
Application-Agnostic Language Modeling for On-Device ASR

Markus Nußbaum-Thom Lyan Verwimp Youssef Oualil
Apple

{mnussbaumthom,lverwimp,youalil}@apple.com
accepted at ACL 2023 industry track

Abstract

On-device automatic speech recognition sys-
tems face several challenges compared to
server-based systems. They have to meet
stricter constraints in terms of speed, disk size
and memory while maintaining the same accu-
racy. Often they have to serve several applica-
tions with different distributions at once, such
as communicating with a virtual assistant and
speech-to-text. The simplest solution to serve
multiple applications is to build application-
specific (language) models, but this leads to
an increase in memory. Therefore, we ex-
plore different data- and architecture-driven
language modeling approaches to build a sin-
gle application-agnostic model. We propose
two novel feed-forward architectures that find
an optimal trade off between different on-
device constraints. In comparison to the
application-specific solution, one of our novel
approaches reduces the disk size by half, while
maintaining speed and accuracy of the original
model.

1 Introduction

On-device Automatic Speech Recognition (ASR)
is subject to several constraints: it should return
accurate results in a reasonable time frame with-
out consuming too much memory and disk space.
State-of-the-art research often is accuracy focused,
while resource-constrained applications also need
to take care of performance and size. Finding an ar-
chitecture that reaches all constraints is not trivial.

Another challenge is that ASR systems often
serve a large variety of requests. ASR systems
can serve an on-device Virtual Assistant (VA) but
also allow dictated messages, notes, e-mails, etc. –
we refer to the latter application as Speech-to-text
(STT). Typical VA requests are knowledge-driven
questions such as “how old is Barack Obama?” or
commands, e.g. “play some Lady Gaga music”.
STT requests are longer and of a different nature
than typical VA requests. The solution that yields

the best accuracy for both VA and STT is to train
separate models for each application, but additional
model size is prohibitive. We aim to develop a
single model instead.

In this paper, we focus on a Neural Network
Language Model (NNLM) in the ASR system. Our
baseline is a Fixed-size Ordinally-Forgetting En-
coding (FOFE) feed-forward NNLM (Zhang et al.,
2015). In ASR, the search space can easily increase
so we have to limit the context length used in de-
coding to reach an acceptable latency and lower
memory. Given this short context length, we find
that the FOFE feed-forward LM is competitive to
the Transformer (Vaswani et al., 2017) in terms of
accuracy and better in terms of latency. Irie (2020)
has also shown that Transformers are less robust to
short context lengths.

To build a single Application-Agnostic (AA)
NNLM, we developed a method to optimally sam-
ple training data. We sample data from different
sources, e.g. anonymized and randomly sampled
user requests from opted-in users for VA and STT
and artificial requests spanning many different do-
mains that focus on improving the tail of the distri-
bution. The data-driven approach tries to find the
optimal balance between the application-specific
data sources by creating a balanced development
set and distributing the sampling weights based
on the importance of each data source and each
application on that development set.

Training a single FOFE NNLM on the combined
dataset can lead to accuracy degradations, even
with a larger model or longer training. We explore
two extensions to the baseline FOFE NNLM: firstly,
a Mixture FOFE NNLM (Oualil and Klakow, 2017;
Irie et al., 2018) which is composed of an ensem-
ble of parallel sub-networks and a mixture sub-
network generating normalized probabilities across
all sub-networks. These mixture weights are used
to compute a weighted average of the ensemble
before the softmax output. The second extension

ar
X

iv
:2

30
5.

09
76

4v
1

 [
cs

.C
L

]
 1

6
M

ay
 2

02
3

is an Application-Dependent (AD) FOFE NNLM
that has different sub-networks for each applica-
tion. At training time, data and gradients are (back-
)propagated only through the corresponding sub-
network belonging to an application. At inference
time, the way the user invokes ASR tells us which
application is needed (wake phrase = VA, micro-
phone button = STT) and only the sub-network
belonging to the active application is used. Both
approaches are able to match or outperform the
application-specific model. While the accuracy of
the mixture NNLM is slightly better than the AD-
NNLM the situation is reversed in terms of speed.

The contributions of this paper are as follows:

• We propose a method to optimally combine
application-specific data sources to train an
application-agnostic LM in Section 3.

• We propose two novel FOFE-based neural
LMs in Section 4 that each match the accuracy
of two application-specific language models.

• In Section 6 we compare the novel NNLMs
accuracy and speed against the baseline FOFE
and state-of-art Transformer models. We do
this for three different languages - US En-
glish, German and Mandarin Chinese - and
three types of test sets (see Section 5 for more
information).

2 Related work

We start by discussing related work on modeling
several domains/tasks at once. Many pattern recog-
nition tasks are imbalanced since data from differ-
ent categories do not occur at the same frequency.
Therefore, the less frequent categories are not well
represented in the training data (Anand et al., 1993;
Johnson and Khoshgoftaar, 2019), which results in
a sub-optimal model. Data-driven approaches to
deal with the data imbalance include under- and
over-sampling (Van Hulse et al., 2007). Refine-
ments of these methods select data more intelli-
gently (Kubat and Matwin, 1997; Chawla et al.,
2002; Zhang and Mani, 2003; Barandela et al.,
2004).

Others approaches modify the training and/or
model architecture. Curriculum Learning (Bengio
et al., 2009; Shi et al., 2015) emphasizes data by
fine-tuning towards the corpus consumed by the
end of training. Smith et al. (2020) experiment
with multi-task learning, data augmentation and

a classifier combined with single-task models to
appropriately model several skills in a conversa-
tion agent. Balancing through interleaved sam-
pling of different corpora was investigated in (Xing
et al., 2022) as well as model-based approaches like
multi-task and weighted learning, which allows the
model to self-control the impact of different cor-
pora. Other ways to increase the modeling power
are using a Mixture of Experts (Shazeer et al., 2017;
Zhou et al., 2022) or ensemble networks (Oualil
and Klakow, 2017; Irie et al., 2018; Ganaie et al.,
2022).

The choice of architecture for language mod-
eling has also been a recurrent topic of re-
search. Early neural LMs use feed-forward lay-
ers (Schwenk and Gauvain, 2002; Bengio et al.,
2003). Mikolov et al. (2010) introduced recur-
rent neural LMs that can in principle use unlim-
ited history. These networks are trained with back-
propagation through time which ‘unrolls’ the net-
work in time for gradient computation, but this
leads to vanishing gradients (Bengio et al., 1993;
Pascanu et al., 2013), essentially limiting the his-
tory that can be learned from. Gated recurrent
architectures (Sundermeyer et al., 2012; Cho et al.,
2014) mitigate this problem.

Recent extensions of the feed-forward architec-
ture have been proposed that alleviate different dis-
advantages. Zhang et al. (2015) proposed a FOFE,
which represents a sequence of words as a vector
with fixed length that captures the word order. They
show that feed-forward networks with FOFE en-
coding outperform recurrent models in language
modeling. The most widely-used architecture in re-
cent years, is the Transformer (Vaswani et al., 2017)
that combines feed-forward layers with multi-head
attention, residual connections, and layer normal-
ization (Ba et al., 2016). It has been successfully
applied to ASR, see e.g. (Irie et al., 2019; Beck
et al., 2020). In this paper, we compare FOFE
feed-forward LMs with Transformer LMs and two
extensions of the base FOFE feed-forward LMs.

3 Data balancing

The ASR system in this paper serves two appli-
cations, VA and STT, for which we observe very
different linguistic patterns. To demonstrate these
differences, we calculate statistics on two English
development sets. Each data set contains 23k
anonymized queries and is randomly sampled from
real user data similarly to the test sets described in

20 40 60 80 100 120 140
100

101

102

103

of words per query

#
of

qu
er

ie
s

w
it

h
x

#
of

w
or

ds
(l

og
)

VA STT

Figure 1: Number of queries (on the y-axis in log scale)
with x number of words (on the x-axis) in the English
VA and STT dev sets.

0 2,000 4,000 6,000 8,000 10,000

call
wake2
wake1

the
is
to

text
what

for
a
Iyou

and.
it

that VA STT

Figure 2: Counts of the union of the 10 most frequent
words in both English VA and STT dev sets. “wake2”
and “wake1” refer to “<wakeword_2> and “<wake-
word_1>.

Section 5.
VA requests are typically shorter than STT re-

quests. In Figure 1, we plot the number of queries
(on a logarithmic scale) that have x number of
words for both data sets. For example, in the VA
dev set there are 9968 requests with only two words
(238 requests consist of only “<wakeword_1>
<wakeword_2>”), while the STT test set contains
1327 requests with two words. If we define a re-
quest of 30 or more words as a ‘long’ request, we
see that the STT test has 2030 long requests while
VA has only 21 long requests.

Secondly, the content and style of the requests
varies between the two applications. Figure 2 plots
the union of the top 10 most frequent words in
each data set – ordered by the frequency in the
VA dev set. Notice that we allow the user to also
dictate punctuation marks, hence the presence of

the dot in the list of words. It is clear from this
distribution that VA queries are often questions
(what) or commands (call, text) while STT queries
are often messages from the perspective of the user
(I, you) who wants to make their message more
readable with punctuation marks.

Because of the different linguistic nature of these
two applications, balancing the NNLM training
data has a large impact on the quality of the model.
A common strategy to determine NNLM sampling
weights for each application is to train individual
n-gram LMs on each data source and choose rel-
evance weights based on the optimal linear inter-
polation weights on a development set (Raju et al.,
2019). In our setup, the sampling weights for the
application-specific text sources are derived from
the count merging weights (Bacchiani et al., 2006;
Hsu, 2007; Pusateri et al., 2019) instead of a linear
combination.

We propose a balancing scheme to derive sam-
pling weights for I text sources that benefit both
applications. We create a balanced development
set containing approximately the same amount of
VA and STT data. Let α1, . . . , αI ∈ [0, 1] be
the sampling weights such that

∑I
i=1 αi = 1 and

ρ(i) ∈ {D,A} indicating if the text source be-
longs to STT or VA. The redistribution probability
masses βD and βA for STT and VA respectively
are calculated to serve the joint application. These
probability masses are determined by the optimal
weights that minimize the perplexity of the linear
Application-Specific (AS) language model com-
bination on the balanced development set. The
application-specific probability mass allocated by
each application can be formalized as:

αD :=
∑

i,ρ(i)=D

αi and αA :=
∑

i,ρ(i)=A

αi.

Now consider the ratio between the redistribution
and application-specific probability mass:

γA :=
βA
αA

and γD :=
βD
αD

.

These ratios determine the scaling of the origi-
nal sampling weights to achieve balancing. Bal-
anced sampling weights are then determined by a
re-normalization of the scaled sampling weights:

λi :=
γρ(i)αi∑
j

γρ(j)αj
, i = 1, . . . , I.

The heldout and training set for NNLM training
is then randomly sampled from the text sources
according to the balanced sampling weights.

4 Application-Agnostic and
Application-Dependent FOFE NNLMs

In this section three different types of NNLM ar-
chitectures are introduced for on-device ASR. In
the following let wN1 := w1, . . . , wN be a word
sequence. All NNLM architectures considered
here follow a similar scheme. In each architec-
ture a word embedding is followed by a FOFE
layer (Zhang et al., 2015). Let α > 0 be the forget-
ting factor of the FOFE layer and em be the word
embedding of word wm then zm := zm−1+α · em
generates the FOFE encoding. Afterwards an n-
gram context of the FOFE encoding is generated by
concatenating n subsequent FOFE encodings for
each position: zm−n+1, . . . , zm. Next, this context
is flattened and passed to the hidden layers.

The baseline FOFE NNLM shown in Figure 3a
applies a stack of feed-forward layers to the flat-
tened FOFE n-gram context. The output of the last
feed-forward layer is fed to a projection layer for
dimension reduction before the final softmax layer.
This architecture is used for the AS-NNLM, where
each application has its own NNLM, as well as for
the Application-Agnostic (AA) NNLM, which is
trained on balanced data for both applications.

Figure 3b shows the mixture NNLM, which
has M parallel sub-networks and a mixture sub-
network. Each sub-network is a stack of feed-
forward layers. The mixture sub-network is also
a stack of feed-forward layers which finish with a
softmax output of dimension M to produce mix-
ture weights for each of the parallel sub-networks,
similarly to (Oualil and Klakow, 2017; Irie et al.,
2018; Zhou et al., 2022) except that the mixture
combines FOFE networks. The subsequent layer
averages the output of all parallel sub-networks
scaled by the corresponding weights of the mixture
sub-network softmax output.

Figure 3c shows the Application-Dependent
NNLM (AD-NNLM). This architecture uses the
application information to train a NNLM in a multi-
task style. This NNLM has a separate sub-network
and softmax output biases for each application. For
training we follow a multi-task approach. The in-
formation of the application for each data sample
is known and used to select the sub-network and
softmax output bias corresponding to the appli-

cation and only back-propagate through a part of
the NNLM. At inference time, data are forwarded
through the corresponding sub-network and soft-
max output bias belonging to the active application.

A word-level NNLM holds the majority of pa-
rameters in the embedding. Therefore, the disk size
for the mixture and AD-NNLM should increase
slightly compared to the baseline architecture. Also
the AD-NNLM speed should not increase since it is
equivalent to the baseline architecture at inference
time.

5 Experimental setup

The training data of our LMs consists of differ-
ent data sources: anonymized and randomly sam-
pled user requests from both VA and STT that are
manually or automatically transcribed, along with
synthetic tail-focused datasets. For the latter, we
sample from domain-dependent templates and lists
of entities that can fill those slots, both of which are
derived from real user data. As mentioned in the
introduction, we train NNLMs for three languages:
US English, German and Mandarin Chinese.

For our NNLMs, we obtain weights according to
the method described in Section 3. For the AS mod-
els we sample 6B words while for the AA and AD
models we sample 12B words. We run Bayesian
hyperparameter optimization and select the final
values based on optimal size-accuracy trade off. As
a result, the models have a slightly different num-
ber of parameters, but we show in section 6 that
this does not impact results noticeably. All mod-
els have 4 feed-forward layers and an embedding
size of 256 – we tie the input and output embed-
ding weights to reduce disk size (Press and Wolf,
2017). The hidden size is 768 for the base FOFE
model, 512 for the AD FOFE and mixture FOFE
and 256 for the Transformer. The Transformer has
the same configuration as Vaswani et al. (2017) and
uses 4 attention heads of size 256. We use the top
100k most frequent words as vocabulary. To speed
up training, we use Noise Contrastive Estimation
(NCE) (Liza and Grzes, 2017) which is replaced
by softmax during inference.

We train our NNLMs with Block Momentum
Stochastic Gradient Descent (Chen and Huo, 2016)
with an initial learning rate of 0.256 for AS, AA
and AD FOFE and 1.024 for AA Mixture FOFE.
For AS models the optimization converges after
64 epochs while for AA and AD models the opti-
mum is delayed to 128 epochs. We keep the initial

(a) Base. (b) Mixture (c) Application-dependent.

Figure 3: Let wm and history hm be the word and history at position m.

learning rate fixed for 16 epochs for AS and 64
epochs for the other models and apply a learning
rate decay of 0.7 if the heldout perplexity increases
for 4 epochs. To stabilize the training a clip norm
of 6.0 is applied and the number of NCE samples
is set to 4096.

For evaluation, we test on three types of test sets:
(1) VA and (2) STT, which consist of user requests
sampled according to the distribution that we ob-
serve in our VA/STT and thus contain many head
queries, and (3) Tail, which is designed to focus on
queries with tail entities. Since these do not occur
often in our user data, Tail consists of synthetic re-
quests sampled from the same templates and entity
lists that generate the synthetic training data. The
requests cover a wide variety of domains such as
music, sports and home automation and the audio
is generated using Text-to-Speech. Table 1 shows
the number of words in each test set.

We evaluate the accuracy of our models using
Word Error Rate (WER) and latency using P95 real-
time factor (RTF). If y is the duration of the audio
signal and x the time it takes to decode y, RTF is
defined as x/y. P95 refers to the 95th percentile
and thus captures the latency of the most difficult
queries. We run each test three times and average
the RTF numbers to capture outliers.

The ASR system uses a deep convolutional neu-
ral network acoustic model (AM) as described
in (Huang et al., 2020; Pratap et al., 2020). For
the AS models, we decode the VA and Tail test sets
with a VA-specific NNLM and the STT test sets
with a STT-specific NNLM. During decoding, the
context length of the NNLMs is limited to 8 words

VA STT Tail
English 226k 292k 454k
German 130k 154k 204k
Mandarin 221k 219k 368k

Table 1: Number of words per test set per language.

to meet the memory and latency contraints of on-
device ASR. We perform a single decoding pass,
combining the AM scores with the NNLM scores
using optimized weights. We can achieve better
WERs by interpolating the NNLM with an n-gram
LM trained on tail data and by adding a rescoring
pass, but since we want to compare the impact of
using different neural architectures, we remove any
factors that might obscure that comparison.

6 Results

We first evaluate the accuracy of the different neural
architectures. Table 2 reports the WER for different
models on the VA, STT and Tail test sets, along
with the number of parameters of the model to give
an estimate of the size on disk. Note that for the AS
FOFE models, we have twice as many parameters
as the AA FOFE models because we train two
separate models, one for VA+Tail and one for STT.

We first observe that moving from AS to AA
FOFE and thus reducing the number of parameters
by half gives in some cases 1.5-3.8% WER degra-
dation. Secondly, even though the Transformer
architectures have been optimized using Bayesian
optimization similar to the FOFE-based models,
they give mixed results. For English VA and STT

LM #Par VA STT Tail
English
AS FOFE 58M 4.02 3.68 17.48
AA FOFE 29M 4.11 3.68 17.78
AA Transf. 27M 3.99 3.56 47.56
AA M-FOFE 37M 3.99 3.56 17.53
AD FOFE 31M 3.99 3.62 17.51
German
AS FOFE 58M 5.32 6.47 29.46
AA FOFE 29M 5.32 6.35 29.93
AA Transf. 27M 11.76 23.34 34.42
AA M-FOFE 37M 5.29 6.26 30.37
AD FOFE 31M 5.25 6.33 32.36
Mandarin
AS FOFE 58M 5.17 6.04 39.96
AA FOFE 29M 5.25 6.27 38.84
AA Transf. 27M 8.88 13.29 40.66
AA M-FOFE 37M 5.13 5.94 38.16
AD FOFE 31M 5.12 6.05 36.41
Mandarin (equal number of parameters)
AS FOFE 68M 5.14 6.00 39.45
AA FOFE 34M 5.26 6.27 38.68
AA Transf. 34M 9.03 13.40 40.38
AA M-FOFE 34M 5.10 6.02 38.54
AD FOFE 34M 5.12 5.98 36.48

Table 2: Number of parameters (#Par) and WERs
for the VA, STT and Tail entity test sets for our
English, German and Mandarin setups. AS =
Application-Specific, AA = Application-Agnostic, AD
= Application-Dependent, Transf. = Transformer, M-
FOFE = Mixture FOFE.

we observe WER improvements while for all other
setups we see large degradations.

The AD FOFE model gives the best accuracy
on VA for all languages, while the AA Mixture
FOFE gives the best accuracy on STT, but the dif-
ferences between the two architectures are small.
They outperform the baseline AS/AA FOFE and
Transformer models in almost all cases. The only
exception are the English and German Tail test sets:
the AS FOFE models still achieve the best accu-
racy, probably because infrequent queries benefit
the most from doubling the number of parameters.

As explained in Section 5, we choose hyperpa-
rameters based on the optimal accuracy-size trade
off. As a result, the number of parameters of the
models at the top of Table 2 are not exactly the
same. To ensure that the small size differences
do not impact the results significantly, we evalu-
ated results for Mandarin models that all have 34M

LM VA STT Tail
English
AA Transf. -18.00 -21.75 -11.30
AA M-FOFE -23.79 -31.54 -17.95
AD FOFE 7.40 -8.04 4.66
German
AA Transf. -19.59 -13.92 -24.85
AA M-FOFE -17.77 -31.45 -79.83
AD FOFE 7.84 3.41 5.58
Mandarin
AA Transf. -10.06 -14.04 -8.90
AA M-FOFE -9.89 -30.21 -36.23
AD FOFE -2.11 1.63 -3.83

Table 3: Latency results: relative P95 RTF reduc-
tions with respect to the AA FOFE models for the VA,
STT and Tail entity test sets for our English, German
and Mandarin setups. AA = Application-Agnostic, AD
= Application-Dependent, Transf. = Transformer, M-
FOFE = Mixture FOFE.

parameters each and added the results at the bot-
tom of Table 2. We observe the same trends: the
AD FOFE and AA Mixture FOFE give the best
results. We confirm that increasing the number of
parameters does not lead to better results.

Finally, we report the relative change in P95 RTF
(P50 RTF showed the same trend) compared to the
baseline AA FOFE model in Table 3. Since RTF is
hardware-dependent, we mostly care about relative
changes compared to the baseline. We observe
that both the Transformer and the Mixture FOFE
are significantly slower than the baseline. For the
English test sets, the Transformer is faster than the
Mixture FOFE, while for German and Mandarin
speed depends on the test set. The AD FOFE gives
the fastest inference speed of the proposed models
and even outperforms the vanilla FOFE on English
VA and all German test sets, while keeping the
degradation limited in the other setups.

7 Conclusion

We aim to develop a single NNLM that can serve
both VA and STT requests with the same accu-
racy and speed as application-specific NNLMs,
while reducing the disk size approximately by half.
We develop a method to optimally balance the
data of the VA and STT applications, and pro-
pose two novel FOFE feed-forward architectures.
The Application-Agnostic Mixture FOFE and the
Application-Dependent FOFE both outperform the

baseline FOFE and Transformer models in terms of
accuracy, and the latter is also competitive in terms
of latency.

Limitations

The two proposed models (AD FOFE and AA
FOFE Mixture) have been tested on more lan-
guages than the ones mentioned in this paper, but
the comparison with Transformer models has not
been done for every language. This paper only uses
word-level LMs. We have done preliminary experi-
ments with subword-level LMs but more extensive
investigation is needed to draw proper conclusions.

Ethics Statement

This paper focuses on the LM of a real-world VA
and as such the results cannot be exactly repro-
duced: we are not aware of any public dataset that
mimics our setup, e.g. ASR that can serve both
VA and STT applications, training data in several
languages that exceeds 6B words along with test
sets of several hundreds of thousands of words
sampled from real user data, etc. All data have
been anonymized and randomly sampled, and hu-
man transcription to create the test sets is only per-
formed from opted-in user data.

Acknowledgements

We would like to thank Barry Theobald, Arturo
Argueta and Thiago Fraga Da Silva for reviewing
this paper.

References
Rangachari Anand, Kishan G. Mehrotra, Chilukuri K.

Mohan, and Sanjay Ranka. 1993. An improved al-
gorithm for neural network classification of imbal-
anced training sets. IEEE Transactions on Neural
Networks, 4(6):962–969.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hin-
ton. 2016. Layer normalization. In arXiv preprint
arXiv:1607.06450.

Michiel Bacchiani, Michael Riley, Brian Roark, and
Richard Sproat. 2006. MAP adaptation of stochastic
grammars. Computer Speech and Language, 20:41–
68.

Ricardo Barandela, Rosa M. Valdovinos, J. Salvador
Sánchez, and Francesc J. Ferri. 2004. The Imbal-
anced Training Sample Problem: Under or over
Sampling? In Joint IAPR International Work-
shops on Statistical Techniques in Pattern Recog-
nition (SPR) and Structural and Syntactic Pattern
Recognition (SSPR), pages 806–814.

Eugen Beck, Ralf Schlüter, and Hermann Ney. 2020.
LVCSR with Transformer Language Models. In
Proceedings Interspeech, pages 1798–1802.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Jauvin. 2003. A Neural Probabilistic Lan-
guage Model. Journal of Machine Learning Re-
search, 3:1137–1155.

Yoshua Bengio, Paolo Frasconi, and Patrice Simard.
1993. The problem of learning long-term dependen-
cies in recurrent networks. In Proceedings of the
IEEE International Conference on Neural Networks,
pages 1183–1195.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert,
and Jason Weston. 2009. Curriculum learning. In
Proceedings of the Annual International Conference
on Machine Learning (ICML), volume 382, pages
41–48.

Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall,
and W. Philip Kegelmeyer. 2002. SMOTE: Syn-
thetic Minority Over-sampling Technique. Journal
of Artificial Intelligence Research, 16:321–357.

Kai Chen and Qiang Huo. 2016. Scalable Training
of Deep Learning Machines by Incremental Block
Training with Intra-block Parallel Optimization and
Blockwise Model-Update Filtering. In Proceed-
ings of the IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pages
5880–5884.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. 2014. Learn-
ing Phrase Representations using RNN Encoder-
Decoder for Statistical Machine Translation. In Pro-
ceedings of the Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
1724–1734.

M.A. Ganaie, Minghui Hu, A.K. Malik, M. Tanveer,
and P.N. Suganthan. 2022. Ensemble Deep Learn-
ing: A Review. Engineering Applications of Artifi-
cial Intelligence, 115.

Bo-June Hsu. 2007. Generalized linear interpolation
of language models. In IEEE Workshop on Auto-
matic Speech Recognition & Understanding (ASRU),
pages 136–140.

Zhen Huang, Tim Ng, Leo Liu, Henry Mason, Xiao-
dan Zhuang, and Daben Liu. 2020. SNDCNN: Self-
Normalizing Deep CNNs with Scaled Exponential
Linear Units for Speech Recognition. In Proceed-
ings of the IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pages
6854–6858.

Kazuki Irie. 2020. Advancing neural language model-
ing in automatic speech recognition. Ph.D. thesis,
RWTH Aachen University, Germany.

Kazuki Irie, Shankar Kumar, Michael Nirschl, and
Hank Liao. 2018. RADMM: Recurrent Adaptive
Mixture Model with Applications to Domain Robust
Language Modeling. In Proceedings of the IEEE
International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 6079–6083.

Kazuki Irie, Albert Zeyer, Ralf Schlüter, and Hermann
Ney. 2019. Language Modeling with Deep Trans-
formers. In Proceedings Interspeech, pages 3905–
3909.

Justin M. Johnson and Taghi M. Khoshgoftaar. 2019.
Survey on deep learning with class imbalance. Jour-
nal of Big Data, 6.

Miroslav Kubat and Stan Matwin. 1997. Addressing
the Curse of Imbalanced Training Sets: One-Sided
Selection. In Proceedings of the International Con-
ference on Machine Learning (ICML), pages 179–
186.

Farhana Ferdousi Liza and Marek Grzes. 2017. Im-
proving Language Modelling with Noise Con-
trastive Estimation. In AAAI Conference on Artifi-
cial Intelligence.

Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan
Černocký, and Sanjeev Khudanpur. 2010. Recurrent
neural network based language model. In Proceed-
ings Interspeech, pages 1045–1048.

Youssef Oualil and Dietrich Klakow. 2017. A neu-
ral network approach for mixing language models.
In Proceedings of the IEEE International Confer-
ence on Acoustics, Speech and Signal Processing
(ICASSP), pages 5710–5714.

Razvan Pascanu, Tomáš Mikolov, and Yoshua Bengio.
2013. On the difficulty of training Recurrent Neural
Networks. In Proceedings of the International Con-
ference on Machine Learning (ICML), pages 1310–
1318.

Vineel Pratap, Qiantong Xu, Jacob Kahn, Gilad Avi-
dov, Tatiana Likhomanenko, Awni Hannun, Vitaliy
Liptchinsky, Gabriel Synnaeve, and Ronan Col-
lobert. 2020. Scaling Up Online Speech Recogni-
tion Using ConvNets. In Proc. Interspeech 2020,
pages 3376–3380.

Ofir Press and Lior Wolf. 2017. Using the Output
Embedding to Improve Language Models. In Pro-
ceedings of the Conference of the European Chap-
ter of the Association for Computational Linguistics
(EACL), pages 157–163.

Ernest Pusateri, Christophe Van Gysel, Rami Botros,
Sameer Badaskar, Mirko Hannemann, Youssef
Oualil, and Ilya Oparin. 2019. Connecting and com-
paring language model interpolation techniques. In
Proceedings Interspeech, pages 3500–3504.

Anirudh Raju, Denis Filimonov, Gautam Tiwari, Gui-
tang Lan, and Ariya Rastrow. 2019. Scalable Multi
Corpora Neural Language Models for ASR. In Pro-
ceedings Interspeech 2019, pages 3910–3914.

Holger Schwenk and Jean-Luc Gauvain. 2002. Con-
nectionist language modeling for large vocabulary
continuous speech recognition. In Proceedings of
the IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 765–
768.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz,
Andy Davis, Quoc V. Le, Geoffrey E. Hinton, and
Jeff Dean. 2017. Outrageously large neural net-
works: The sparsely-gated mixture-of- experts layer.
In International Conference on Learning Represen-
tations (ICLR).

Yangyang Shi, Martha A. Larson, and Catholijn M.
Jonker. 2015. Recurrent neural network language
model adaptation with curriculum learning. Com-
puter Speech and Language, 33(1):136–154.

Eric Michael Smith, Mary Williamson, Kurt Shuster,
Jason Weston, and Y-Lan Boureau. 2020. Can
You Put it All Together: Evaluating Conversational
Agents’ Ability to Blend Skills. In Proceedings of
the Annual Meeting of the Association for Computa-
tional Linguistics (ACL), pages 2021–2030.

Martin Sundermeyer, Ralf Schlüter, and Hermann Ney.
2012. LSTM Neural Networks for Language Mod-
eling. In Proceedings Interspeech, pages 194–197.

Jason Van Hulse, Taghi M. Khoshgoftaar, and Amri
Napolitano. 2007. Experimental perspectives on
learning from imbalanced data. In Proceedings of
the International Conference on Machine Learning
(ICML), pages 935–942.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention Is All
You Need. In Proceedings of the Conference on Neu-
ral Information Processing Systems (NeurIPS).

Yujie Xing, Jinglun Cai, Nils Barlaug, Peng Liu, and
Jon Atle Gulla. 2022. Balancing Multi-Domain Cor-
pora Learning for Open Domain Response Genera-
tion. In Proceedings of the Annual Conference of the
North American Chapter of the Association for Com-
putational Linguistics (NAACL), pages 2104–2120.

Jianping Zhang and Inderjeet Mani. 2003. kNN Ap-
proach to Unbalanced Data Distributions: A Case
Study Involving Information Extraction. In Proceed-
ings of the Workshop on Learning from Imbalanced
Data Sets, pages 1–7. ICML.

Shiliang Zhang, Hui Jiang, Mingbin Xu, Junfeng Hou,
and Lirong Dai. 2015. The Fixed-Size Ordinally-
Forgetting Encoding Method for Neural Network
Language Models. In Proceedings of the Annual
Meeting of the Association for Computational Lin-
guistics (ACL), pages 495–500.

Yanqi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yanping
Huang, Vincent Y. Zhao, Andrew M. Dai, Zhifeng
Chen, Quoc Le, and James Laudon. 2022. Mixture-
of-experts with expert choice routing. CoRR,
abs/2202.09368.

https://doi.org/10.21437/Interspeech.2020-2840
https://doi.org/10.21437/Interspeech.2020-2840

