a sin-
gle stage approach. When comparing with the top
score in the end-to-end (E2E) category which all of
our models belong to, SEQGRAPH gets a massive
17-point improvement in answer F1 and a 9-point
improvement in support F1 establishing the efficacy
of our approach. It should also be noted that all of
the current models on the leaderboard are discrim-
inative approaches with an encoder-only model

2https://leaderboard.allenai.org/musique_ans/

(LONGFORMER-Large) encoding a very long con-
text length of 4,096, while all of our models are
generative in nature with a much smaller context
length of 256. MUSIQUE is also designed to be
more challenging than HOTPOT-QA and explicitly
tackles the issue of disconnected reasoning during
dataset curation, making it harder for the model to
take shortcuts and cheat. The larger performance
improvements of SEQGRAPH on MUSIQUE com-
pared to HOTPOT-QA showcases the advantage
of our proposed approach, providing promising
results for further research in this direction to miti-
gate disconnected reasoning.

5.2 Faithfulness of Reasoning Paths

We follow Yavuz et al. (2022) to perform analysis
at the passage and individual fact level to deter-
mine how faithful the generated reasoning paths
are across different models.

Predicted Answer in Predicted Titles/Support:
how often are the predicted answers found in one
of the predicted passages or in the predicted sup-
porting facts3.

Gold Answer in Predicted Titles/Support: how
often are the gold answers found in one of the
predicted passages or in the predicted supporting
facts.

Predicted Answer in Gold Titles/Support: how
often are the predicted answers found in one of the
gold passages or in the gold supporting facts.

Figure 3 shows the described faithfulness metric
scores on HOTPOT-QA. We find that SEQGRAPH

3We do this analysis only on Bridge type questions where
the final answer span can be found in context passages, unlike
comparison questions where the final answer is usually yes/no
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Figure 3: Comparison of model faithufulness on HOTPOT-QA. We find that SEQGRAPH improves over PATH-FID
consistently across all categories.

Model Answer ↓ SuppP ↓ SuppS ↓ Ans + SuppP ↓ Ans + SuppS ↓

FID-Base 51.1 - - - -
PATH-FID-Base 45.5 48 49.1 22.6 24.3

SEQGRAPH-Base 44.7 46.2 45.4 21.8 22.8

FID-Large 53.5 - - - -
PATH-FID-Large 48.8 48.3 49.7 24.3 26.4
SEQGRAPH-Base 45.7 45.9 45.3 22.3 23.4

Table 2: DIRE score (F1 scores) for various models on the probe dataset of HOTPOT-QA indicating the extent of
disconnected reasoning. Lower the score, the better the model.

is more faithful with a 0.5-1.5% improvement over
PATH-FID across all considered categories.

5.3 Performance vs Number of hops

We break down the final answer exact-match and F1
scores based on how many supporting facts(or titles
for Musique) are required to answer the question.
Figure 5 shows this performance breakdown for
HOTPOT-QA and Figure 6 shows it for MUSIQUE.
We observe that SEQGRAPH improves over PATH-
FID in the cases where the support includes two
or three supporting facts (or titles), but the answer
EM takes a hit when the number of supporting
facts(titles) ≥ 4. We notice that SEQGRAPH has a
higher support EM over PATH-FID in such cases
where shortcuts may exist in the dataset and PATH-
FID relies on those shortcuts to get a higher answer
EM but a lower support EM. Section §5.4 quantifies
the extent to which PATH-FID suffers from discon-
nected reasoning as compared to SEQGRAPH.

5.4 Probing Disconnected Reasoning

HOTPOT-QA suffers from information leakage in
the form of reasoning shortcuts leading to discon-
nected reasoning. This affects the generalization

capability of such models and inflates the perfor-
mance on the evaluation sets. Table 4 shows some
qualitative examples of disconnected reasoning in
PATH-FID that are avoided by SEQGRAPH

Trivedi et al. (2020) construct a probe of
HOTPOT-QA by splitting the two supporting para-
graphs for the original question across two ques-
tions. If the model can answer modified questions
correctly without the complete context, it suggests
that the model uses disconnected reasoning for the
original question. By measuring the performance
of a model on such a dataset, we arrive at the DIRE

score with a higher value implying more discon-
nected reasoning. Table 2 shows the DIRE scores
for the various models. We see that SEQGRAPH re-
sorts to lower disconnected reasoning compared to
PATH-FID while maintaining strong performance
gains on the original evaluation set.

5.5 Comparison with PathFiD+

Yavuz et al. (2022) extend PATH-FID and intro-
duce PATH-FID + to improve the cross-passage
interactions before feeding to the FiD decoder and
show an improvement of 7 EM points and achieve
state-of-the-art results on HOTPOT-QA distractor



Figure 4: Qualitative Analysis of Disconnected Reasoning in HOTPOT-QA. Correct/Incorrect hops from entity
spans to Passage titles for different cases are shown. In the first two cases, disconnected reasoning by PATH-FID
leads to incorrect final answer while SEQGRAPH gets the path and answer correct. The third case shows PATH-FID
getting the final answer right despite the reasoning path being disconnected while SEQGRAPH gets the connected
reasoning path right.

dataset. However, we find the following limitations
of the approach:

Hop-assumption: PATH-FID + adds pairs of
contexts as input to the FID encoder, which as-
sumes a fixed number of hops (in case of HOTPOT-
QA, two) and doubles the input sequence length,
leading to increased training time.

Multi-step: To efficiently encode pairs of pas-
sages (instead of inefficient

(
N
2

)
passages, where

N is the total number of passages), PATH-FID +
also needs to run the vanilla PATH-FID or train
another model to choose the first relevant context
P∗ to jump to and then construct pairs (P∗, Pn).
This makes it inefficient and not scalable to ques-
tions with higher hops or complex datasets like
MUSIQUE

In contrast, our approach does not make any as-
sumptions about the number of hops and is scalable.
It produces output in a single shot without requiring
multiple steps or increased sequence length. While
PATH-FID + may achieve stronger performance in
2-hop HOTPOT-QA, our proposed method is more
general, efficient and scalable, making it a more

practical solution for real-world applications and
also easily extendable to open-domain setting.

6 Related Works

Multihop question answering requires a model to
perform reasoning over multiple pieces of infor-
mation, utilizing multiple sources and inferring
relationships between them to provide a correct an-
swer to a given question. There have been various
approaches and datasets proposed for training QA
systems, such as HotpotQA (Yang et al., 2018),
IIRC(Ferguson et al., 2020) and Musique (Trivedi
et al., 2022).

In the HOTPOT-QA full-wiki setting, the task is
to find relevant facts from all Wikipedia articles and
then use them to complete the multi-hop QA task.
Retrieval models play an important role in this set-
ting, such as DPR (Karpukhin et al., 2020), which
focuses on retrieving relevant information in the
semantic space. Other methods, such as Entities-
centric (Das et al., 2019), and Golden Retriever (Qi
et al., 2019), use entities mentioned or reformu-
lated in query keywords to retrieve the next hop



document. Additionally, PathRetriever (Asai et al.,
2020) and HopRetriever (Li et al., 2020) use RNN
to select documents to form a paragraph-level rea-
soning path iteratively. The above methods mainly
focus on the open-domain setting (full-wiki) and
improve the retriever’s performance and do not ad-
dress the disconnected reasoning problem.

Multiple techniques (Jiang and Bansal, 2019;
Lee et al., 2021; Ye et al., 2021) to counter discon-
nected reasoning operate at the dataset level, using
adversarial training, adding extra annotations or
using dataset augmentations to get a balanced train
set and prevent the model from cheating.

We highlight differences between our approach
and other related works on HOTPOT-QA-distractor
and other works that combine language models
with graphs below :

Generative approaches: Our generative-FiD ap-
proach differs from others using KG/GNN (Ju et al.,
2022; Yu et al., 2022) as we use an entity-passage
graph with Wikipedia hyperlinks. Also, our focus
is primarily on the distractor setting of multi-hop
QA, while other baselines (Ju et al., 2022; Yu et al.,
2022) are either single-hop or improving retrieval
in open-domain setting

Pipeline vs single-stage: Other baselines (Tu
et al., 2019; Chen et al., 2019; Qiu et al., 2019;
Wang et al., 2021; Li et al., 2023) use a pipeline
approach with distinct encoder models in the rea-
soning process, while we use a single-stage, one-
shot prediction process without assumptions on the
number of hops.

Graph construction: Other methods (Tu et al.,
2019; Qiu et al., 2019) select relevant passages
heuristically from among distractors to construct
graphs. However, we construct our entity-passage
graph on all passages (including distractors) and
fuse the representations in the encoder.

While a direct comparison with pipeline-based
approaches is not possible or fair, we provide com-
parisons in Table 3 for completeness.

Model F1 Support F1

DFGN(Qiu et al., 2019) 69.69 81.62
SAE-Large(Tu et al., 2019) 80.75 87.38
SEQGRAPH-Base (T5-base) 77.6 87.72
SEQGRAPH-Large (T5-large) 81.62 88.28
C2FM-F1(Wang et al., 2021) (Electra large + DebertaV2 xx-large) 84.65 90.08
FE2H(Li et al., 2023) (iterative Electra Large + Albert-xxlarge-v2) 84.44 89.14

Table 3: F1 scores of different related works on
HOTPOT-QA distractor dataset

7 Conclusion

In this paper, we propose SEQGRAPH, an approach
that utilizes the structured relationship between
passages in the context of multi-hop questions to
reduce disconnected reasoning. We construct a
localized entity-passage graph using Wikipedia hy-
perlinks, encode it using a GNN, and fuse the
structured representations with the text encoder
for predicting a reasoning path. Our approach re-
sults in strong performance gains in terms of both
answer and support EM/F1 on HOTPOT-QA and
reduces disconnected reasoning measured using
DIRE score. We also obtain state-of-the-art perfor-
mance on the more challenging MUSIQUE bench-
mark with a 17-point improvement in answer F1
over the current best end-to-end(E2E) model. Ex-
perimenting with sophisticated methods of encod-
ing the graph structure and fusing the text and graph
representations can be explored in future work.

Limitations

We identify the following limitations of our work:

Longer Output Sequences While outputting the
reasoning path as a single short sequence makes the
model more interpretable, it increases the challenge
of producing a long /coherent sequence when the
question is complex (more than 3 hops). Produc-
ing a longer sequence also increases the inference
time. Simplifying this output while not sacrificing
interpretability is a good future direction

Entity Identification Our method needs
wikipedia outlinks or a entity linker to construct a
localized graph for every question. Generalizing
this step by pretraining the model to do entity
linking (Févry et al., 2020; Sun et al., 2021; Verga
et al., 2020) might eliminate the need to use an
external module.
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Dataset Train Validation Test

HotpotQA - distractor 90,447 7,405 7,405
Musqiue - Answerable 19,938 2,417 2,459

Table 4: Number of samples in each data split for HOTPOT-QA and MUSIQUE.

A Breakdown of Performance by Question Type - HOTPOT-QA

Model Bridge Comparison

FID-Base 60.8 65.97
PATH-FID-Base 61.19 65.37

SEQGRAPH-Base 63.6 66.51
PATH-FID-Large 63.72 71.68

SEQGRAPH-Large 65.21 71.69

Table 5: Performance breakdown of Answer-EM by question type on dev set of HOTPOT-QA

B Reasoning Path variants in MUSIQUE

HotpotQA

Question: What is the name of the executive producer of the film that has a score composed by Jerry Goldsmith?
Answer: Ronald Shusett
Reasoning Path: [title-1] Alien (soundtrack) [facts-1] [f1] [title-2] Alien (film) [facts-2] [f6] [answer] Ronald Shusett

Musique

Question: Who is the spouse of the Green performer?
Answer: Miquette Giraudy
Reasoning Path:
DA: [question-1] Who is the performer of Green? [question-2] Who is the Spouse of #1? [answer] Miquette Giraudy
SA: [title-1] Green (Steve Hillage album) [title-2] Miquette Giraud [answer] Miquette Giraudy
SIA: [title-1] Green (Steve Hillage album) [answer-1] Steve Hillage [title-2] Miquette Giraudy [answer] Miquette Giraudy

DSIA: [question-1] Who is the performer of Green? [title-1] Green (Steve Hillage album) [answer-1] Steve Hillage
[question-2] Who is the Spouse of #1? [title-2] Miquette Giraudy [answer] Miquette Giraudy

Table 6: Reasoning path variants for HOTPOT-QA and MUSIQUE. Relevant passage titles are marked in blue,
supporting facts in orange, intermediate answer/final answer is marked in green and the decomposed questions are
marked in brown

The different reasoning path variants that can be constructed based on ground truth annotations can be
found in Table 6. Results of training baselines on these different variants can be found in Table 7
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Figure 6: Performance on dev set of MUSIQUE decomposed by the number of hops.



Model Answer-EM Answer-F1 Support-EM Support-F1

SA 32.02 41.76 47.04 76.23
DA* 31.61 41.4 XX XX
SIA 34.71 44.93 57.3 80.18
DSIA 33.35 43.08 53.5 78.79

Table 7: Results on different variants of MUSIQUE reasoning paths. *Since DA does not predict a reasoning path
with titles, we do not compute the Support EM and F1.
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Figure 5: Performance on dev set of HOTPOT-QA decomposed by number of supporting facts.

We hypothesize that the answer F1 of SEQGRAPH on questions with ≥ 4 hops gets impacted due to the
presence of shortcuts since the support F1 score is higher than PATH-FID.

D Comparison of Musique-Answerable test F1 scores

Table 8 shows the comparison of our models with the current best performing ones on the MUSIQUE-
Answerable test set leaderboard. Our End-to-End single stage model SEQGRAPH-large trained to output
title + intermediate answers (SIA) outperforms the Longformer-Large(Beltagy et al., 2020) End-to-End
model by 17 points in answer F1 and by 9-points in support F1. Furthermore, we also outperform
the current state-of-the-art SA model which is a two stage model (Roberta Large(Liu et al., 2019) +
Longformer Large) by 5 points on Answer F1 and 3 points on Support F1.

E Hyperparameter Settings

Tables 9, 10, 11 detail the hyperparameters we use for FID,PATH-FID and SEQGRAPH for HOTPOT-QA
and MUSIQUE.

The 2-layer GNN module is 17M parameters for the large model and 9.5M for the base, accounting for
only upto 4% increase in model parameters.

Model Answer F1 Support F1
Select+Answer (SA) Model 52.3 75.2
Step Execution by Select+Answer (EX(SA)) Model 49 80.6
Step Execution by End2End (EX(EE)) Model 46.4 78.1
End2End (EE) Model 40.7 69.4
FID-Large 48.4 XX
PATH-FID-SIA-Large 54.8 77.9
SEQGRAPH-SIA-Large 57.6 78.4

Table 8: Current best performing models on the leaderboard (Longformer-Large variants vs our baselines vs
SEQGRAPH



parameter FID-LARGE PATH-FID-LARGE

initialization t5-large t5-large
learning rate 1e-4 1e-4
learning rate schedule linear linear
effective batch size 64 64
gradient checkpointing yes yes
maximum input length 256 256
maximum output length 32 64
warmup steps 2000 2000
gradient clipping norm 1.0 1.0
training steps 16000 16000
weight decay 0.01 0.01
optimizer adamw adamw

Table 9: Hyperparameters for experiments on HotpotQA Distractor setting.

parameter FID-LARGE PATH-FID-LARGE-SIA
initialization t5-large t5-large
learning rate 1e-4 1e-4
learning rate schedule linear linear
effective batch size 64 64
gradient checkpointing yes yes
maximum input length 256 256
maximum output length 32 90
warmup steps 1000 1000
gradient clipping norm 1.0 1.0
training steps 6500 6500
weight decay 0.01 0.01
optimizer adamw adamw

Table 10: Hyperparameters for experiments on Musique-Answerable setting.

parameter SEQGRAPH-LARGE

GNN GAT(Veličković et al., 2017)
GNN Hidden Dimension 1024
GNN Number of layers 2
GNN dropout 0.2
Number of heads 8
Layer for fusion L 3

Table 11: Additional Graph related hyperparameters for SeqGraph


