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Abstract

Pre-trained models have achieved remarkable
success in natural language processing (NLP).
However, existing pre-training methods under-
utilize the benefits of language understanding
for generation. Inspired by the idea of Gener-
ative Adversarial Networks (GANs), we pro-
pose a GAN-style model for encoder-decoder
pre-training by introducing an auxiliary dis-
criminator, unifying the ability of language un-
derstanding and generation in a single model.
Our model, named as GANLM, is trained
with two pre-training objectives: replaced to-
ken detection and replaced token denoising.
Specifically, given masked source sentences,
the generator outputs the target distribution
and the discriminator predicts whether the tar-
get sampled tokens from distribution are in-
correct. The target sentence is replaced with
misclassified tokens to construct noisy previ-
ous context, which is used to generate the gold
sentence. In general, both tasks improve the
ability of language understanding and gener-
ation by selectively using the denoising data.
Extensive experiments in language generation
benchmarks show that GANLM with the pow-
erful language understanding capability out-
performs various strong pre-trained language
models (PLMs) and achieves state-of-the-art
performance.1

1 Introduction

The pre-training-then-fine-tuning paradigm has
been proven successful in many natural language
processing tasks (Devlin et al., 2019; Liu et al.,
2019; Schick and Schütze, 2021). While there are
various pre-training approaches for the encoder-
only architectures (Clark et al., 2020; Conneau
et al., 2020), the encoder-decoder pre-training is un-
derexplored, which is essential for natural language
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1The code and pre-trained models will be released.
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Figure 1: A pre-training sample of our method, where
replaced token detection (discriminator) and replaced
token denoising (generator) are used for pre-training.
The discriminator classifies each generated token into
REPLACED or ORIGINAL, where REPLACED denote
the predicted token is different from the gold token.
The red fonts denote incorrect predictions.

generation. To pre-train the entire encoder-decoder
model, BART (Lewis et al., 2020) proposes a de-
noising language model objective and T5 (Raffel
et al., 2020) pre-trains the models with a span cor-
ruption objective. Furthermore, mBART (Liu et al.,
2020) and mT5 (Xue et al., 2021) extend them to
be multilingual pre-trained language models.

Unlike most encoder-decoder pre-training meth-
ods that simply apply sequence-to-sequence tasks
on a single encoder-decoder architecture, we ex-
plore the approaches to pre-train the model in a
GAN-style manner with an auxiliary discrimina-
tor. GAN (Goodfellow et al., 2014) performs well
on both text and image generation tasks by com-
bining the generator and discriminator. It aims to
improve the ability of the generator to produce high-
quality samples, which is important for the encoder-
decoder pre-training when transferred to down-
stream generation tasks. Similarly, MaskGAN (Fe-
dus et al., 2018) shows the GAN-like training can
improve the quality of the autoregressive language
model. Therefore, it is intuitive to leverage GAN
to empower the encoder-decoder pre-training by
unifying language understanding and generation.

In this work, we propose a pre-training frame-
work GANLM, using GAN-style learning to im-
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prove the transferability of pretrained language
models for the natural language generation. Specifi-
cally, the encoder reads the masked source sentence
and the generator obtains target distribution. Then,
the discriminator distinguishes whether each token
sampled from the target distribution matches the tar-
get gold sentence (replaced token detection). The
misclassified tokens by discriminator are regarded
as hard tokens for the generator to predict accu-
rately. We replace original tokens in the target sen-
tence with misclassified sampled ones to construct
the noisy previous context for predicting the target
sentence (replaced token denoising). In Figure 1,
the generator predicts the masked words “guardian
watered”, where the incorrect token “guardian” and
correct token “watered” are both misclassified into
REPLACED and ORIGINAL by the discriminator.
Next, we resample a different token “watering”
from the generated distribution. Consequently, the
target tokens “gardener watered” are replaced with
the sampled tokens “guardian watering” to con-
struct the noisy sample. The generator predicts the
next word conditioned on previous noisy tokens
(replaced token denoising). Through combing two
tasks, GANLM strengthen generation performance
with the enhanced language understanding capabil-
ity from the replaced token detection task.

Our method is effective for text generation and
can be extended to natural language understanding
tasks. We pre-train GANLM model on large-scale
monolingual corpora and evaluate the performance
of our pre-trained English model GANLM and mul-
tilingual model GANLM-m on various downstream
tasks, including text summarization, machine trans-
lation, and data-to-text generation. Experimen-
tal results demonstrate that our method substan-
tially outperforms previous pre-trained encoder and
sequence-to-sequence models on generation tasks.
Our method is further tested on GLUE (Wang et al.,
2019) and XNLI (Conneau et al., 2018) to validate
the transferability of our pre-trained model. An-
alytic experiments emphasize the importance of
the discriminator in both the pre-training and fine-
tuning stage, leading to better performance.

2 GANLM

2.1 Model Overview

Our GAN-style pre-trained model comprises a gen-
erator (G) and discriminator (D), which are both
encoder-decoder frameworks and conditioned on
the same encoder (Enc). In Figure 2, the encoder

reads the masked sentence and the generator de-
coder obtains the target distribution. Then the dis-
criminator decoder distinguishes whether each to-
ken in the sampled target sentence matches the gold
reference. Tokens in the target gold sentence are
randomly replaced with misclassified ones by the
discriminator to construct the noisy sample, which
is fed into the generator decoder to predict the tar-
get sentence (replaced token denoising).

2.2 Masked Sequence Generator
Given a monolingual sentence x = (x1, . . . , xn)
with nwords from the datasetDk of languageLk ∈
Lall = {L1, . . . , LK} (|Lall| = K), some random
spans of contiguous tokens in x are corrupted as
the source sentence, which is denoted as xsrc =
(x1, . . . , x\u:v, . . . , xn). x\u:v is a masked span of
xu:v, where the fragment from position u to v is
corrupted by [MASK]. Given xsrc, the generator
predicts the original identities of the masked tokens
xtrg = (x\1, . . . , xu:v, . . . , x\n) autoregressively:

xtrgt = Enc-Dec(xsrc, xtrg1:t−1; {θE , θG}) (1)

where θE and θG denote the encoder and decoder
parameters of the generator. Enc-Dec denotes an
encoder-decoder model. The generator predicts the
next position t token xtrgt based on previous tokens.

The training objective of sequence-to-sequence
masked language modeling (S2S-MLM) on the
dataset Dk of language Lk is defined as:

LG = Ex∼Dk

[
logPG(x

trg|xsrc; {θE , θG})
]

(2)

where xsrc and xtrg are derived from x.

2.3 Replaced Token Detection
The generator outputs the distribution of each target
token and we create a sampled sentence x̂trg by ran-
domly sampling tokens from the distribution. The
discriminator distinguishes whether each token in
x̂trg is replaced compared to xtrg. Given the target
distribution PG(x

trg
t |xsrc) (x

trg
t ∈ xtrg) from the

generator, we construct x̂trg for the discriminator:

x̂trg = REPLACE(xtrg;x′t)

w.r.t. x′t ∼ PG(x
trg
t |x

src) ∧ xtrgt ∈ xtrg
(3)

where REPLACE(·) replaces target t-th position un-
masked token in xtrg with the sampled token x′t
from the generated distribution PG(x

trg
t |xsrc).

Given the source sentence xsrc and the en-
coder θE , the decoder of the discriminator θD ob-
tains a sequence of hidden representations Hd =
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Figure 2: Overview of GANLM, including (a) replaced token detection and (b) replaced token denoising. The en-
coder reads the source sentence and the generator obtains target distribution, where the generator and discriminator
are supervised by the gold labels in (a). The discriminator distinguishes whether the sampled tokens “guardian wa-
tered” are replaced (both tokens are misclassified in this example). For the correct predicted token “watered”, we
obtains a different token “watering” by resampling. The target tokens are replaced with the misclassified tokens to
construct the noisy input, which are used to predict the gold sentence “gardener watered [EOS]” in (b).

(h1, . . . , hn) by feeding the sampled sentence x̂trg

to the discriminator decoder:

Hd = Enc-Dec(xsrc, x̂trg; {θE , θD}) (4)

where θE and θD denote the encoder and decoder
parameters of the discriminator. The decoder of the
discriminator θD adopts the bidirectional language
model to classify each input token by extracting
the past and future representations.

Given the representations Hd, the discriminator
classifies sampled tokens x̂trg into the REPLACED
or ORIGINAL label with a sigmoid function σ:

V = σ(HdWd) (5)

where Wd ∈ Rde×2 is the matrix projects the token
representations to two categories (REPLACED or
ORIGINAL) and de is the model hidden size.

The training objective of the replaced token de-
tection task for the discriminator is:

LD = Ex∼Dk
[1(x̂

trg
= x

trg
) log V + 1(x̂

trg 6= x
trg

) log(1− V )]

(6)

where 1(·) is the indicator function.

2.4 Replaced Token Denoising
Although our model structure is similar to GAN,
the generator is trained with maximum likelihood
rather than the standard GAN objective due to the
difficulty of the GAN training in NLP. We replace
tokens in xtrg with misclassified tokens by dis-
criminator to construct the noisy previous context
xtrgf . If the sampled token x̂trgt = xt is labeled
with ORIGINAL, we will resample the token x′t

(x′t 6= xt) from target distribution as the misclassi-
fied token to modify xt in xtrg. When x̂trgt = x′t
(x′t 6= xt) is labeled with REPLACED, the mis-
calssified token x′t directly replaces xt in the target
sentence. Given the target sentence xtrg and gen-
erated probabilities PG, we replace tokens in xtrg

with sampled tokens as the previous noisy context:

x
trg
f = REPLACE(x

trg
; x̂

trg
t )

w.r.t. x̂
trg
t ∼ PG(x

trg
t |x

src
) ∧ t ∈ v

(7)

where v = {v1, . . . , vp} (|v| = p) denotes the
positions in xtrg of the misclassified tokens.

The training objective of the replaced token de-
noising (DG) task based on the source sentence
xsrc and target noisy context xtrgf is described as:

LDG = Ex∼DLk
[− logP (x

trg|xsrc
, x

trg
f ; {θE , θD})] (8)

where xtrg is predicted by the previous noisy to-
kens xtrgf instead of previous gold context.

2.5 Multi-task Learning

Given multilingual corpora Dall = {D1, . . . , DK}
of K languages, the pre-trained model with pa-
rameters {θE , θG , θD} is jointly trained over K lan-
guages to optimize the combined self-supervised
objective as below:

LP = ELk∈Lall [LG + λLD + LDG ] (9)

where λ = 10.0 is the discriminator weight and
Lall = {L1, . . . , LK}. To improve model effi-
ciency, a tiny discriminator decoder (4 layers) is
adopted to help generator decoder (12 layers).



3 Discriminator-enhanced Fine-tuning

To fully utilize the pre-trained parameters, we keep
the auxiliary discriminator in downstream genera-
tion tasks (discriminator-enhanced fine-tuning) to
enhance the generator, where both the pre-trained
generator and discriminator are recycled. Given
the annotated corpus Ds of K languages, the pre-
trained model {θE , θD, θG} is optimized by:

LF = Ex,y∼Ds [LG + λLD + LDG ] (10)

where x and y are the parallel pair fromDs. The ob-
jective in the fine-tuning stage use the original pair
x and y without S2S-MLM. The generator {θE , θG}
are kept for inference by throwing out the discrimi-
nator decoder θD. Alternatively, the discriminator
(D: {θE , θD}) or generator (G:{θE , θG}) can also
be separately fine-tuned on the downstream task.

4 Experiment Setting

4.1 Pre-training Details
Model Configuration In the experiments, we
adopt a sequence-to-sequence base-setting Trans-
former architecture with 768 hidden size, 3072
FFN (feed-forward network) dimension, 12 atten-
tion heads, and 12 encoder/decoder layers. The
maximum sequence length of learned positions em-
beddings in the encoder/decoder is set as 1024. All
token embedding matrices and output projection
matrix parameters are shared for model efficiency.

Dataset Following the previous work (Liu et al.,
2019), our English pre-trained model GANLM is
trained on 160GB English monolingual data from
BookCorpus, CC-News, OpenWebText, and CC-
Stories. In addition, we pre-train GANLM-m with
6TB multilingual data as the pioneering work (Ma
et al., 2021), which is a combination of CC100, CC-
Net, and Wikipedia, covering 100 languages. All
texts are tokenized by SentencePiece (Kudo and
Richardson, 2018) and encoded by the dictionary
from XLM-R (Conneau et al., 2020).

Optimization For S2S-MLM, we randomly
mask 15% of the words in each instance with an
average span length of 3 (Raffel et al., 2020). For
the replaced token detection, we set the discrimi-
nator weight λ = 10.0. We adopt Adam (Kingma
and Ba, 2015) with a learning rate of 3e-4 and
10K warm-up steps for pre-training. The model is
trained on 128 NVIDIA A100 GPUs (40GB) from
scratch and each batch contains 8K samples. The

English pre-trained model GANLM and multilin-
gual model GANLM-m are trained for 500K steps.
Specifically, all methods in Table 1 are pre-trained
with 500K steps for a fair comparison.

4.2 Downstream Tasks

Monolingual Summarization CNN / Daily-
Mail (See et al., 2017) is an abstractive summa-
rization dataset aiming at generating a concise sum-
mary from an English news article in CNN and
DailyMail. As a popular abstractive summarization
dataset, XSum (Narayan et al., 2018) compresses a
BBC news article to a short one-sentence summary.

Multilingual Summarization To test the capa-
bility of our multilingual pre-trained model, a
large-scale multilingual dataset named WikiLin-
gua (Ladhak et al., 2020) of 18 languages from
WikiHow is used to evaluate multilingual abstrac-
tive summarization systems.

Bilingual Translation For the bilingual task, we
use the WMT-14 English-German, WMT-14 En-
glish French, and WMT-16 English-Romanian
dataset for evaluation. WMT-14 En-De from
WMT consists of 4.5M sentence pairs and the new-
stest2014 is used as the test set. WMT-14 En-Fr is a
large-scale dataset containing nearly 41M sentence
pairs and newstest2014 is adopted for evaluation.
WMT-16 En-Ro is comprised of original parallel
sentences and back-translation data.

Multilingual Translation IWSLT-17 of 5 lan-
guages and WMT-10 of 11 languages are utilized
for multilingual translation. For IWSLT-17, En-
glish (En), German (De), Italian (It), Dutch (Nl),
and Romanian (Ro) corpora are downloaded from
the IWSLT-2017 benchmark. We use dev2010 for
validation and tst2017 for test. For WMT-10, we
use the parallel data of 11 languages from the WMT
benchmark for evaluation (Wang et al., 2020).

Data-to-Text Generation Data-to-text genera-
tion accepts multiple triplets and produces a de-
scription. WebNLG (Gardent et al., 2017) contains
parallel DBpedia triple sets and short texts. The En-
En direction contains 17K triple sets and 45K short
texts and the En-Ru direction contains 7K triple
sets and 19K texts in Russian. The ROUGE scores
on the valid set are reported for a fair comparison
with the previous work (Gehrmann et al., 2021).



ID Model Pre-training Objective Summarization Translation
RG-1/RG-2/RG-L AvgEn→X AvgX→En Avgall

¬ Transformer w/o Pretraining - 32.36/11.46/25.47 21.4 25.5 23.5

 BERT/mBERT (Devlin et al., 2019) Masked Language Model 36.93/15.00/29.62 26.4 29.6 28.0
® ELECTRA (Clark et al., 2020) Replaced Token Detection 43.02/19.94/34.83 29.1 32.8 30.3
¯ BART (Lewis et al., 2020)/mBART (Liu et al., 2020) Denoising Autoencoder 44.13/21.04/36.02 30.3 33.3 31.4
° T5 (Raffel et al., 2020)/mT5 (Xue et al., 2021) Span Corruption 44.22/21.06/36.12 30.4 33.6 31.7

± GANLM/GANLM-m (ours) Replaced Token Detection + Replaced Token Denoising 45.36/21.98/36.84 31.2 34.2 32.8
² ± - Discriminator-enhanced Fine-tuning Replaced Token Detection + Replaced Token Denoising 44.74/21.47/36.40 31.1 34.0 32.6
³ ² - Replaced Token Denoising Replaced Token Detection 44.28/21.14/36.24 30.6 33.6 32.1

Table 1: Comparison of different pre-training objectives. Particularly, all methods in this table use the base-setting
model and are pre-trained with 500K steps on the same corpora for a fair comparison. We report ROUGE scores
for abstractive text summarization (XSum) and BLEU scores for multilingual machine translation (IWSLT-17).

Model #Corpus XSum CNN / DailyMail
RG-1/RG-2/RG-L RG-1/RG-2/RG-L

PTRNET (See et al., 2017) - 28.10/8.02/21.72 39.53/17.28/36.38

MASS (Song et al., 2019) - 39.75/17.24/31.95 42.12/19.50/39.01
BERTSUMABS (Liu, 2019) 16GB 38.76/16.33/31.15 41.72/19.39/38.76
RoBERTa (Liu et al., 2019) 160GB 42.19/19.22/34.23 41.28/19.11/38.57
ERNIE-GEN (Xiao et al., 2020) 16GB - 42.30/19.92/39.68
T5 (Raffel et al., 2020) 750GB - 42.05/20.34/39.40
UniLM (Dong et al., 2019) 16GB - 43.08/20.43/40.34
UniLMv2 (Bao et al., 2020) 160GB 44.00/21.11/36.08 43.16/20.42/40.14
RoBERTa + s2s-ft (Bao et al., 2021) 160GB 43.39/20.55/35.63 42.28/20.21/39.87
UniLMv2 + s2s-ft (Bao et al., 2021) 160GB 44.37/21.54/36.61 43.89/21.05/41.02
GANLM (ours) 160GB 45.36/21.98/36.84 44.15/21.12/41.32

Table 2: Abstractive summarization results on the test
set of CNN / DailyMail, and XSum. The evaluation
metric is the F1 score of ROUGE (RG) scores.

Model En Zh Avg18
Transformer (Vaswani et al., 2017) 35.9/13.3/29.6 32.1/16.2/26.6 29.9/10.7/25.0
XLM-R (Conneau et al., 2020) 41.4/17.6/34.5 42.2/23.8/34.9 37.5/16.0/31.2
mBART (Liu et al., 2020) 44.2/20.0/32.1 44.8/25.8/37.6 40.1/18.2/33.7
GANLM-m (ours) 44.7/20.6/37.8 45.7/26.4/38.0 40.5/18.6/34.0

Table 3: Results of our method and other baselines on
multilingual abstractive summarization. We report the
RG-1/RG-2/RG-L (ROUGE) F1 scores of the 18 Wik-
iLingua languages and the average scores.

4.3 Fine-tuning Details

Abstractive Summarization During fine-
tuning, we use the Adam (Kingma and Ba, 2015)
optimizer with an initial learning rate of 1e-4 and
the batch size is set as 2048 tokens on 8 V100
GPUs. The models are trained with the label
smoothing cross-entropy with a smoothing ratio of
0.1.

Neural Machine Translation For the large-
scale multilingual dataset WMT-10, our pre-trained
model is fine-tuned on 32 V100 GPUs with a learn-
ing rate of 3e-4. For all bilingual translation tasks
and the IWSLT-2017 benchmark, we adopt Adam
with a learning rate of 1e-4 and set the batch size
as 2048 tokens on 8 V100 GPUs.

Data-to-text Generation We use Adam with a
learning rate of {8e-5,1e-4} and set the batch size
as 16 sentences on the WebNLG dataset.

5 Comparing Pre-training Objectives

To verify the potential of our pre-training task
under a fair comparison, we re-implement pre-
vious pre-training tasks and pre-trains baselines
on the same corpora with 500K steps, including
BERT/mBERT (Devlin et al., 2019), ELECTRA
(Clark et al., 2020), BART (Lewis et al., 2020)/
mBART (Liu et al., 2020), and T5 (Raffel et al.,
2020)/mT5 (Xue et al., 2021). Table 1 reports
the ROUGE and BLEU points on the summariza-
tion dataset XSum and multilingual translation
dataset IWSLT-17. All models have 12 encoder
and 12 decoder layers with a hidden size of 768.
We observe that the encoder-decoder pre-trained
model (T5/mT5) outperforms the pre-trained en-
coder (ELECTRA, BERT/mBERT), which corrob-
orates the encoder-decoder pre-training is more
beneficial to the downstream generation task. Ex-
periments ±∼³ show the importance of the dis-
criminator and replaced token denoising. Experi-
ment ³ demonstrates that only the replaced token
detection task can still bring improvement through
strengthening the encoder shared by both genera-
tor and discriminator. Besides, the replaced token
detection task is also helpful to downstream lan-
guage understanding tasks with a powerful encoder.
Lastly, the results verify that fine-tuning with the
help of the pre-trained auxiliary discriminator fur-
ther improves performance.

6 Results of GANLM

The English pre-trained model GANLM is eval-
uated on the abstractive text summarization task
with the ROUGE (Lin, 2004) scores.

XSum As shown in Table 2, the pre-training
methods achieve significant improvements over the
strong baseline PTRNET without pre-training. The
sequence-to-sequence pre-trained model such as



UniLMv2 + s2s-ft outperforms other pre-training
baselines, where the pseudo-masked technique is
applied to the fine-tuning stage. Our method beats
all pre-training baselines by a large margin with the
discriminator-enhanced fine-tuning strategy. It em-
phasizes the importance of the fine-tuning strategy
for the performance of downstream tasks.

CNN / DailyMail Our method is also evaluated
on the CNN / DailyMail dataset in Table 2. The
comparisons further indicate that our method ob-
tains strong performance on generation by leverag-
ing the discriminator.

7 Results of GANLM-m

To evaluate the multilingual pre-trained model
GANLM-m, we report the BLEU (Papineni et al.,
2002) scores for machine translation and ROUGE
(Lin, 2004) scores for text summarization and data-
to-text generation.

WikiLingua Table 3 reports the average
ROUGE scores of 18 WikiLingua languages. The
large improvement over other pre-training method
demonstrate the summarization ability of our
GANLM-m.

WMT14 En-De The results on the bilingual
translation are presented at Table 4. We observe
that the proposed GANLM outperforms all previ-
ous works in the high-resource machine translation
scenario (> 4M sentence pairs).

WMT14 En-Fr We further conduct experiments
on the WMT14 En-Fr bilingual translation task.
Table 4 GANLM-m shows that GANLM-m still
brings significant improvement to the downstream
task with large-scale machine translation fine-
tuning data (> 40M sentence pairs).

WMT16 En-Ro For the low-resource setting (<
1M sentence pairs), there is an average gain of +4
BLEU points compared to the Transformer base-
line in Table 5. With the same back-translation
data, GANLM-m further improves the model per-
formance and still beats other baselines.

WMT-10 For the multilingual translation, we
compare GANLM-m with the strong multilingual
pre-trained models in Table 7 and Table 6, such as
mBART (Liu et al., 2020). It is notable our method
outperforms large pre-trained model mBART with
1024 hidden size by a large margin (+1∼2 BLEU

Model En→De De→En En→Fr Fr→En

Transformer (Vaswani et al., 2017) 27.8 30.7 38.2 37.4

mBERT (Devlin et al., 2019) 28.0 30.8 38.0 37.8
XLM-R (Conneau et al., 2020) 29.4 31.4 39.5 38.7
mBART (Conneau et al., 2020) 29.5 33.2 42.0 39.2
mT5 (Conneau et al., 2020) 28.8 32.1 39.8 38.6
GANLM-m (ours) 30.6 34.0 42.9 39.8

Table 4: Comparison with other pre-training ap-
proaches on the WMT14 En-De and WMT14 En-Fr
benchmark.

Model En→Ro Ro→En Ro→En (+BT)

Transformer (Vaswani et al., 2017) 34.0 33.3 36.4

XLM (Conneau and Lample, 2019) - 35.6 38.5
MASS (Song et al., 2019) - - 39.1
BART (Lewis et al., 2020) - - 38.0
BART-En (Liu et al., 2020) 36.0 35.8 37.4
BART-Ro (Liu et al., 2020) 37.6 36.8 38.1
XLM-R (Conneau et al., 2020) 35.6 35.8 -
mBART (Liu et al., 2020) 37.7 37.8 38.8
mT5 (Liu et al., 2020) 37.1 37.2 38.0
GANLM-m (ours) 38.3 38.0 39.3

Table 5: Comparison with other pre-training methods
on the WMT16 En-Ro benchmark.

points). Plus, there is a +1.5 BLEU gain over XLM-
R, whose encoder and decoder are initialized by the
cross-lingual pre-trained encoder (Ma et al., 2020).

WebNLG Table 8 presents the performance on
the data-to-text generation task, showing that
GANLM outperforms multilingual sequence-to-
sequence pre-training baselines mBART and mT5
by +2 ROUGE-L points on both languages.

8 Analysis

Ablation Study To analyze the effect of the pro-
posed pre-training and fine-tuning strategies, we
conduct an ablation study of each component of
our method in Table 9. Experiment ¯ and ± verify
the merits of the replaced token detection and re-
placed token denoising. Furthermore, experiment
² shows that our model with the replaced token de-
noising task obtains the best performance by jointly
fine-tuning generator (G) and discriminator (D).

Low-resource Setting To further analyze the
performance of GANLM-m given different sizes of
downstream parallel data, we randomly extract K
percentage of the whole sentence pairs as the fine-
tuned parallel data from the full WMT-16 En→Ro
training data. We set K = {10%, 20%, . . . , 100%}
and compare our method with the Transformer
baseline model. Figure 3 shows the BLEU points of
our pre-trained multilingual model and the baseline.
When the parallel data size is small, the baseline
without pre-trained model produces unsatisfactory
results. Similarly, in Figure 3(a), GANLM fine-
tuned on nearly half data (purple line, 50%) defeats



En→X test sets #Params Fr Cs De Fi Lv Et Ro Hi Tr Gu Avg10
1→1 BiNMT (Vaswani et al., 2017) 242M/10M 36.3 22.3 40.2 15.2 16.5 15.0 23.0 12.2 13.3 7.9 20.2

1→N

MNMT (Vaswani et al., 2017) 242M 34.2 20.9 40.0 15.0 18.1 20.9 26.0 14.5 17.3 13.2 22.0
mBART (Liu et al., 2020) 611M 33.7 20.8 38.9 14.5 18.2 20.5 26.0 15.3 16.8 12.9 21.8
XLM-R (Conneau et al., 2020) 362M 34.7 21.5 40.1 15.2 18.6 20.8 26.4 15.6 17.4 14.9 22.5
GANLM (ours) 430M 36.0 22.4 42.1 16.5 19.7 21.5 27.0 17.4 18.6 16.3 23.8

N→N

MNMT (Vaswani et al., 2017) 242M 34.2 21.0 39.4 15.2 18.6 20.4 26.1 15.1 17.2 13.1 22.0
mBART (Liu et al., 2020) 611M 32.4 19.0 37.0 13.2 17.0 19.5 25.1 15.7 16.7 14.2 21.0
XLM-R (Conneau et al., 2020) 362M 34.2 21.4 39.7 15.3 18.9 20.6 26.5 15.6 17.5 14.5 22.4
GANLM-m (ours) 430M 35.0 21.8 40.2 16.1 19.2 21.9 26.7 16.2 17.9 14.4 22.9

Table 6: En→X evaluation results for bilingual (1→1), one-to-many (1→N), and many-to-many (N→N) models
on WMT-10. The languages are ordered from high-resource languages (left) to low-resource languages (right).

X→En test sets #Params Fr Cs De Fi Lv Et Ro Hi Tr Gu Avg10
1→1 BiNMT (Vaswani et al., 2017) 242M/10M 36.2 28.5 40.2 19.2 17.5 19.7 29.8 14.1 15.1 9.3 23.0

N→1

MNMT (Vaswani et al., 2017) 242M 34.8 29.0 40.1 21.2 20.4 26.2 34.8 22.8 23.8 19.2 27.2
mBART (Liu et al., 2020) 611M 36.2 29.9 40.0 22.2 20.6 27.2 37.2 23.3 25.7 21.7 28.4
XLM-R (Conneau et al., 2020) 362M 35.6 30.2 40.9 22.7 21.7 28.4 37.3 25.4 26.2 22.6 29.1
GANLM (ours) 430M 36.9 31.8 42.4 23.2 22.5 29.4 37.9 27.2 27.9 22.9 30.2

N→N

MNMT (Vaswani et al., 2017) 242M 35.9 29.2 40.0 21.1 20.4 26.3 35.5 23.6 24.3 20.6 27.7
mBART (Liu et al., 2020) 611M 34.8 28.9 39.4 20.7 20.2 25.8 35.9 22.5 25.0 21.9 27.5
XLM-R (Conneau et al., 2020) 362M 35.7 30.3 41.0 22.2 21.3 28.1 37.0 25.4 26.1 21.9 28.9
GANLM-m (ours) 430M 37.0 31.1 42.4 22.7 22.5 28.1 37.1 25.3 26.9 22.7 29.6

Table 7: X→En evaluation results for bilingual (1→1), one-to-many (1→N), and many-to-many (N→N) models
on WMT-10. The languages are ordered from high-resource languages (left) to low-resource languages (right).

Model En Ro
RG-1/RG-2/RG-L RG-1/RG-2/RG-L

mBART (Liu et al., 2020) 83.4/63.1/70.3 34.8/13.4/33.0
mT5small (Gehrmann et al., 2021) 78.8/59.2/67.2 29.7/10.5/28.4
mT5base (Gehrmann et al., 2021) 82.3/62.1/69.7 33.0/12.7/31.3
GANLM-m (ours) 83.8/63.9/71.2 35.2/15.0/33.4

Table 8: Results on data-to-text generation (WebNLG).

ID Method D G Xsum
RG-1/RG-2/RG-L

¬ Transformer w/o Pre-training X 32.36/11.46/25.47
 ¬ + S2S-MLM X 44.44/21.25/36.22
®  + Replaced Token Detection X 42.11/18.58/33.21
¯  + Replaced Token Detection X 44.28/21.14/36.24

° ¯ + Replaced Token Denoising X 42.41/18.98/34.31
± ¯ + Replaced Token Denoising X 44.74/21.47/36.40
² ¯ + Replaced Token Denoising X X 45.36/21.98/36.84

Table 9: Ablation study of our method on the test
set of the abstractive summarization benchmark XSum,
where GANLM is fine-tuned on the downstream task
with different pre-training and fine-tuning strategies.

the baseline trained on all pairs (green line, 100%),
exemplifying the effectiveness of our method in
low-resource scenarios.

Discussion on Discriminator The weight value
λ and layer number of the discriminator are key fac-
tors to our pre-training task. As shown in Figure 4,
we vary discriminator weight in Figure 4(a) to find
a balance between the generator and discriminator
objective. To this end, we study the performance
of GANLM with different λ, where λ ranges from
5.0 to 100.0. When the weight of the discriminator
is 10.0, multiple pre-training tasks are balanced.
Moreover, we find it more efficient to have a tiny
discriminator (3 ∼ 6 layers) in Figure 4(b).

Multilingual Representations We randomly se-
lect 1000 parallel sentences of each language
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Figure 3: Comparison between Transformer and our
method on WMT-16 (a) En→Ro and (b) Ro→ En.
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Figure 4: Effect of (a) discriminator weight and (b) Dis-
criminator layer on the WMT14 En→De task.

in WMT-10 and visualize their representations
(Maaten and Hinton, 2008) of the last two encoder
layers in Figure 5 using our multilingual model
fine-tuned on WMT-10 and the multilingual base-
line. The first hidden state of the encoder is adopted
as the sentence representation. Compared to Figure
5(a) and 5(b) of the baseline, different languages be-
come closer and likely to overlap with each other in
Figure 5(c) and 5(d) of our method, demonstrating
that our method effectively aligns representations
of different languages to the shared space.

Massively Multilingual Translation We com-
pare GANLM-m with the state-of-the-art multi-
lingual NMT model M2M-124 (Goyal et al., 2021).
M2M-124large and DeltaLM + Zcode both have a



(a) 11-th (b) 12-th (c) 11-th (d) 12-th

Figure 5: (a) and (b) are representations of the baseline
from the 11-th and 12-th encoder layers while (c) and
(d) are counterparts of the fine-tuned model. Each color
denotes one language (11 languages in WMT-10).

Model #Params AvgX→En AvgEn→Y AvgX→Y

M2M-124base (Goyal et al., 2021) 175M 15.43 12.02 5.85
M2M-124large (Goyal et al., 2021) 615M 20.03 16.21 7.66
DeltaLM + Zcode (Yang et al., 2021) 711M 30.39 23.52 11.21
GANLM-m (ours) 430M 30.70 24.83 13.65

Table 10: Massively multilingual translation average
results (102×101 translation directions) on the devtest
sets of the flores benchmark.

large hidden size of 1024. Our pre-trained model
is fine-tuned on the same training data as DeltaLM
+ Zcode (Yang et al., 2021). Compared to M2M-
124large, GANLM-m with fewer training data and
only 430M parameters depends more on the trans-
ferability of the cross-lingual pre-training model.
In Table 10, our method outperforms the DeltaLM +
Zcode in zero-shot translation direction (AvgX→Y )
by +1.5 BLEU points, benefiting from our pre-
trained model in cross-lingual zero-shot transfer.

Comparison of Pre-training Cost Our English
pre-trained model GANLM is trained for nearly
2 weeks on 128 A100 GPUs (40GB), with 500K
training steps and a batch size of 8K sequences.
Compared to the re-implemented T5 (Raffel et al.,
2020), our method is only 0.5 times slower than
T5 with the same training steps but gets a signifi-
cant improvement on the machine translation, text
summarization, and data-to-text generation tasks.

Language Understanding Our method can be
easily extended to various downstream language
understanding tasks. We use the GLUE benchmark
(Wang et al., 2019) to estimate English pre-trained
model GANLM and the XNLI dataset (Conneau
et al., 2018) to evaluate the capability of the mul-
tilingual language understanding. Our method is
tested on each language separately by fine-tuning
generator (G) or discriminator (D) on the XNLI
dataset. In Table 11, Our English pre-trained model
performs better than RoBERTa. Additionally, our
pre-trained model outperforms the previous cross-
lingual pre-trained encoder XLM and pre-trained
encoder-decoder model mT5 in Table 12.

Model MNLI SST-2 MRPC RTE QNLI QQP Avg6
BERT (Devlin et al., 2019) 84.5 93.2 87.3 68.6 91.7 91.3 86.1
XLNet (Yang et al., 2019) 86.8 94.7 88.2 74.0 91.7 91.4 87.8
RoBERTa (Liu et al., 2019) 87.6 94.8 90.2 78.7 92.8 91.9 89.3
GANLM-m (D) 89.0 94.7 90.6 83.2 93.9 91.7 90.5
GANLM-m (G) 89.3 95.0 90.5 85.0 94.2 92.0 91.0

Table 11: Results of base-setting models on the valid
set of GLUE. We report accuracy for classification
tasks.

Models En De Th Tr Vi Avg15
Fine-tuning on English training set (Cross-lingual zero-shot transfer)

XLM (Conneau and Lample, 2019) 85.0 77.8 73.2 72.5 76.1 75.1
mT5 (Xue et al., 2021) 84.7 77.4 73.2 72.8 74.2 75.4
GANLM-m (D) 85.0 78.6 74.3 74.4 77.2 75.8
GANLM-m (G) 86.3 79.0 74.2 74.5 76.5 75.5

Fine-tuning on each training set (Translate-train)

XLM (Conneau and Lample, 2019) 85.0 80.3 75.5 74.7 76.6 76.7
mT5 (Xue et al., 2021) 84.7 - - - - -
GANLM-m (D) 85.0 80.7 76.9 74.4 79.1 77.9
GANLM-m (G)) 86.3 80.8 77,4 74.5 79.2 78.0

Fine-tuning on all training sets (Translate-train-all)

XLM (Conneau and Lample, 2019) 85.0 80.3 76.0 75.6 78.5 77.8
mT5 (Xue et al., 2021) 82.0 77.7 75.0 74.8 74.5 75.9
GANLM-m (D) 87.3 83.1 80.3 79.9 81.3 80.5
GANLM-m (G) 87.2 82.7 79.8 79.6 81.6 80.6

Table 12: Analysis of multilingual classification on the
XNLI test set. The evaluation metric is accuracy (%).

9 Related Work

Language models based on large-scale data and
self-supervised objective have been widely used
for NLP tasks. Pre-training a Transformer encoder
(Vaswani et al., 2017; Devlin et al., 2019; Joshi
et al., 2019; Liu et al., 2019; Cui et al., 2020)
with the masked language modeling (MLM) or a
decoder (Radford et al., 2018, 2019; Schick and
Schütze, 2021) bring significant improvement for
downstream natural language understanding (NLU)
tasks. Many variants (Joshi et al., 2019; Sun et al.,
2019; Liu et al., 2019; Clark et al., 2020; Chi
et al., 2022) are proposed to enhance the pre-trained
model. There are numerous attempts to pre-train a
sequence-to-sequence model by adding generative
objectives, such as T5 (Lewis et al., 2020).

Recent works (Conneau and Lample, 2019; Con-
neau et al., 2020; Chi et al., 2021b) aim to learn
cross-lingual representations in multiple languages.
mBART (Liu et al., 2020) pre-trains a sequence-
to-sequence Transformer model with the denoising
objective. mT5 (Xue et al., 2021) extends the span
corruption task for multilingual training and mT6
(Chi et al., 2021a) amplifies the generation task by
introducing a partially non-autoregressive objec-
tive. More multilingual pre-trained models (Ma
et al., 2020; Chi et al., 2020) are further proposed
to solve cross-lingual generation tasks.



10 Conclusion

In this work, we introduce GANLM, a state-of-
the-art pre-training encoder-decoder framework
for both language generation and understanding
tasks trained on large-scale corpora. Our GAN-
style models are pre-trained with replaced token
detection and replaced token denoising by intro-
ducing an auxiliary discriminator. Extensive ex-
periments prove the effectiveness of GANLM on
various language generation and translation bench-
mark datasets. We further verify the capability of
the pre-trained model on multiple downstream un-
derstanding tasks.
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