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Abstract

Back Translation (BT) is widely used in the
field of machine translation, as it has been
proved effective for enhancing translation qual-
ity. However, BT mainly improves the transla-
tion of inputs that share a similar style (to be
more specific, translation-like inputs), since the
source side of BT data is machine-translated.
For natural inputs, BT brings only slight im-
provements and sometimes even adverse ef-
fects. To address this issue, we propose Text
Style Transfer Back Translation (TST BT),
which uses a style transfer model to modify
the source side of BT data. By making the
style of source-side text more natural, we aim
to improve the translation of natural inputs.
Our experiments on various language pairs, in-
cluding both high-resource and low-resource
ones, demonstrate that TST BT significantly
improves translation performance against pop-
ular BT benchmarks. In addition, TST BT is
proved to be effective in domain adaptation so
this strategy can be regarded as a general data
augmentation method. Our training code and
text style transfer model are open-sourced.1

1 Introduction

Works in neural machine translation (NMT)
(Sutskever et al., 2014; Bahdanau et al., 2016; Wu
and et.al, 2016; Vaswani et al., 2017) greatly im-
prove translation quality. However, current meth-
ods generally require large amount of bilingual
training data, which is a challenging and some-
times impossible task. As obtaining monolingual
data is much easier, researchers have long exploited
methods to enhance model performances using
monolingual data, for example, language model
fusion for phrase-based (Brants et al., 2007; Koehn,
2009) and neural machine translation (Gulcehre
et al., 2015, 2017), back translation (Sennrich et al.,
2016), and dual learning (Cheng et al., 2016; He

*These authors contributed equally to this work.
1https://github.com/FrxxzHL/ssebt

Figure 1: Bilingual and BT data used for English →
German training. Nature indicates data generated by
native speakers; HT indicates data generated by human
translators from another language, and MT indicates
machine translation results. MT and HT styles are
close, but far from Nature.

et al., 2016; Xia et al., 2017). The combination
of such monolingual methods can further improve
model performances.

Back Translation (BT), a data augmentation
method to generate synthetic parallel data by trans-
lating content from target language back to source
language, is widely used in the field of machine
translation. BT has many variants (Sennrich et al.,
2016; Edunov et al., 2018; Caswell et al., 2019)
and each has own merits.

In terms of text style, models that use BT are
usually trained on three types of data. Real parallel
data constitutes the first two types: natural source
with human-translated target (Nature → HT )
or human-translated source with natural target
(HT → Nature). Back translation data consti-
tutes the third type: machine-translated source with
natural target (MT → Nature), as shown in Fig-
ure 1.

Inspired by van der Werff et al. (2022), who
find that a classifier can distinguish MT data from
HT data, we train a similar classifier to classify
Nature and MT data and find that a high percent-
age of original text is marked as Nature by the
classifier. However, the percentage of Nature con-
tent is low in human-translated data and even lower
in machine-translated data. In general, human and

ar
X

iv
:2

30
6.

01
31

8v
1 

 [
cs

.C
L

] 
 2

 J
un

 2
02

3

https://github.com/FrxxzHL/ssebt


Metrics Method Original Reverse All

BLEU
Bitext 46.3 34.9 42.2

BT 41.8 42.6 42.7

COMET
Bitext 58.7 64.9 61.8

BT 53.5 69.8 61.6

Table 1: English→German BLEU and COMET scores
for models trained on WMT 2018 bitext (Bitext) and
24M BT data, measured on WMT 2018 ENNature →
DEHT (Original) and ENHT → DENature (Reverse)
test sets.

machine translated data are similar, but far different
from original text.

We find that when the input style is close to
Nature, the output is biased towards HT ; and
when the input style is closed to HT , the output
is biased towards Nature (for details, see Section
6.1). Since the input used to generate BT data is
Nature, the output is close to HT . So BT mainly
improves the translation of translation-like inputs.
For natural inputs, BT brings only slight improve-
ments and sometimes even adverse effects. How-
ever, in practical use, most inputs sent to NMT mod-
els are natural language written by native speakers,
rather than translation-like content.

We use one original test set (Nature → HT )
and one reverse test set (HT → Nature) to mea-
sure BT performance respectively. As shown in Ta-
ble 1, BLEU (Post, 2018) and COMET (Rei et al.,
2020a) scores increase on the reserve test set but
decrease on the original test set after BT.

Based on the finding, this paper aims to explore
a method to enhance translation of Nature input
on basis of BT, while maintaining its effectiveness
in translating translation-like content. Since BT
connects translation-like input with Nature target,
we assume that if we could connect Nature input
with Nature target, translation of Nature input
could be further enhanced.

Therefore, we propose Text Style Transfer Back
Translation (TST BT), aiming to turn MT →
Nature data into Nature → Nature data to
enhance the translation of Nature input. How-
ever, transferring translation-like text to a natural
style is a zero-shot issue, because we can hardly
obtain parallel data with the same meaning but dif-
ferent styles (MT and Nature). We propose two
unsupervised methods. Our experiments on high-
resource and low-resource language pairs demon-
strate that TST BT can significantly enhance trans-
lation of Nature input on basis of BT variants

while brings no adverse effect on HT inputs. We
also find that TST BT is effective in domain adapta-
tion, demonstrating generalizability of our method.

Our contributions are as follows:

• We analyze the style of BT text and rational-
ize its ineffectiveness on Nature input. We
herein propose TST BT to solve this issue.

• TST BT combines Text Style Transfer with
BT data to further improve translation of
Nature inputs in high and low resource, as
well as in-domain and out-of-domain scenar-
ios against various BT baselines.

• Our experiment results show that TST BT is
effective in domain adaptation as well, which
further improves model performance on basis
of BT augmentation.

2 Related Work

2.1 Back Translation
Back Translation is first proposed by Bertoldi and
Federico (2009); Bojar and Tamchyna (2011) for
phrase-based systems, and then applied to neural
systems by Sennrich et al. (2016).

In general, the standard BT adopts beam search
for output generation, so in this paper, we denote it
as Beam BT. The following are some BT variants:

• Sampling BT (Edunov et al., 2018): randomly
samples translation results based on the prob-
ability of each word during decoding, thus
largely increases BT data diversity.

• Noised BT (Edunov et al., 2018): adds three
types of noise to the one-best hypothesis pro-
duced by beam search.

• Tagged BT(Caswell et al., 2019): adds an ex-
tra token to synthetic data to distinguish it
from genuine bitext.

In our experiment, we use the above four vari-
ants as baselines. Other BT variants include Meta
BT (Pham et al., 2021), a cascaded method to super-
vise synthetic data generation by using bitext infor-
mation, aiming at generating more usable training
data.

2.2 Unsupervised Text Style Transfer
Text Style Transfer (TST) (Fu et al., 2018; Jin et al.,
2022), aiming to control attributes (e.g. politeness)
of text, is an important task in the area of natural
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Figure 2: Direct and Cascaded methods for TST BT.
Source and Target with white color means bilingual
data, others mean BT data.

language generation. Three criteria are used to
measure TST: transferred style strength, semantic
preservation, and fluency.

As TST training data is difficult to obtain, unsu-
pervised approaches (Dai and Liang, 2019; Yang
et al., 2018; Krishna et al., 2020; Luo et al., 2019)
are widely used. Among those, two particular ap-
proaches are closely related to machine translation
and style transfer. Riley et al. (2020) propose us-
ing a classifier + tagging approach to make natural
input be translated more naturally. This method is
similar to the task of our paper, but it has high re-
quirements on bilingual data size and cannot ensure
a stable improvement. Freitag et al. (2019) propose
training an Automatic Post-Editing (APE) model
with large-scale target-side monolingual data. The
APE model can also be considered as a natural style
transfer.

We design our TST model by referring to the
APE approach. The biggest difference between
TST and APE is that APE lacks the ability to im-
prove translation overall quality in some cases,
while TST, which combines the advantages of style
transfer and back translation, can achieve stable
improvements on basis of standard BT.

3 Method

We propose cascaded and direct approaches (see
Figure 2) to transfer the style of source-side BT
data.

3.1 A Cascaded Approach
The cascaded approach generates standard BT data
first and then modifies the style of the source-
side BT data. However, modifying translation-like
text to natural text is a zero-shot issue. To ad-
dress this, we first train a Source to Target (S2T )
model and a Target to Source (T2S) model. We
use the reverse model (T2S) to generate BT data

{Source′MT , TargetNature}. To generate TST
training data, we employ Round Trip Translation
(RTT) as shown in formula 1 and Figure 3(a).

Source′ = T2S(S2T (SourceNature)) (1)

We use {Source′, SourceNature} to train the TST
model, which uses an encoder-decoder architec-
ture, and apply the model to the source-side BT
data Source′MT to get Nature→Nature data, as
shown in formula 2.

Source′Nature = TST (Source′) (2)

The final training data is denoted as:

{(Source, Target),

(Source′Nature, TargetNature)}

3.2 A Direct Approach
Directly translating Nature data into Nature out-
puts is also a zero-shot issue (Riley et al., 2020).
In order to make Nature input be translated more
naturally, and avoid the data size limitations men-
tioned by Riley et al. (2020), we adopt a two-step
training strategy, which is inspired by Zhang et al.
(2021), as shown in Figure 3(b).

We first use source and target side monolin-
gual data to generate SourceNature to TargetMT

and SourceMT to TargetNature data respectively.
We use only SourceNature to TargetMT data to
train the translation model and perform incremen-
tal training with SourceMT to TargetNature data.
During incremental training, we freeze all parame-
ters in the encoder so the model only learns decoder
parameters.

By using the two-step strategy, we aim to let the
translation model learn how to produce Nature →
Nature data. We consider this approach as a Con-
ditional Text Style Transfer (CTST) method.

4 Experimental Setup

4.1 Data
Our main experiments are conducted on WMT18
EnDe, WMT17 ZhEn, and WMT16 EnRo news
translation data. For EnDe, we use 5.2M bilingual
data except ParaCraw corpus to train the baseline
model, and 226.2M German monolingual data from
NewsCrawl 2007-2017 for back translation. For
ZhEn, we use 19.1M bilingual data to train the
baseline model, and 20.4M English monolingual
data from News Crawl 2016 for back translation.



(a)

incremental training frozen

(b)

Figure 3: Left: TST Model and the process of training data generation. Right: our proposed two-step CTST training
scheme.

BT type Example sentence
Beam Raise the child, love the child.
Sampling Lift the child, love the child.
Noised Raise child love child, the.
Tagged <T> Raise the child, love the child.

Table 2: The source text of synthetic corpus for different
BT methods

For EnRo, we use 0.6M bilingual data to train the
baseline model and 2.2M Romanian monolingual
data from News Crawl 2015 for back translation.

Training the TST model requires source-side
monolingual data. we use 24M English monolin-
gual data from NewsCrawl 2007-2017 for EnDe
and EnRo, and 24M Chinese monolingual data for
ZhEn.

4.2 Evaluation

We use metrics including BLEU (Papineni et al.,
2002), ChrF (Popović, 2015), COMET (Rei et al.,
2020b) and BLEURT (Sellam et al., 2020) to eval-
uate models performances on test sets. Among
them, BLEU and ChrF are calculated using Sacre-
BLEU2(Post, 2018), COMET using wmt20-comet-
da3, and BLEURT using BLEURT-204. Based on
the xlm-roberta-base5 pre-training model, we use
simpletransformers6 to train a binary classifier to
classify Nature and MT text for subsequent ex-
periments. The training data includes 10M natu-
ral monolingual data and 10M machine-translated
monolingual data.

2https://github.com/mjpost/sacrebleu
3https://github.com/Unbabel/COMET
4https://github.com/google-research/

bleurt
5https://huggingface.co/

xlm-roberta-base
6https://github.com/ThilinaRajapakse/

simpletransformers

4.3 Architecture

We train our NMT models and TST models with
Transformer (Vaswani et al., 2017) and fairseq (Ott
et al., 2019), and employ FP16 to accelerate train-
ing under a joint source and target language vo-
cabulary setting. Specifically, EnDE, ZhEn, and
the TST models use the Transformer-big structure
with a vocabulary size of 32K, while EnRo models
use the Transformer-base structure with a vocabu-
lary size 16K. The dropout rate for EnDe baseline
model and TST model is 0.3, and 0.1 for other
models. Other settings are as follows: batch size
as 4096, learning rate as 7e-4, warmup steps as
4000, label-smoothing as 0.1 (Szegedy et al., 2016;
Pereyra et al., 2017), Adam β1 as 0.9, and β2 as
0.98 (Kingma and Ba, 2017). For each training
task, we select the best model according to the
perplexities measured on the dev set.

5 Result

TST can be combined with popular BT strategies.
Our strategy can be seen as a universal data argu-
mentation method on basis of BT. To better verify
the effectiveness of our method, Beam BT, Sam-
pling BT, Noised BT, and Tagged BT are selected
for comparative experiments (see Section 2.1).

Table 2 is an example of synthetic source sen-
tences generated by four BT strategies. For Noised
BT, noise is added after TST is performed. While
for other BT methods, we directly modify the
source side of BT data using our TST model.

To prove the effectiveness of TST BT, We per-
form experiments on high-resource (EnDe and
ZhEn) and low-resource (EnRo) languages, as well
as domain adaptation.

https://github.com/mjpost/sacrebleu
https://github.com/Unbabel/COMET
https://github.com/google-research/bleurt
https://github.com/google-research/bleurt
https://huggingface.co/xlm-roberta-base
https://huggingface.co/xlm-roberta-base
https://github.com/ThilinaRajapakse/simpletransformers
https://github.com/ThilinaRajapakse/simpletransformers


BLEU ChrF COMET BLEURT
All O R All O R All O R All O R

Bitext 32.9 35.2 28.9 60.8 62.1 59.1 54.8 50.1 59.7 73.6 71.8 75.6
+Beam BT 32.1 28.5 36.4 59.2 55.0 65.0 45.9 28.0 65.4 71.7 66.2 77.8

+TSTDirect 33.3 31.4 34.8 60.8 58.4 64.1 53.3 42.2 65.4 73.9 70.3 77.8
+TSTCascade 35.3 33.0 37.7 62.8 60.6 65.8 59.3 51.6 67.6 75.8 73.1 78.7

+Sampling BT 36.0 32.7 40.2 63.0 60.2 66.9 61.7 54.5 69.5 76.9 74.2 79.7
+TST 35.8 32.6 39.9 63.0 60.3 66.8 62.5 55.9 69.6 77.2 74.7 79.8

+Noised BT 36.6 36.2 36.4 63.6 62.6 65.0 59.8 53.4 66.9 75.7 73.0 78.5
+TST 37.0 36.5 37.1 64.1 63.1 65.5 62.3 57.1 67.9 76.5 74.4 78.9

+Tagged BT 37.0 36.6 36.7 63.9 63.1 64.9 61.6 56.0 67.6 76.2 73.9 78.6
+TST 37.4 37.4 36.5 64.3 63.8 64.9 62.2 57.2 67.6 76.6 74.4 78.9

+FT 33.6 36.4 28.9 61.5 63.1 59.3 56.3 52.4 60.4 74.1 72.5 75.8
+Beam BT 37.3 37.6 36.1 64.3 63.8 64.9 60.4 54.7 66.4 75.6 73.3 78.0

+TST 37.8 37.7 37.2 64.6 64.0 65.5 61.3 55.4 67.6 76.1 73.8 78.6

Table 3: English→German models trained on WMT 2018 bitext (Bitext) with four BT variants (Beam, Sampling,
Noised and Tagged BT). Their averaged TST results on Original test set (O), Reverse test set (R) and the combined
test sets (All) from WMT 2014-2018.

5.1 TST BT for EnDe

We believe that when we add Nature to Nature
BT data, the translation of Nature input can be
improved. However, the target side of original test
set is human-translated, which could influences the
scores measured by over-lapping metrics, such as
BLEU and ChrF. For the purpose of fair evalua-
tion, we report multiple metric scores, including
BLEU, ChrF, COMET, and BLEURT. The final
scores are averaged based on WMT14-18 test sets,
as shown in Table 3. The detail results are shown
in Appendix A.

All BT methods enhance model performance
over baselines. It has greater effect on reverse test
sets than original ones. Particularly, all metrics
on original test set decline after Beam BT is ap-
plied. This result is consistent with our findings
that merely adding BT data MT→Nature deteri-
orates translation of Nature input.

We try the two style transfer approaches men-
tioned above on basis of Beam BT. The result
shows that both cascaded and direct approaches
bring significant improvements but the cascaded
approach is better. So we use the cascaded ap-
proach by default in following experiments.

In general, TST BT mainly brings improvement
on original test sets while maintains standard BT’s
effectiveness on reverse test sets. Although BLEU
and ChrF scores are fluctuated, we observe steady
increase of COMET and BLEURT scores after TST
BT is applied. We observe similar improvements
against other BT baselines, with an average im-

provement of 1.0+ COMET score.
According to the experiment results, TST is a

supplement to BT that further enhances the effec-
tiveness of BT.

5.1.1 Ablation Experiment
Although TST BT does not directly use additional
source text but the transfer model is trained with
source data. So we perform forward translation
(FT) or self-training (Zhang and Zong, 2016) with
the same data and compare the FT, FT+BT (Wu
et al., 2019), and FT + TST BT strategies, as shown
in Table 3.

FT enhancement is considerable on the original
test set but slight on the reverse test set. FT + BT
brings significant improvement on the reverse and
original test sets. When we perform TST BT on
such a strong baseline, we observe further 0.7 and
1.2 COMET score increases on original and reverse
sets respectively.

Although FT and TST use the same data, their
mechanisms are different and the two methods can
be used together. He et al. (2020) believe dropout
is the key for FT while TST BT focuses on style
transfer to create Nature to Nature data, which
further improves the translation of Nature input.

5.2 TST BT for ZhEn

The size of ZhEn bilingual data is 20M, four times
that of EnDe. We perform TST on this language
pair to see whether TST BT is effective when ap-
plied to a even larger data size and to a language



BLEU ChrF COMET BLEURT
All O R All O R All O R All O R

Bitext 24.7 23.8 26.1 53.4 53.0 54.2 43.5 34.2 55.0 68.0 65.9 70.6
+Beam BT 26.4 23.7 30.9 55.1 53.5 58.1 46.4 36.2 59.2 69.1 66.6 72.2

+TST 26.6 23.5 31.8 54.9 53.1 58.4 47.8 37.4 60.5 69.5 67.0 72.7

Table 4: Chinese→English models trained on WMT 2017 Bitext. The Beam BT and the averaged TST results on
Original test set (O), Reverse test set (R) and the combined test set (All) from WMT 2017-2019.

BLEU ChrF COMET BLEURT
All O R All O R All O R All O R

Bitext 28.7 28.8 28.6 56.0 54.1 57.9 52.5 28.8 76.3 71.6 64.7 78.5
+Beam BT 32.3 29.0 35.8 59.0 54.8 63.5 63.5 38.9 88.1 74.0 66.9 81.0

+TSTEnDe 31.7 27.8 35.6 58.6 54.1 63.3 66.9 43.1 90.7 75.2 68.2 82.1
+TSTEnRo 31.9 27.8 36.1 58.6 54.0 63.5 65.0 39.9 90.2 74.5 66.9 82.1

Table 5: English→Romanian models trained on WMT 2016 bitext (Bitext). Beam BT and TST results on each
Original test set (O), Reverse test set (R) and the combined test set (All) from WMT 2016.

from a different family. We use 20M English mono-
lingual data to ensure the ratio of bilingual and
monolingual data is 1:1. See overall results in Ta-
ble 4 and detailed results in Appendix B.

The overall result is similar to that of EnDE.
We observe significant increase of COMET and
BLEURT scores after applying TST BT, although
the BLEU and ChrF scores fluctuate. TST BT
achieves 1.4 COMET score increase on average on
basis of Beam BT. We observe significant increase
on both original and reverse test sets.

Our experiments also show that TST BT
achieves similar improvements against other BT
baselines in addition to Beam BT on ZhEn. The
result is different from the EnDe experiment, where
the improvement brought by TST against Beam BT
is much greater than other BT baselines. We as-
sume that a larger bilingual data size and a different
data ratio may be the reason.

It should be noted that the ZhEn baseline is al-
ready very strong considering the data size, and
even stronger after adding the standard BT data.
However, TST BT achieves further enhancement
against such strong baselines.

5.2.1 Human Evaluation

We also perform human evaluation on ZhEn to
verify the enhancement brought by TST BT. We
randomly sample 300 sentences from WMT17-19
original and reverse test sets respectively. We fol-
low the evaluation scheme mentioned by Callison-
Burch et al. (2007), and 8 professional annotators
are recruited to rate adequacy and fluency of three
MT results on a 5-point scale, given source text and

reference.
The result is listed in Table 6. TST improves

adequacy and fluency on both original and reverse
test sets. The result is consistent with COMET
and BLEURT scores in Table 4. The human eval-
uation result again proves the effectiveness of our
method. Both automatic metrics and human eval-
uations demonstrate that TST BT mainly brings
enhancement on the original test set, indicating
that TST BT improves the translation of Nature
input.

5.3 TST BT for EnRo

We further perform experiments in low-resource
scenario to test the generalizability of TST BT. We
use WMT16 EnRo bilingual data (0.6M bilingual)
for the experiment. Table 5 presents the results.

In this experiment, we compare the effective-
ness of two TST models: one is trained with EnRo
models, and the other, used for our EnDe exper-
iment, is trained with EnDe models. The style
transfer model trained with EnRo data improves
performance against BT baselines (by 1.5 COMET
score and 0.5 BLEURT score).

Another interesting finding is that the TST
model for the EnDe task also enhances the EnRo
model performance (by 3.4 COMET score and 1.2
BLUERT score), which is even greater than that
of the TSTEnRo model. The result indicates that it
is possible to build a universal pre-trained model
for sytle transfer. This result demonstrates that the
style transfer model is universal and can be applied
to other language pairs.



Original Reverse
Adequacy Fluency Adequacy Fluency

Bitext 3.89 4.52 4.57 4.81
+Beam BT 3.98 4.51 4.67 4.79

+TST 4.03 4.52 4.69 4.82

Table 6: Averaged Adequacy and Fluency results by
human annotators on Original and Reverse test sets.

BLEU ChrF COMET BLEURT
Bitext 26.1 57.1 50.4 71.0
+Beam BTMed 28.6 60.9 56.4 72.6

+TSTMed 30.3 61.0 57.8 73.3

Table 7: Metric scores of German→English models
trained on WMT 2018 Bitext. Biomedical Beam BT
(Beam BTMed) and the biomedical TST (TSTMed) re-
sults measured on WMT 2018 biomedical test set.

5.4 Domain Augmentation

We observe that the translation of in-domain natural
inputs improve significantly after applying TST BT.
We also found that TST BT still improve translation
of out-of-domain natural inputs (like IWSLT14 and
Flores (Goyal and Gao, 2022)) test set (for details,
see Appendix Table 19).

Domain adaptation is a critical application of
BT. BT can improve in-domain performance given
in-domain monolingual data and an out-of-domain
translation model (Edunov et al., 2018). If we train
a TST model to modify the source-side text gen-
erated by BT to an in-domain style, we assume
in-domain translation can be further improved.

To test our hypothesis, we train an out-of-domain
DeEn model using WMT18 news bilingual data,
and perform BT on 12M biomedical English mono-
lingual data. 2.5M biomedical German monolin-
gual data is used to train the in-domain TST model.
The result is shown in Table 7.

We observe significant improvement brought by
BT and more surprisingly, further significant im-
provement after we apply TST, with an increase of
1.4 COMET score and 0.7 BLEURT score. We be-
lieve the reason for such enhancement is the same
as that on Flores and IWSLT test sets mentioned
above: making the input style biased towards in-
domain or Nature text to augment the effective-
ness of BT. The experiment again demonstrates the
generalizability of TST BT.
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Figure 4: The Nature ratio of each round of trans-
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(EN_start, DE_start). The dotted line indicates the
Nature ratio of English or German human translations
(EN_HT, DE_HT). The green line represents the aver-
aged Nature ratio (EN_TST) of English data after style
transfer.

6 Analysis

6.1 Style Tide
As shown in Figure 1, bilingual data can be di-
vided into Nature to HT or HT to Nature. By
learning such data, the model inclines to generate
translation-like output when the input is Nature,
and vice versa. To illustrate the phenomenon, we
perform several rounds of translation on ENNature

and DENature data from WMT18 EnDe test set.
We calculate the proportion of Nature text marked
by the classifier after each round of translation.

As shown in Figure 4, the percentage of Nature
sentences fluctuates regularly after each round of
translation, no matter the translation starts from De
or En. For English original data, the percentage
of Nature data is 85.7% before translation. The
percentage drops to 7.3% after the first round of
translation into German, and then bounces back to
51.9 after the second round of translation back into
English. As we analyzed above, the style of input
determines the style of output.

In general, the composition of bilingual data, as
well as the difference between Nature and HT
style, makes the source-side BT text significantly
different from Nature text. As a result, the trans-
lation of Nature input can hardly be improved by
standard BT.

6.2 Style and Quality of TST
To understand what changes a TST model makes
to the source-side text, we analyze the style and
quality difference before and after applying TST to



Equal TST better MT better
Annotator 1 220 27 53
Annotator 2 212 23 65
Annotator 3 218 24 58

Table 8: Evaluation results by professional annotators
on 300 randomly selected MT and TST sentences.

TST TST BT
ACC Seman COMET

EnDe Beam BT 5.5 71.1 35.3
+TSTDirect 25.2 70.8 51.1
+TSTCascade 20.1 69.9 59.3
EnRo Beam BT 25.4 65.6 38.9
+TSTEnDe 55.4 65.1 43.1
+TSTEnRo 52.2 65.7 39.9

Table 9: Style transfer performances of different TST
models on WMT 2018 English→German and WMT
2016 English→Romanian translation tasks.

the source-side text.
Taking EnDe data as an example, we analyze

the style of English text before and after TST, and
compare the quality through human evaluation.

As shown in Figure 4, after TST, the percentage
of Nature text increases from 5.5 to 20.1. The
improvement is significant, reaching the same level
of Nature as human-translated data, but there is
still a certain gap with the real natural text.

In addition, to analyze the impact of TST on text
quality, we randomly select 300 sentences from
WMT14 test set and assess the quality of standard
BT data and TST data against references. We in-
vite three professional annotators to complete the
assessment. We use relative ranking and classify
the results into three categories: equal, TST better
or MT better. The result is shown in Table 8, which
is different from Freitag et al. (2019). APE can
further improve translation quality but TST cannot.

Based on above analysis, we find that TST does
not improve the overall quality of source-side BT
data. Instead, it modifies the text towards a more
natural style, thus overcomes the weakness of stan-
dard BT. In addition, TST BT still maintains BT’s
tolerance (Bogoychev and Sennrich, 2019) of data
quality to make up the performance deterioration
caused by TST.

6.3 Style Transfer and BT Effects
In order to analyze the relationship between style
transfer results and final improvement on transla-
tion quality, we compare the improvements brought
by TST BT data that is generated via two differ-

ent approaches (cascaded/direct as we motioned
above) on EnDe and EnRo.

We use Strength of Style Transfer (ACC) and
Semantic Preservation (Seman) to measure style
transfer results. Taking EnDe as an example,
we perform BT on the DEnature data from the
reverse test set {ENHT , DEnature}, and calcu-
late Seman (measured by BLEURT) against ref-
erence ENHT . We then use the original test set
{ENNature, DEHT } to measure the improvement
of TST BT on the translation of Nature input. The
result shows that although the direct approach leads
to higher ACC and Seman scores, the cascaded
approach brings greater enhancement to the final
translation performance. The results are shown in
Table 9.

For EnRo, we compare style transfer models
trained on EnRo and EnDe data as we stated before.
Data modified by the TSTEnDe achieves higher
ACC and Seman scores, and lead to greater en-
hancement to the overall translation quality. The
result is different from our EnDe experiment.

Therefore, the relationship between style transfer
and the effect of BT enhancement can not be drawn
and more researches are required.

7 Conclusion

This paper proposes Text Style Transfer Back
Translation (TST BT) to further enhance BT effec-
tiveness. We make a detailed analysis of training
data styles and find that BT hardly improves transla-
tion of Natural inputs, which are the main inputs
in practical use. Our method simply modifies the
style of source-side BT data, which brings signifi-
cant improvements on translation quality, both in
high-resource and low-resource language scenar-
ios. Further experiment finds that TST BT is also
effective in domain adaptation, which can further
expand the application of our method. The general-
izability of TST BT is thus proved.

8 Limitations

TST BT is simple and straightforward, which
brings great improvements against BT baselines.
However, comparing with standard BT, TST BT
requires an additional style transfer model and ad-
ditional time to process generated BT data.
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A Experiment Details for EnDe

2014 2015 2016 2017 2018
All O R All O R All O R All O R All O R

Bitext 28.2 28.2 28.3 30.8 32.8 26.1 34.6 37.6 29.8 28.7 31.1 25.2 42.2 46.3 34.9
+Beam BT 28.8 23.7 35.2 28.9 27.6 30.6 33.2 28.7 39.3 29.2 26.1 32.3 40.2 36.2 44.5

+Direct-TST 30.1 26.5 34.2 30.2 29.9 29.8 34.7 32.5 37.1 29.4 27.8 30.4 42.1 40.5 42.6
+Cascade-TST 32.1 28.5 36.7 32.3 31.9 32.5 36.4 33.7 40.0 31.5 28.9 33.8 44.0 42.0 45.4

+Sampling BT 33.7 28.8 39.4 33.8 32.4 35.7 36.5 32.9 41.7 32.0 28.3 36.4 44.0 40.9 47.8
+TST 33.8 29.3 38.9 33.5 32.0 35.9 36.4 32.6 41.7 31.7 28.1 36.0 43.8 41.0 47.1

+Noised BT 32.5 29.8 36.1 33.4 34.3 31.5 38.4 38.0 38.4 31.9 31.5 31.8 46.6 47.2 44.1
+TST 33.0 30.4 36.4 34.2 34.9 32.8 38.8 38.1 39.4 32.6 32.0 32.7 46.5 47.1 44.3

+Tagged BT 32.7 30.0 36.0 34.1 34.4 32.3 38.7 38.6 38.7 32.9 32.6 32.3 46.8 47.6 44.4
+TST 33.0 30.6 36.1 34.5 35.6 31.8 39.3 39.8 38.3 32.9 32.7 32.2 47.3 48.5 44.2

+FT 28.7 29.2 28.1 31.5 33.8 26.1 35.6 38.8 30.3 29.5 32.5 25.3 42.9 47.7 34.9
+Beam BT 32.3 30.1 35.2 33.7 35.1 30.5 39.8 40.4 38.5 32.7 32.6 32.0 47.9 49.6 44.2

+TST 32.7 30.0 36.0 34.2 35.1 31.9 40.5 40.5 40.0 33.4 33.2 33.0 48.3 49.7 45.0

Table 10: English→German BLEU scores on WMT 2014-2018 test sets.

2014 2015 2016 2017 2018
All O R All O R All O R All O R All O R

Bitext 58.7 58.4 59.0 58.9 60.0 56.7 61.9 63.3 60.2 57.8 59.2 56.2 66.8 69.6 63.2
+Beam BT 57.4 51.8 64.9 56.4 54.1 61.2 60.1 54.9 66.9 57.4 53.8 61.9 64.6 60.4 70.1

+Direct-TST 59.2 55.4 64.3 58.3 57.2 60.7 61.8 58.9 65.7 58.0 56.0 60.6 66.6 64.7 69.0
+Cascade-TST 61.4 58.2 65.8 60.3 59.3 62.4 63.7 60.9 67.5 60.1 58.1 62.7 68.4 66.6 70.8

+Sampling BT 61.9 58.3 66.9 61.0 59.7 63.7 63.6 60.3 68.1 60.3 57.4 63.9 68.1 65.4 71.8
+TST 62.1 58.8 66.7 60.8 59.4 63.7 63.7 60.3 68.4 60.2 57.4 63.8 68.1 65.6 71.4

+Noised BT 62.0 59.5 65.3 61.0 60.8 61.5 64.9 63.7 66.5 60.3 59.3 61.6 69.9 69.8 70.1
+TST 62.4 60.1 65.6 61.8 61.5 62.4 65.2 63.9 67.0 61.1 60.1 62.2 70.0 69.9 70.2

+Tagged BT 62.0 59.8 65.0 61.2 61.0 61.7 65.1 64.1 66.3 60.9 60.4 61.6 70.2 70.4 70.0
+TST 62.3 60.3 65.1 61.7 61.8 61.5 65.6 65.1 66.3 61.2 60.8 61.7 70.5 70.9 69.9

+FT 59.3 59.3 59.4 59.5 60.9 56.6 62.7 64.2 60.5 58.6 60.2 56.5 67.6 70.9 63.3
+Beam BT 62.0 59.9 65.0 61.4 61.5 61.2 65.9 65.5 66.4 61.0 60.4 61.7 71.0 71.7 70.0

+TST 62.2 59.8 65.4 61.7 61.7 61.9 66.4 65.6 67.5 61.5 60.9 62.3 71.3 71.9 70.4

Table 11: English→German ChrF scores on WMT 2014-2018 test sets.



2014 2015 2016 2017 2018
All O R All O R All O R All O R All O R

Bitext 54.4 51.2 57.6 51.4 49.8 54.4 54.5 46.2 62.7 51.9 44.7 59.1 61.8 58.7 64.9
+Beam BT 44.3 23.8 64.8 41.0 32.3 57.9 46.0 22.5 69.5 44.8 25.9 63.7 53.3 35.3 71.3

+Direct-TST 52.4 39.6 65.2 49.4 44.6 58.6 53.1 37.8 68.3 50.4 37.8 63.1 61.4 51.1 71.8
+Cascade-TST 59.0 52.0 66.1 55.9 52.6 62.5 59.1 47.4 70.8 56.3 46.8 65.7 66.1 59.3 72.9

+Sampling BT 61.6 55.0 68.4 58.7 55.8 64.4 61.5 51.0 72.0 59.0 50.0 68.0 67.6 60.7 74.6
+TST 62.7 57.3 68.0 59.5 56.6 65.1 62.3 52.1 72.4 59.7 51.4 68.0 68.3 62.2 74.5

+Noised BT 60.1 54.5 65.6 55.7 53.0 61.1 60.1 50.2 70.0 56.1 47.1 65.1 67.2 62.0 72.5
+TST 62.0 57.6 66.4 57.8 55.7 62.1 62.8 54.2 71.4 59.7 53.0 66.3 69.1 64.8 73.3

+Tagged BT 61.4 56.2 66.7 57.8 55.6 62.0 61.7 52.9 70.6 58.6 51.6 65.7 68.3 63.9 72.8
+TST 61.8 57.4 66.3 58.2 56.2 62.0 62.4 54.2 70.6 59.3 52.6 66.0 69.2 65.4 73.1

+FT 56.5 53.5 59.6 52.8 51.9 54.6 55.7 48.3 63.0 53.2 47.0 59.4 63.3 61.3 65.4
+Beam BT 60.6 55.7 65.5 56.7 54.7 60.5 60.1 51.0 69.2 57.2 49.2 65.2 67.3 63.0 71.5

+TST 60.8 55.4 66.1 57.6 55.5 61.8 61.1 51.5 70.7 58.3 50.4 66.2 68.7 64.2 73.2

Table 12: English→German COMET scores on WMT 2014-2018 test sets.

2014 2015 2016 2017 2018
All O R All O R All O R All O R All O R

Bitext 73.5 71.9 75.2 72.7 72.2 73.7 73.5 70.5 76.5 72.7 69.8 75.6 75.8 74.5 77.2
+Beam BT 71.5 65.3 77.7 69.9 67.3 75.1 72.2 65.2 79.1 71.3 65.0 77.5 73.8 68.3 79.4

+Direct-TST 73.8 69.6 78.0 72.5 71.2 75.1 74.0 69.3 78.7 73.0 68.6 77.3 76.3 72.9 79.7
+Cascade-TST 75.7 72.9 78.5 74.5 73.5 76.5 75.9 72.1 79.7 74.9 71.4 78.5 77.8 75.4 80.3

+Sampling BT 77.1 74.4 79.7 75.7 74.7 77.6 76.8 73.1 80.5 76.0 72.7 79.3 78.7 76.1 81.4
+TST 77.4 75.1 79.7 76.0 75.2 77.8 77.2 73.7 80.7 76.3 73.1 79.5 78.9 76.5 81.3

+Noised BT 75.9 73.4 78.4 74.2 73.1 76.3 75.8 72.2 79.4 74.6 70.9 78.2 77.8 75.5 80.1
+TST 76.5 74.3 78.7 75.0 74.2 76.6 76.8 73.6 80.1 75.7 72.9 78.6 78.7 76.8 80.6

+Tagged BT 76.2 73.7 78.6 74.8 74.0 76.3 76.3 72.9 79.7 75.3 72.2 78.3 78.4 76.5 80.3
+TST 76.5 74.3 78.8 75.2 74.5 76.6 76.7 73.7 79.7 75.6 72.6 78.6 78.8 76.9 80.6

+FT 74.3 72.8 75.8 73.0 72.7 73.6 73.9 71.3 76.5 73.1 70.5 75.7 76.2 75.3 77.2
+Beam BT 75.8 73.5 78.1 74.2 73.5 75.4 75.5 72.1 79.0 74.6 71.2 77.9 77.9 76.0 79.7

+TST 76.2 73.8 78.6 74.8 74.0 76.2 76.1 72.5 79.6 75.1 71.9 78.4 78.5 76.6 80.3

Table 13: English→German BLEURT scores on WMT 2014-2018 test sets.



B Experiment Details for ZhEn

2017 2018 2019 Average
All O R All O R All O R All O R

Bitext 24.4 24.5 24.2 24.8 23.0 28.3 24.8 24.0 25.7 24.7 23.8 26.1
+Beam BT 25.7 23.2 29.1 26.5 23.3 32.8 27.1 24.5 30.8 26.4 23.7 30.9

+TST 26.1 23.3 30.1 26.9 23.6 33.8 26.7 23.7 31.5 26.6 23.5 31.8
+Sampling BT 26.2 22.7 31.2 26.6 22.9 34.1 26.9 23.5 32.3 26.6 23.0 32.5

+TST 26.2 22.6 31.1 26.8 23.4 33.9 26.8 23.5 32.2 26.6 23.2 32.4
+Noised BT 26.3 24.4 28.9 26.6 23.7 32.5 27.0 24.7 30.6 26.6 24.3 30.7

+TST 26.1 24.2 28.6 26.9 24.1 32.5 27.0 24.8 30.5 26.7 24.4 30.5
+Tagged BT 26.3 24.3 29.0 26.6 23.7 32.5 27.1 24.5 31.0 26.7 24.2 30.8

+TST 25.7 23.6 28.7 27.0 24.2 32.7 27.0 24.5 31.0 26.6 24.1 30.8

Table 14: Chinese→English BLEU scores on WMT 2017-2019 test sets.

2017 2018 2019 Average
All O R All O R All O R All O R

Bitext 53.4 54.0 52.5 53.2 52.0 55.7 53.5 53.1 54.3 53.4 53.0 54.2
+Beam BT 54.7 53.6 56.2 54.8 52.6 59.7 55.8 54.3 58.5 55.1 53.5 58.1

+TST 54.3 52.9 56.4 54.9 52.6 60.0 55.6 53.8 58.7 54.9 53.1 58.4
+Sampling BT 54.4 52.4 57.2 54.5 52.0 60.2 55.0 52.7 59.0 54.6 52.4 58.8

+TST 54.1 51.9 57.1 54.5 52.1 59.9 54.8 52.7 58.7 54.5 52.2 58.6
+Noised BT 54.7 53.9 55.7 54.6 52.7 58.9 55.3 53.8 58.1 54.9 53.5 57.6

+TST 54.4 53.6 55.5 54.7 52.9 58.9 55.1 53.7 57.8 54.7 53.4 57.4
+Tagged BT 54.7 53.9 55.8 54.5 52.5 59.0 55.2 53.6 58.2 54.8 53.3 57.7

+TST 54.3 53.3 55.7 54.8 52.9 59.0 55.1 53.4 58.1 54.7 53.2 57.6

Table 15: Chinese→English ChrF scores on WMT 2017-2019 test sets.

2017 2018 2019 Average
All O R All O R All O R All O R

Bitext 46.6 39.7 53.4 39.5 29.2 56.4 44.4 33.7 55.1 43.5 34.2 55.0
+Beam BT 48.9 40.0 57.8 42.4 31.0 61.3 48.0 37.6 58.4 46.4 36.2 59.2

+TST 49.7 40.3 59.0 44.3 33.1 62.9 49.3 38.8 59.7 47.8 37.4 60.5
+Sampling BT 48.6 37.0 60.1 42.4 30.4 62.3 47.8 34.7 60.9 46.3 34.0 61.1

+TST 49.9 39.2 60.5 43.5 31.8 62.9 48.6 36.5 60.6 47.3 35.8 61.3
+Noised BT 49.7 41.1 58.4 43.3 32.3 61.5 48.8 37.6 60.1 47.3 37.0 60.0

+TST 50.1 41.9 58.2 43.8 33.3 61.1 48.7 38.1 59.8 47.5 37.8 59.7
+Tagged BT 49.7 41.1 58.2 43.1 31.9 61.7 48.3 36.4 60.2 47.0 36.5 60.0

+TST 49.3 40.1 58.4 44.1 33.8 61.4 48.8 37.7 60.0 47.4 37.2 59.9
Table 16: Chinese→English COMET scores on WMT 2017-2019 test sets.



2017 2018 2019 Average
All O R All O R All O R All O R

Bitext 67.7 65.9 53.4 67.6 65.2 71.6 68.8 66.7 70.8 68.0 65.9 70.6
+Beam BT 68.6 66.2 57.8 68.7 65.9 73.3 70.0 67.7 72.3 69.1 66.6 72.2

+TST 68.9 66.3 59.0 69.3 66.6 73.8 70.4 68.0 72.8 69.5 67.0 72.7
+Sampling BT 68.7 65.5 60.1 68.7 65.5 73.9 70.0 67.0 73.1 69.1 66.0 73.0

+TST 69.0 66.1 60.5 69.1 66.1 74.0 70.3 67.3 73.3 69.5 66.5 73.1
+Noised BT 68.9 66.5 58.4 68.9 66.2 73.3 70.1 67.6 72.7 69.3 66.8 72.4

+TST 68.8 66.5 58.2 69.0 66.4 73.3 70.2 67.8 72.6 69.3 66.9 72.3
+Tagged BT 68.9 66.6 58.2 68.8 66.0 73.5 70.1 67.4 72.8 69.3 66.7 72.5

+TST 68.7 66.2 58.4 69.1 66.5 73.5 70.3 67.8 72.8 69.4 66.8 72.5

Table 17: Chinese→English BLEURT scores on WMT 2017-2019 test sets.

C Experiment Details for EnRo

BLEU ChrF COMET BLEURT
All O R All O R All O R All O R

Bitext 28.7 28.8 28.6 56.0 54.1 57.9 52.5 28.8 76.3 71.6 64.7 78.5
+Beam BT 32.3 29.0 35.8 59.0 54.8 63.5 63.5 38.9 88.1 74.0 66.9 81.0

+TSTEnDe 31.7 27.8 35.6 58.6 54.1 63.3 66.9 43.1 90.7 75.2 68.2 82.1
+TSTEnRo 31.9 27.8 36.1 58.6 54.0 63.5 65.0 39.9 90.2 74.5 66.9 82.1

+Sampling BT 32.6 29.3 35.9 59.0 54.8 63.5 66.0 42.1 90.1 75.1 68.0 82.2
+TSTEnDe 31.9 28.2 35.7 58.5 54.1 63.2 66.9 42.7 91.2 75.4 68.2 82.5
+TSTEnRo 32.1 28.4 35.9 58.5 54.2 63.1 65.4 40.8 90.0 75.2 67.9 82.5

+Noised BT 32.2 30.8 33.7 58.8 55.9 62.0 66.8 45.0 88.5 75.3 68.7 81.9
+TSTEnDe 32.3 31.6 33.1 59.2 56.8 61.7 68.7 47.5 90.0 76.2 70.0 82.4
+TSTEnRo 32.7 31.9 33.7 59.1 56.5 61.8 67.3 45.9 88.7 75.7 69.1 82.4

+Tagged BT 32.5 31.7 33.2 58.9 56.5 61.5 67.7 45.8 89.6 75.7 69.1 82.2
+TSTEnDe 33.1 32.6 33.7 59.3 57.1 61.7 70.3 49.8 90.7 76.8 70.9 82.8
+TSTEnRo 32.6 32.0 33.3 59.0 56.7 61.5 68.2 46.5 89.8 76.1 69.5 82.7

Table 18: WMT 2016 English→Romanian results on the WMT 2016 test set.

D TST BT on OOD

Flores IWSLT-2014 Med-2021
BLEU ChrF COMET BLEURT BLEU ChrF COMET BLEURT BLEU ChrF COMET BLEURT

Bitext 34.5 61.8 55.3 74.2 28.5 55.8 34.8 68.7 23.5 54.8 46.8 71.1
Beam BT 33.7 60.9 53.2 73.5 24.5 50.6 18.5 64.6 25.9 57.6 49.4 71.7
+TST 34.9 62.2 59.6 75.8 27.9 55.2 38.0 69.7 26.3 57.0 49.9 72.2
Tagged BT 37.2 63.6 61.1 76.0 29.7 56.7 40.4 70.0 25.5 56.1 49.1 71.9
+TST 38.2 64.0 61.8 76.4 30.0 57.1 41.3 70.4 25.8 56.6 50.6 72.3

Table 19: WMT 2018 English→German results on out-of-domain (Flores, IWSLT and Medical) original test set.
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