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Abstract
The goal of this paper is to revisit Kernel Principal
Component Analysis (KPCA) through dualization
of a difference of convex functions. This allows
to naturally extend KPCA to multiple objective
functions and leads to efficient gradient-based al-
gorithms avoiding the expensive SVD of the Gram
matrix. Particularly, we consider objective func-
tions that can be written as Moreau envelopes,
demonstrating how to promote robustness and
sparsity within the same framework. The pro-
posed method is evaluated on synthetic and real-
world benchmarks, showing significant speedup
in KPCA training time as well as highlighting the
benefits in terms of robustness and sparsity.

1. Introduction
Kernel Principal Components Analysis (KPCA, Schölkopf
et al. (1998)) stands as one of the most widely used tools for
unsupervised learning, with applications to dimensionality
reduction, denoising, or features extraction. By embedding
the data in some higher dimensional space thanks to a fea-
ture map, KPCA aims at finding orthogonal directions in
the feature space that allow to best reconstruct the empirical
covariance operator.

The classical way to solve the KPCA problem is to com-
pute the singular values decomposition (SVD) of the Gram
matrix, a costly O(n3) operation whose complexity scales
cubicly with respect to the number n of datapoints. This pre-
vents KPCA from being used in large-scale scenarios, and,
while some solutions exist, they mostly boil down to sub-
sampling in fixed-size schemes to approximate the nonlinear
mapping (Langone & Suykens, 2017) or focus on the online
learning setting (Günter et al., 2007; Chin & Suter, 2007;
Honeine, 2012). Works on speeding up the simpler problem
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of linear PCA exist (see (Gemp et al., 2021) and references
therein), but they cannot deal with infinite-dimensional fea-
ture spaces.

From an optimization standpoint, the KPCA problem can be
formulated as variance maximization under orthonormality
constraints. Such problem belongs to the wider family of
differences of convex functions (DC) problems, which has
received a great deal of attention in multiple applications
(e.g., see (Tao & An, 1997)). In particular, in (Beck &
Teboulle, 2021), PCA was investigated as a DC problem,
but only in the case of linear PCA, i.e., not considering (po-
tentially infinite-dimensional) feature mappings, and only
for the simpler problem of finding the first component where
the orthogonality constraints become void.

Enforcing desirable properties to the solution, such as spar-
sity or robustness, is a long-standing open problem in KPCA.
While many works have investigated robust/sparse KPCA
(e.g., robust KPCA in (Nguyen & Torre, 2008; Kim & Klab-
jan, 2020; Wang & Tanaka, 2020a; Fan & Chow, 2020) and
sparse KPCA in (Wang & Tanaka, 2016; Guo et al., 2019b;
Tipping, 2000; Smola et al., 2002)), they use several dif-
ferent ad-hoc approaches or heuristics such as weighting
schemes (Alzate & Suykens, 2008), leading to a multitude
of different optimization problems. In (Thiao et al., 2010),
a DC program for the specific problem of sparse linear PCA
was explained, but is not extended to also handle robust
losses within the same framework; notably, it does not deal
with nonlinear feature maps nor with more than one com-
ponent. The idea of using infimal convolution to design
sparse or robust losses is exploited notably in Sangnier et al.
(2017); Laforgue et al. (2020) for regression problems, and
is known to work well in duality settings.

In this paper, we derive a general dual-based formulation
for KPCA leading to a difference of convex function objec-
tive which encompasses both the variance and robust/sparse
objective functions in the same framework. We derive effi-
cient optimization algorithms showing significant speedups
compared to the standard SVD solvers for KPCA. In par-
ticular, our approach allows to solve infinite-dimensional
KPCA problems in the dual. We focus on objectives that
can be written as Moreau envelopes, which include the Hu-
ber and ϵ-insensitive losses, inducing robustness and spar-
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sity, respectively. We show how the resulting optimization
problems can be tackled with efficient algorithms for each
objective.

The paper is structured as follows. In Section 2, we formu-
late the general KPCA problem as a difference of convex
functions, which leads to a flexible framework that can be
extended to other loss functions beyond the square loss. We
present in Section 3 a gradient-based optimization algorithm
able to efficiently solve the standard KPCA problem through
dualization. Later, in Section 4 we exploit the flexibility
of the proposed DC framework by modifying the objective
function to promote robustness and sparsity. Finally, numer-
ical experiments on both synthetic and real-world bench-
marks are presented in Section 5, showing faster training
times and illustrating the promotion of sparsity and robust-
ness induced in the solution. All proofs are deferred to the
appendix.

2. Problem Formulation
Notation: Given a symmetric real matrix M ∈ Rn×n,
λ(M) ∈ Rn is the vector of its eigenvalues ordered decreas-
ingly. For a linear operator Γ between Hilbert spaces, Γ♯

denotes its adjoint. When w ∈ H is a vector, w♯ refers to the
linear form x 7→ ⟨w, x⟩. Is is the identity matrix of size s×s.
ϕ : X → H is a mapping to a Hilbert space H. ϕ induces a
positive definite kernel function k : X×X → R with associ-
ated RKHS Hk. Given a vector W = (w1, . . . , ws) ∈ Hs,
we denote by G(W ) ∈ Rs×s the Gram matrix such that
G(W )ij = ⟨wi, wj⟩. ∥·∥F denotes the Frobenius norm. For
a convex set C, ιC(·) is its indicator function: 0 on C and
+∞ otherwise. The infimal convolution is denoted □, and
the Fenchel-Legendre transform of a function f is f⋆.

Let X be some input space, and (xi)
n
i=1 ∈ Xn n datapoints

in it. These datapoints are embedded in a feature space H by
means of a feature map ϕ : X → H. Up to some recentering
of ϕ, we assume that

∑n
i=1 ϕ(xi) = 0. The KPCA problem

consists in finding orthogonal directions in the feature space
that allow for the best low rank approximation of some
empirical version of the covariance operator

Σ :=
1

n

n∑
i=1

ϕ(xi)ϕ(xi)
♯ ∈ L(H).

Given a desired number of components s, KPCA can be
reformulated as finding s directions in the Hilbert space H

that maximize the variance under orthonormal conditions.
When H is some finite dimensional Rp space, and denoting
Φ ∈ Rn×p the row-wise concatenations of the [ϕ(xi)]

n
i=1,

this reduces to

sup
W∈Rp×s

∥ΦW∥2F s.t. W⊤W = Is.

The Stiefel manifold over Hilbert spaces: Given a fea-
ture space H and a positive integer s, we introduce the
Stiefel manifold of orthonormal s-frames in H as

SsH := {W ∈ Hs | G(W ) = Is}.
When H = Rd is endowed with the Euclidean scalar
product, the Stiefel manifold corresponds to the usual set
of matrices SsRd =

{
M ∈ Md,s(R)|M⊤M = Is

}
. We

define Γ: Hs → Rn×s as the linear operator such that
for all (i, j) ∈ [n × s] and W = (w1, . . . , ws) ∈ Hs,
[ΓW ]ij = ⟨ϕ(xi), wj⟩. The KPCA problem then reduces to

sup
W∈Ss

H

1

2
∥ΓW∥2F . (1)

While the constraint W ∈ SsH is not convex, it can be
relaxed to the convex hull of the Stiefel manifold as the so-
lutions necessarily lie on the boundary (Uschmajew (2010),
Lemma 2.7) which justifies the fact that we consider the
constraint convex in what follows.

Kernel PCA from SVD: The usual way to solve the
KPCA problem is to express the directions W = [wj ]

s
j=1 as

linear combinations of the features, introducing coefficients
(αij)

n,s
i,j=1 ∈ Rn×s such that

wj =

n∑
i=1

αijϕ(xi).

Quick algebraic manipulations then ensure that the solu-
tion to Problem 1 can be obtained by taking the coeffi-
cients α to be the top-s eigenvectors of the Gram matrix
G = [k(xi, xj)]

n
i,j=1, rescaled so that the directions have

unit norm. Thus KPCA is solved by performing the SVD of
some n×n matrix, an operation scaling as O(n3) and quite
slow even for moderate sizes of datasets. Throughout this
paper we make the assumption that G is full rank, which
typically happens when the feature space is infinite dimen-
sional (e.g. Gaussian kernel) and the data does not contain
any duplicate. This assumption is critical to the derivation
of the gradient in Section 3.

Difference of convex functions: The KPCA optimization
problem can be cast into the minimization of a difference of
convex functions of the form

inf
W∈Hs

g(W )− f(ΓW ). (2)

Indeed, plugging back f = 1
2 ∥·∥

2
F and g = ιSs

H
(·) into

Problem 2 one gets back the original formulation from Prob-
lem 1. One of the advantages of this formulation is that
it becomes possible to slightly modify the loss function f
so as to enforce specific properties such as robustness or
sparsity for the solution.

The goal of this work is two-fold:
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• Exploit gradient-based optimization schemes to solve
KPCA without using the SVD of G, resulting in com-
putational advantages (see Section 3).

• Extend the KPCA problem to a larger set of objective
functions, with the benefit of enforcing robust or sparse
solutions (see Section 4).

3. Solving Kernel PCA with Gradient Descent
In this section, we use duality principles to derive suitable
optimization algorithms to solve the KPCA problem intro-
duced in Problem 1. We begin by a general proposition
performing the dualization of problems that can be written
as the minimization of a difference of two convex functions.
The proof is similar to Toland (1979), with an additional
care given to handling the operator Γ.
Proposition 3.1 (Dual of difference of convex functions).
Let U ,K be two Hilbert spaces, g : U → R̄ and f : K → R̄
be two convex lower semi-continuous functions and Γ ∈
L(U ,K). The problem

inf
W∈U

g(W )− f(ΓW )

admits the dual formulation

inf
H∈K

f⋆(H)− g⋆(Γ♯H), (3)

and strong duality holds.

The main motivation for going from the primal problem to
the dual in the KPCA case is that the dual variable H is a
finite dimensional matrix, suitable to gradient-based opti-
mization schemes. However this comes at the cost of having
to handle the term g⋆(Γ♯H) which encodes information re-
lated to the Stiefel manifold. In Section 3.1, we show that
this term is related to the nuclear norm of some low dimen-
sional matrix and derive a gradient for it, before exploring
in Section 3.2 the link between the critical points of the dual
function and those of the reconstruction cost associated to
the Gram matrix. Finally in Section 3.3, we show how to
compute the projections associated to new points without
having to compute the primal solution.

3.1. Nuclear Norm Gradient Computation

The following proposition instantiates the term g⋆(Γ♯H) for
the KPCA problem.
Proposition 3.2. Let g be the indicator function of the
Stiefel manifold and Γ as in Problem 1. Then for all H ∈
Rn×s,

g⋆(Γ♯H) = Tr
√
H⊤GH (4)

We recognize in Equation (4) the nuclear norm of the matrix√
H⊤GH , which is well-defined since G is a Gram matrix

associated to a positive definite kernel.

Remark 3.3. In the proof, we first show that g⋆(Γ♯H) =∥∥∥G 1
2H
∥∥∥
S1

where ∥·∥S1
is the Schatten 1-norm, i.e. the nu-

clear norm. While the dependency in H makes this easier
to handle from an optimization standpoint, the dependency
in G

1
2 would require to perform the SVD that we want to

avoid, leaving us to work with Tr
√
H⊤GH .

In what follows, we define π(H) := Tr
√
H⊤GH and build

on Lewis (1996) to give a gradient expression for π used in
subsequent optimization algorithms.

Proposition 3.4. If all eigenvalues of H⊤GH are positive
then π is differentiable at H with gradient

∇π(H) = GHU⊤diag

(
1√

λ(H⊤GH)

)
U, (5)

where U ∈ Rs×s is an orthogonal matrix satisfying
H⊤GH = U⊤diag

(
λ(H⊤GH)

)
U .

To compute the gradient given in Equation (5), one needs
to perform the SVD of the matrix H⊤GH ∈ Rs×s. In the
context of a (relatively) small number of components, this
SVD is computationally cheap. This motivates the use of
gradient-based method to obtain the dual solution faster than
by exploiting the SVD of the n× n matrix G.

More precisely, the computational complexity associated to
the computation of this gradient can be bounded by the sum
of

• Computation of H⊤GH in O(sn2)

• SVD of H⊤GH in O(s3)

• Computation of Equation (5) in O(ns2+s3) by reusing
the precomputed GH .

Remark 3.5. Due to the dependency of the gradient in
1√

λ(H⊤GH)
, it is not Lipschitz continuous in H , which

prevents the use of fixed stepsizes schemes in classical opti-
mization algorithms.

3.2. Critical Points of the Dual Problem

Overall, the dual problem to KPCA reads

inf
H∈Rn×s

1

2
Tr(H⊤H)− π(H). (6)

Solving this nonconvex problem can be challenging, as local
minima or saddle points phenomena can occur. Typically,
algorithms such as the DC algorithm (Tao & An, 1997) en-
sure convergence towards a critical point, that is a point H
at which the gradient is nullified. In the following proposi-
tion, we explicit the link between critical points of the dual
function and those of the reconstruction cost associated to
the Gram matrix.

3
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Proposition 3.6. Let J(H) = 1
4

∥∥G−HH⊤
∥∥2
F

. Let Ĥ be
a critical point of Problem 6. Then ∇J(Ĥ) = 0.

The characterization of the critical points of J is given in
(Wright & Ma, 2022). We solve the dual problem (6) using
the L-BFGS optimization algorithm, which in practice we
observe always avoids sub-optimal critical points. More
details on the optimization algorithm are given in Section 5.

3.3. Exploiting the Dual Solution

Assume that solving Problem 6 has produced an optimal
dual solution that we denote Ĥ . In general, finding the cor-
responding directions in the feature space (primal variables)
involves solving the optimization problem

Ŵ ∈ argmin
W∈Hs

g(W )− ⟨Ĥ,ΓW ⟩. (7)

This optimization problem is non-trivial when we do not
have more information about the solution Ĥ . However,
when Ĥ is obtained by the SVD of G, there is a linear
dependency between the directions in the feature space and
the dual variables. This is exemplified in the following
proposition where we show that the SVD of G allows to
pick an optimal dual solution.

Proposition 3.7. Let G = U⊤ΣU be the SVD of G with
U ∈ Rn×n being orthonormal and Σ being diagonal. Let
Hsvd = U⊤

s

√
Σs where Us ∈ Rs×n gathers the top-s eigen-

vectors of G and Σs ∈ Rs×s the top-s eigenvalues. Then
Hsvd is a solution to Problem 6.

In our case, we do not have access to such an optimal solu-
tion and must find a way to compute the projections with
the only knowledge of Ĥ . It turns out that recovering the
projection on the principal components is possible using the
kernel trick, as proposed in the following.

Proposition 3.8. Let x ∈ X and Gx = [k(x, xi)]
n
i=1 ∈ Rn.

Let Ŵ ∈ Hs be a solution to Problem 1 and Ĥ ∈ Rn×s be
a solution to Problem 6. The projections of ϕ(x) onto the
principal components are given by

[⟨ϕ(x), ŵj⟩]sj=1 = G⊤
x ĤU⊤diag

(
λ(Ĥ⊤GĤ)

)− 1
2

U,

(8)
where U is obtained from the SVD of Ĥ⊤GĤ as in Propo-
sition 3.4.

Note that the expression in Equation (8) does not directly
involves the directions in the feature space encoded in Ŵ .

4. Beyond Variance Maximization
In this section, we propose to modify the variance objective
used in the original KPCA problem to promote desirable
properties such as sparsity or robustness in the dual variable

H . The idea is based on using objectives obtained from infi-
mal convolution with the squared norm, known as Moreau
envelopes (Moreau, 1965). We focus on variance-like objec-
tives of the form

f =
1

2
∥·∥2F □Ψ,

where Ψ: Rn×s → R̄ is a well-chosen function enforcing
desirable properties. Compatibility between the Fenchel-
Legendre transform and the infimal convolution operator
then allows to write the dual to Problem 2 as

inf
H∈Rn×s

1

2
∥H∥2F +Ψ⋆(H)− π(H). (9)

The section is organized as follows: we begin in Section 4.1
by expliciting some choices of Ψ that give rise to the Huber
and ϵ-insensitive objectives (known to respectively promote
robustness and sparsity) before exploiting their Moreau en-
velope structure to design dedicated optimization schemes
in Section 4.2.

4.1. Huber and ϵ-insensitive Objectives

In what follows, let ∥·∥ be a norm on Rn×s and ∥·∥⋆ be its
dual norm. Given t ≥ 0, the balls of radius t for these norms
are respectively denoted as Bt and B⋆t .

Definition 4.1 (Huber). Let κ > 0. The Huber objective
with parameter κ is defined as

Hκ :=
1

2
∥·∥2F □κ ∥·∥ .

The Huber objective can be understood as the Moreau en-
velope of κ ∥·∥ with parameter 1. This case corresponds to
Ψ = κ ∥·∥ and Ψ⋆ = ιB⋆

κ
. The additional term in Problem 9

constrains the dual variable H to pertain to the ball of radius
κ for the norm ∥·∥⋆, thus inducing robustess. While the
choice ∥·∥ = ∥·∥F recovers the classical version of the Hu-
ber objective, it is to be noted that varying choices of norms
allow to capture different notions of robustness (Lambert
et al., 2022).

Definition 4.2 (ϵ-insensitive). Let ϵ > 0. The ϵ-insensitive
objective with parameter ϵ is defined as

ℓϵ :=
1

2
∥·∥2F □ ιBϵ

.

The ϵ-insensitive objective is the Moreau envelope of some
indicator function of a ball, corresponding to Ψ = ιBϵ

and
Ψ⋆ = ϵ ∥·∥⋆. Depending on the choice of the norm, the
additional term in Problem 9 can behave like a Lasso or
group Lasso penalty, inducing sparsity in the iterates.
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Table 1: Proximal operators for Huber and ϵ-insensitive
objectives.

Objective Ψ Ψ⋆ proxΨ⋆(Y )

Hκ κ ∥·∥ ιB⋆
κ

ProjB⋆
κ
(Y )

ℓϵ ιBϵ
ϵ ∥·∥⋆ Y − ProjBϵ

(Y )

Algorithm 1 DCA for Moreau envelope objectives
input : Gram matrix G
init :H(0) ∈ Rn×s, Y = 0
for epoch t from 0 to T − 1 do
// alternating gradient steps

Y = ∇π(H(t)) from Equation (5)
H(t+1) = proxψ⋆(Y )

return H(T )

4.2. Solving with DC Algorithm

We propose to solve Problem 9 using the well-known dif-
ference of convex functions algorithm (DCA) (Tao & An,
1997). The point of DCA is to search for a critical point of
the problem, that is some H ∈ Rn×s such that

∂π(H) ∩ ∂(
1

2
∥·∥2F +Ψ⋆)(H) ̸= ∅.

The search is performed sequentially in the subgradient of π,
and in the subgradient of the Fenchel-Legendre transform of
1
2 ∥·∥

2
F +Ψ⋆, which is f . As f was chosen to be a Moreau

envelope, its gradient is always defined as for all Y ∈ Rn×s,

∇
(
1

2
∥·∥2F □Ψ

)
(Y ) = Y − proxΨ(Y ).

According to Moreau decomposition (Moreau, 1962), it
moreover holds that for all Y ∈ Rn×s,

Y − proxΨ(Y ) = proxΨ⋆(Y ).

Thus the DCA algorithm can be applied as long as the
computation of proxΨ⋆ is possible. The correspondence
between the choice of objective and the resulting proximal
operator is gathered in Table 1. In particular, one can note
that tractability of the DCA algorithm requires that the pro-
jection on the balls for the dual norm ∥·∥⋆ is possible in
the Huber case, whereas for ϵ-insensitive objectives what
matters is being able to project on the balls for the norm
∥·∥. This requirement drives the choice of the norm used in
the definition of the objectives, as projecting on balls can be
obtained in closed-form when the norm is a 2-norm or an
∞-norm. The DCA is summarized in Algorithm 1.

5. Numerical Experiments
Through numerical evaluations, we show the efficiency and
flexibility of the proposed KPCA dualization on a diverse

collection of dimensionality reduction tasks.

First, we evaluate the efficiency of the resulting LBFGS-
based optimization algorithm for KPCA on multiple
datasets, with comparisons to other standard KPCA solvers.
We apply the proposed algorithm to problems of different
sizes, and we also study the effect on performance of the
decay of the eigenspectrum of G.

Then, we quantify the robustness of the Huber losses on data
contaminated with outliers depending on the noise level, and
we study the influence of the loss parameters. Regarding the
ϵ-insensitive losses, we study the accuracy-sparsity tradeoff
w.r.t. the ϵ parameter and the number of components s.

Experiments are implemented in Python 3.10 on a ma-
chine with a 3.7GHz Intel i7-8700K processor and 64GB
RAM. The code is available at https://github.com/
taralloc/dc-kpca.

Datasets. We evaluate our approach on synthetic and
real-world datasets. Synth 1 (n = 7000, d = 10000) is
a high-dimensional synthetic dataset where samples are
drawn randomly from a multivariate normal distribution
with zero mean and fixed covariance matrix. For real-world
data, we consider datasets from LIBSVM (Chang & Lin,
2011), UCI (Dua & Graff, 2017), and common deep learn-
ing benchmarks: Iris (n = 150, d = 4), the bioinformatics
dataset Protein (n = 14895, d = 357), the text catego-
rization dataset RCV1 (n = 20242, d = 47236), and the
outputs of the second to last layer of a ResNet18 (He et al.,
2016) trained on the computer vision dataset CIFAR-10
(n = 60000, d = 512).

Experimental setups. Regarding optimization for KPCA
with the square loss, we employ the LBFGS algorithm with
backtracking linesearch using the strong Wolfe conditions
with initialization from the standard normal distribution. For
the Moreau envelopes, i.e. Huber and ϵ-insensitive losses,
we employ the DC algorithm; for faster convergence second
order optimization algorithms for this problem with com-
posite smooth + non-smooth structure can also be employed,
e.g. (Stella et al., 2017). For the square loss, the accuracy
of a dual iterate Hk from our solver at each iteration k is
chosen as the relative difference η = |d(Hk)−dopt|/dopt be-

tween the dual cost d(Hk) =
1
2 TrH

⊤
k Hk−Tr

√
H⊤
k GHk

at iteration k and the optimal dual cost dopt = − 1
2

∑s
i=1 λi,

with λi being the i-th largest eigenvalue of G. In fact, the
optimal primal cost is the highest variance in s components,
i.e., 1

2

∑s
i=1 λi, and strong duality holds in our dualization.

For all used solvers, we use the same stopping criterion
based on achieving a target tolerance. For the other convo-
luted losses, we stop the DCA when the absolute variation
of the loss is less than machine precision with at most 1000
iterations.

5
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Table 2: KPCA Training Time. Runtime for multiple KPCA problems with higher tolerance. Speedup factor w.r.t. RSVD.

Task n
Time (s) for δ = 10−2 Speedup

SVD Lanczos RSVD Ours Factor

Synth 1 7000 96.73 0.85 1.97 0.53 3.72
Protein 14895 868.64 3.46 6.70 1.07 6.25
RCV1 20242 - 6.04 12.50 2.12 5.90
CIFAR-10 60000 - 48.10 123.89 13.51 9.17

Table 3: KPCA Training Time. Runtime for multiple KPCA problems with lower tolerance.

Task n
Time (s) for δ = 10−4 Speedup

SVD Lanczos RSVD Ours Factor

Synth 1 7000 96.73 4.78 1.97 0.56 3.52
Protein 14895 868.64 3.51 6.95 1.07 6.59
RCV1 20242 - 19.72 12.75 3.78 3.38
CIFAR-10 60000 - 48.15 122.58 29.26 4.19

0.02 0.04 0.06 0.08

0

20

40

60

80

c

LBFGS Iterations
RSVD Oversamples

Figure 1: Varying eigenspectrum. Additional computa-
tional burden when the spectrum of G changes (larger c
corresponds to spectra with faster decay). Blue: our LBGS-
based algorithm, red: randomized SVD.

5.1. More Efficient KPCA

This subsection demonstrates the performance of the pro-
posed LBFGS-based algorithm to solve the KPCA prob-
lem (1). We compare our method with three common
KPCA solvers: full SVD (SVD), Implicitly Restarted Lanc-
zos Method (Lehoucq et al., 1998), and randomized SVD
(RSVD) (Halko et al., 2011). The Lanczos solver finds
the first s eigenvalues and corresponding eigenvectors of
the symmetric matrix G, while randomized SVD finds the
truncated singular value decomposition of G by random
projections. These solvers rely on different stopping criteria.
To make a fair comparison, note that dopt = d(U

√
S), with

G = USV ⊤ being the SVD of G. Therefore, the accu-
racy of an approximate solution Û , Ŝ, V̂ is measured by the

following relative dual cost residual:

η =
∣∣∣d(Û√Ŝ)− dopt

∣∣∣ /dopt, (10)

where for RSVD Ŝ is the diagonal matrix of the largest s
singular values of G and corresponding computed singular
vectors Û , V̂ , while for the eigendecomposition solver Ŝ is
the diagonal matrix of the largest s eigenvalues of G and
corresponding eigenvectors Û = V̂ found by the Lanczos
solver. Full SVD is run to machine precision for comparison.
For a given tolerance δ, we stop training when η < δ. In
particular, for RSVD, the number of required oversamples
is found by increasing the number of oversamples until the
target tolerance is reached.

The kernel is chosen to be the Laplace kernel k(z, y) =
exp

(
−∥z − y∥2 /(2σ2)

)
with σ = 0.1

√
dσx and σx the

variance of the training data. For the KPCA dimensionality
reduction task, it is common to assume that the given high-
dimensional data can be expressed over a small number of
principal components; therefore, in these experiments, we
use s = 20. The experiments are averaged over 5 runs.

Table 2 and 3 show the training times on different KPCA
tasks for multiple tolerance levels δ = 10−2, 10−4; lowest
training times are in bold. The time to compute the full
SVD to machine precision is given for reference in the SVD
column, where “-” indicates that SVD took longer than
30 minutes. The speedup factor is t(RSVD)/t(LBFGS), where
t(RSVD), t(LBFGS) is the training time using the RSVD solver
and our LBFGS-based solver, respectively. For tolerance
δ = 10−2, our solver is faster than all other KPCA solvers
and at least 3 times faster than RSVD. For the lowest tol-
erance δ = 10−4, our solver is the fastest with generally

6
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smaller speedup factor. Since our solver is second order, it
can reach higher accuracy quickly, with subsequent itera-
tions giving relatively lower improvement, which explains
why the speedup is more apparent at higher tolerances. All
solvers can achieve high accuracy; however, in some tasks
(e.g., CIFAR-10 and Protein) the Lanczos method cannot
take significant advantage of higher tolerance requirements.

A solver’s performance depends on the properties of the
given data and kernel. For instance, it is known that RSVD
requires more oversamples for matrices whose eigenspec-
trum decays slowly (Halko et al., 2011), which is often the
case in real-world problems. On the other hand, our LBGS-
based solver does not suffer from such issue. To further
illustrate this point, we construct G from random data X as
G = 0.01(X +X⊤) +UDU⊤, where U is any orthogonal
matrix and D is a diagonal matrix s.t. Dii = exp(−ci).
Varying c controls how quickly the spectrum of G decays,
with lower c corresponding to slower decays. In Fig. 1,
we vary c and show the additional computational cost for
RSVD and for our solver when the spectrum of G changes.
For RSVD, the red line shows the additional required over-
samples needed to achieve tolerance δ = 10−4 w.r.t. the
experiment with lowest number of oversamples. The blue
line shows the additional LBFGS iterations required by our
solver to achieve the same tolerance. While RSVD requires
significantly more oversamples to reach a fixed accuracy as
c decreases, our solver takes a similar number of iterations,
showing that our solver is mostly unaffected by this type of
change in the eigenspectrum of G.

The influence of s on training time is studied in Figure 2
on random data with n = 15000: higher s leads to longer
training times for both LBFGS and RSVD, with LBFGS
maintaining performance advantage. Very high s impacts
LBFGS’s training time as it needs to compute the SVD of a
s× s matrix at every iteration.
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Figure 2: KPCA Training Time. Effect of s.

Table 4: Robustness. MSE on contaminated Iris dataset.

τ 1
2 ∥·∥

2
H2
κ H1

κ

10 7.591059 6.833484 7.381284
25 7.910846 7.182663 7.687518
50 8.691805 8.045477 8.430957
75 9.782740 9.259353 9.465706
100 11.183650 10.824293 10.791766

0.4 0.5 0.6 0.7 0.8 0.9
10

12

14

16

1.0

1

2
∥·∥2

κ/κmax
M

SE

H2
κ

H1
κ

Figure 3: Robustness. Effect of κ for the loss H2
κ and H1

κ.

5.2. Huber Losses

We now present numerical experiments to illustrate the flex-
ibility of the KPCA dualization framework applied to the
Huber loss. We consider the Huber losses associated to dif-
ferent norms: H1

κ is the Moreau envelope of H 7→ κ ∥H∥1
and H2

κ is the Moreau envelope of H 7→ maxi∈[n] ∥hi∥2.
Both cases are optimized with the same DC algorithm.

We first investigate the robustness induced by the Huber
losses on the Iris dataset. We contaminate the data in the
following way: to corrupt data {xi}ni=1, we first draw a
set I ⊂ {0, ..., n} s.t. |I| = ⌊ωn⌋, with ω ∈ [0, 1] being
the proportion of corrupted samples. Then, we introduce
outliers using multiplicative Gaussian noise with zero mean
and τ standard deviation: for i ∈ I , xi is replaced by
bixi, where bi is drawn from N (0, τ2). We evaluate per-
formance by reconstruction error (MSE) in input space of
non-contaminated test samples: higher MSE means that
the learned subspace is influenced by the outliers, while
lower MSE corresponds to more robust models. We com-
pute pre-images using the technique of (Bakır et al., 2004).
As discussed in Section 3, as κ grows, the constraint on the
dual variables becomes void and we recover the square loss
KPCA problem. Therefore, we set κ = 0.6κmax, 0.8κmax
for H1

κ, H
2
κ, respectively.

The resulting test MSE values are given in Table 4 for ω =
8% on a 20% test split. We employ a Gaussian kernel
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Figure 4: Sparsity. Reconstruction error for the ℓ2ϵ loss for multiple ϵ and s.
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Figure 5: Sparsity. Reconstruction error for the ℓ∞ϵ loss for multiple ϵ and s.

k(z, y) = exp
(
−∥z − y∥22 /2

)
for all models. The Huber

losses H1
κ, H

2
κ are more robust to outliers for all noise levels.

Particularly, H1
κ show greater robustness at the highest noise

level, while lower noise levels favor H2
κ. Overall, these

results show that the learned principal components are more
robust to the introduced outliers.

The influence of κ is studied in Fig. 3 with τ = 100. The
Huber losses (blue and green lines) can be distinctively
more robust to outliers than the square loss (red dashed line).
When κ becomes closer to κmax, the robustness effect is void
and the MSE converges to the one from the standard KPCA.
With small κ, the constraint on the dual variables is too
strict to learn meaningful principal components, as the size
of the projection ball becomes insufficient. Accordingly,
the MSE grows quickly in the small κ region. A balanced
choice of κ results in lower MSE, i.e., reduces the influence
of the outliers and therefore learns more robust principal
components.

5.3. ϵ-insensitive Losses

The ϵ-insensitive losses induce sparsity on H . The choice
of the ball used to define the Moreau envelope determines
the sparsity type through the dual norm and ϵ affects the
sparsity level, where ϵ = 0 recovers the square loss case. In

particular, for the dual norms ∥H∥⋆ = ∥H∥1 and ∥H∥⋆ =∑n
i=1 ∥hi∥2, we obtain respectively the losses ℓ∞ϵ , ℓ2ϵ . The

former promotes unstructured sparsity as the associated
proximal step involves coordinate-wise soft-thresholding,
the latter promotes block sparsity as the associated proximal
step involves block soft-thresholding. The use of convoluted
losses makes it possible to cast both the robustness and
sparsity losses in the same duality framework. Accordingly,
as for the Huber loss family, we address this optimization
problem through the DC algorithm.

The study of the role of ϵ and s for the ℓ2ϵ loss is shown in
Fig. 4, where we consider a random data matrix X with
n = 1000, d = 20 and the kernel is chosen to be Gaussian.
The reconstruction error ratio is the ratio between the re-
construction error using the components learned with the
ℓ2ϵ loss and the reconstruction error from the square loss.
Here, sparsity is in terms of percentage of zero rows in H .
In fact, typically the dual solution from KPCA is dense and
all training points, corresponding to the rows of H , con-
tribute. Block sparsity therefore induces a representation
in a fraction of the training points. We can see that setting
ϵ = 0 recovers the square loss case. As ϵ grows, H becomes
sparser. We also expect that, as ϵ grows, the performance
declines in terms of reconstruction error, demonstrating a
trade-off between sparsity and accuracy of the learned repre-
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sentation. Such compromise depends on the requirements of
specific applications. In the example of Fig. 4, with s = 5
principal components, one can obtain 40% sparsity with just
a 10% increase in reconstruction error. Increasing s with
fixed ϵ usually leads to a slight decrease in sparsity, meaning
that a higher ϵ is needed to achieve a similar sparsity level.
The ℓ2ϵ performance relative to the square loss declines with
higher s for a fixed sparsity level. Similar conclusions can
be drawn for the ℓ∞ϵ loss from Fig. 5, where sparsity is in
terms of zero entries of H .

6. Conclusion
This work presents a duality framework for the kernel PCA
problem seen as a difference of convex functions. The
generalized family of objectives with Moreau envelopes
structure allows to extend the variance maximization prob-
lem to a wider choice of objectives, inducing robust and
sparse estimators. The resulting gradient-based algorithm
for standard KPCA shows important speedups in training
time compared to the SVD solvers. Future work could fo-
cus on convergence properties of the DC algorithm towards
optimal critical points.
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A. Proofs
A.1. Proof of Proposition 3.1

Proof. Since f is proper closed convex, it holds that f = f∗∗, so equivalently we can write Problem 2 as

inf
W∈U

g(W )− sup
V ∈K

{⟨V,ΓW ⟩ − f∗(V )} = inf
W∈U

g(W ) + inf
V ∈K

{f∗(V )− ⟨V,ΓW ⟩} (11)

= inf
W∈U,V ∈K

g(W ) + f∗(V )− ⟨V,ΓW ⟩ (12)

= inf
V ∈K

f∗(V )− sup
W∈U

{⟨Γ♯V,W ⟩ − g(W )} (13)

= inf
V ∈K

f∗(V )− g∗(Γ♯V ). (14)

A.2. Proof of Proposition 3.2

We begin by expliciting a formula for Γ♯.
Lemma A.1. Let H ∈ Rn×s. Then

Γ♯H =

[
n∑
i=1

hijϕ(xi)

]s
j=1

∈ Hs.

Proof. Let W = [wj ]
s
j=1 ∈ Hs and H ∈ Rn×s. It holds that

⟨H,ΓW ⟩Rn×s =

n∑
i=1

s∑
j=1

hij [ΓW ]ij

=

n∑
i=1

s∑
j=1

hij⟨ϕ(xi), wj⟩H

=

s∑
j=1

〈
n∑
i=1

hijϕ(xi), wj

〉
H

=

〈[
n∑
i=1

hijϕ(xi)

]s
j=1

,W

〉
Hs

which conludes the proof.

We are now ready to prove that g⋆(Γ♯H) = Tr
(√

H⊤GH
)

.

Proof. Let W = [wj ]
s
j=1 ∈ Hs and H ∈ Rn×s.

sup
G(W )⋞Is

⟨Γ♯H,W ⟩Hs = sup
G(W )⋞Is

s∑
j=1

⟨wj ,
n∑
i=1

hijϕ(xi)⟩H

Since H = Span ({ϕ(xi)}ni=1)
⊕

(Span ({ϕ(xi)}ni=1))
⊤ and using orthogonality properties, we can parameterize W using

a matrix A ∈ Rn×s so that

∀j ∈ [s], wj =

n∑
i=1

aijϕ(xi).

Then

⟨Γ♯H,W ⟩Hs =

s∑
j=1

⟨
n∑
i=1

hijϕ(xi),

n∑
l=1

aljϕ(xl)⟩H

= TrA⊤GH.
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Moreover, G(W ) = A⊤GA. We thus fall back on the problem

sup
A⊤GA⋞Is

TrA⊤GH.

By performing the change of variable B = G
1
2A (possible since G is full rank), the problem becomes

sup
B⊤B⋞Is

TrB⊤G
1
2H.

We recognize the Fenchel-Legendre transform of the indicator of the convex hull of the unit ball for the spectral norm, which
is known to be the Schatten 1-norm (also known as nuclear norm) that we denote ∥·∥S1

in what follows. We have thus
proven that

g⋆(Γ♯H) =
∥∥∥G 1

2H
∥∥∥
S1

.

A simple application of the SVD decomposition then suffices to see that∥∥∥G 1
2H
∥∥∥
S1

= Tr
√
H⊤GH,

which conludes.

A.3. Proof of Proposition 3.4

Proof. We begin by rewriting π(H) = R ◦ c(H) where R(X) = Tr
√
X and c(H) = H⊤GH . Note that

R(X) = Tr
√
X =

∑s
i=1

√
λi(X), with λi(x) the i-th largest eigenvalue of X . Also, R(X) = r(λ(X)), with

r(z) =
∑s
i=1

√
zi, where zi indicates the i-th component of z and λ(X) is the eigenvalues function defined as

λ(X) = [λ1(X), λ2(X), . . . , λs(X)]⊤. Note that r is symmetric to permutations, so R is a symmetric spectral func-
tion over the set of symmetric matrices Ss. Therefore, the gradient of R is (see Theorem 1.1 in (Lewis, 1996)):

∇R(X) = U⊤diag(∇r(λ(X)))U, (15)

with U any orthogonal matrix such that X = U⊤diag(λ(X))U . The gradient of r is

∇r(z) =
1

2
√
z
, (16)

for z > 0 (which is the case for G positive definite and H full rank). Moreover

∇c(H) = 2GH. (17)

Finally by the chain rule we have

∇π(H) = 2GHU⊤diag(
1

2
√

λ(H⊤GH)
)U, (18)

where U ∈ Rs×s is any orthogonal matrix satisfying

H⊤GH = U⊤diag
(
λ(H⊤GH)

)
U. (19)

Therefore,

∇π(H) = GHU⊤DU, (20)

with D = diag
(

1√
λ(H⊤GH)

)
.
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A.4. Proof of Proposition 3.7

Proof. Writing the dual cost with H = U⊤
r

√
Σr, we get

1

2
Tr(H⊤H)− Tr(

√
(H⊤GH)) =

1

2
Tr(
√
ΣrUrU

⊤
r

√
Σr)− Tr(

√√
ΣrUrGU⊤

r

√
Σr)

=
1

2
Tr (Σr)− Tr

√
Σ2
r

= −1

2
Tr (Σr).

As this quantity correspond to (minus) the primal cost and srong duality holds, then H is a dual solution.

A.5. Proof of Proposition 3.6

Proof. First remark that for all H ∈ Rn×s,

∇J(H) = HH⊤H −GH.

Let Ĥ be a critical point of the dual function, we denote by Ĥ⊤GĤ = U⊤SU the SVD of Ĥ⊤GĤ . The condition
0 ∈ ∂

(
H 7→ 1

2 ∥H∥2F − π(H)
)
(Ĥ) implies that

Ĥ = GĤU⊤S− 1
2U

Thus

Ĥ⊤Ĥ = Ĥ⊤GĤU⊤S− 1
2U

= U⊤SUU⊤S− 1
2U

= U⊤S
1
2U,

so that
ĤĤ⊤Ĥ = GĤ,

showing that ∇J(Ĥ) = 0, which concludes the proof.

A.6. Proof of Proposition 3.8

Proof. Let Ĥ be a solution to the dual problem. We know that the primal solution satisfies

Ŵ ∈ argmax
W∈Hs,G(W )=Is

⟨W,Γ♯Ĥ⟩.

We can express each ŵj =
∑n
i=1 âijϕ(xi), and the problem becomes

max
A∈Rn×s

⟨A,GĤ⟩ s.t. A⊤GA = Is.

By doing the change of variables B = G
1
2A, we want to solve

max
B∈Rn×s

⟨B,G
1
2 Ĥ⟩ s.t. B⊤B = Is (21)

Let G
1
2 Ĥ = V ⊤SU be the SVD decomposition of G

1
2 Ĥ . We have that B̂ = V ⊤U maximizes 21, which in turn gives

Â = G− 1
2V ⊤U .

We can now express Â using Ĥ , as
Ĥ = G− 1

2V ⊤SU

implies that
ĤU⊤S−1U = Â.

Remarking that Ĥ⊤GĤ = U⊤S2U is the SVD of Ĥ⊤GĤ allows to conclude the proof.
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B. More Experimental Results
B.1. Kernel Choice

Numerical evaluations are conducted to assess the effect of different kernel functions. In fact, different kernels give different
eigenspectra of the Gram matrix. In general, numerical algebra solvers’ accuracy and required number of iterations may
depend on the eigenspectrum of G. For example, Randomized SVD (RSVD) is known to be less accurate with data matrices
whose eigenspectrum decays slowly (Halko et al., 2011), which is often the case with real-world noisy data. On the other
hand, in the main body we show that our method is mostly unaffected by the shape of the eigenspectrum of G.

We conduct further experiments to verify that our method is effective when we use other kernels as well. The results in
Table 5 below show the KPCA training time with Gaussian kernel, while in Table 2 in the main body the kernel was set as
the Laplacian. The speedups are clear also with the Gaussian kernel.

Table 5: KPCA Training Time with Gaussian kernel for δ = 10−2. Speedup factor w.r.t. RSVD.

Task n
Time (s) Speedup

SVD Lanczos RSVD Ours Factor

Synth 1 7000 87.33 1.05 3.04 0.56 5.41
Protein 14895 979.84 3.86 10.61 1.08 9.81
RCV1 20242 - 21.03 19.69 3.76 5.23
CIFAR-10 60000 - 47.94 197.99 13.47 14.70

Moreover, the results in Table 6 below show the test MSE on the corrupted Iris dataset used in Section 5.2 in the main body
with Laplacian kernel, while in the main body was set as the Gaussian. The Huber loss shows improved robustness also with
the Laplacian kernel.

Table 6: MSE on contaminated Iris dataset using Huber loss with Laplacian kernel.

τ 1
2 ∥·∥

2
H2
κ H1

κ

10 3.024668 2.862165 2.762514
25 4.580805 4.415508 4.337033
50 8.998080 8.824152 8.808865
75 15.695008 15.507481 15.590248
100 24.671558 24.671039 24.671153

B.2. Comparative Analysis

We conduct comparative experiments between our sparse/robust KPCA with recent sparse/robust KPCA methods. First,
we compare with ℓ2,1-RKPCA (Wang & Tanaka, 2020b) and with L1-KPCA (Kim & Klabjan, 2020), which are recent
relevant robust KPCA methods from the literature that have been shown experimentally to exhibit good robustness for this
task. The hyperparameter in (Wang & Tanaka, 2020b), which controls the importance of the ℓ2,1-norm penalization term,
is selected in the range suggested by the authors in their paper. In Table 7, we report reconstruction error (MSE) for the
Iris data, contaminated as described in Section 5.2 in the main body for multiple noise levels. Higher MSE means that the
learned subspace is influenced by the outliers, while lower MSE corresponds to more robust models.

Additionally, we compare with SSKPCA (Guo et al., 2019a) and with SKPCA (Wang & Tanaka, 2016), which are recent
relevant sparse KPCA methods from the literature. In Table 8, the reconstruction error ratio is the ratio between the
reconstruction error using the components learned with the corresponding sparse KPCA method and the reconstruction error
from the dense problem. Ratios closer to 1 are better. The settings and dataset are the ones from Section 5.3 in the main
body. The sparsity parameter λ in SKPCA and γ in SSKPCA are selected to obtain a fixed sparsity percentage in the matrix
of coefficients.

The robust KPCA in (Kim & Klabjan, 2020) uses L1-norm KPCA, i.e., maximizing variance with respect to the L1-norm,
while we consider variance-like objectives with infimal convolution with the squared norm, so we can recover the standard
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Table 7: Robust KPCA comparison. MSE on contaminated Iris dataset.

τ ℓ2,1-RKPCA L1-KPCA 1
2 ∥·∥

2
H2
κ H1

κ

10 6.965341 6.829537 7.591059 6.833484 7.381284
25 7.437400 7.598856 7.910846 7.182663 7.687518
50 8.113397 8.085395 8.691805 8.045477 8.430957
75 9.734140 9.547392 9.782740 9.259353 9.465706
100 10.934794 10.855314 11.183650 10.824293 10.791766

Table 8: Sparse KPCA comparison. Reconstruction error ratio.

Sparsity (%) SKPCA SSKPCA ℓ2ϵ ℓ∞ϵ

10 1.19053 1.17019 1.04675 1.01685
20 1.67440 1.18649 1.06966 1.03824
30 1.83307 1.18794 1.08153 1.04247
40 2.30358 1.20480 1.09440 1.06308
50 2.75248 1.22205 1.10164 1.08127

KPCA as a special case. The method in (Wang & Tanaka, 2020b) introduces extra variables and multiple ℓ2,1-norm
penalizations in the objective and consequently multiple penalty hyperparameters which makes it harder to tune than our
proposed method with a single parameter κ; the optimization is performed with alternating updates with three additional
optimization subproblems, which require to compute the SVD of an n× s matrix at each iteration. SKPCA (Wang & Tanaka,
2016) and SSKPCA (Guo et al., 2019a) relax and modify KPCA to use ElasticNet optimization for promoting sparsity. To
get sparsity, SKPCA make use of the matrix G−1/2, which requires computing the full SVD of G, and SSKPCA’s iterative
algorithm is initialized with the top s eigenvectors of G, requiring to compute the truncated SVD of G. In comparison, we
get sparsity without performing such costly operation, as our modelling considers the SVD of the much smaller s× s matrix
H⊤GH . Overall, our formulation performs similarly without having to compute the full SVD.

15


	Introduction
	Problem Formulation
	Solving Kernel PCA with Gradient Descent
	Nuclear Norm Gradient Computation
	Critical Points of the Dual Problem
	Exploiting the Dual Solution

	Beyond Variance Maximization
	Huber and -insensitive Objectives
	Solving with DC Algorithm

	Numerical Experiments
	More Efficient KPCA
	Huber Losses
	-insensitive Losses

	Conclusion
	Proofs
	Proof of Proposition 3.1
	Proof of Proposition 3.2
	Proof of Proposition 3.3
	Proof of Proposition 3.5
	Proof of Proposition 3.6
	Proof of Proposition 3.8

	More Experimental Results
	Kernel Choice
	Comparative Analysis


